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Abstract. Success of the Paris Agreement relies on rapid reductions in fossil fuel CO, (ffCO;) emissions. At-
mospheric data can verify the ffCO, reductions pledged by nations in their nationally determined contributions.
However, estimating ffCO, from atmospheric CO» is challenging due to natural fluxes and varying backgrounds.
One approach is to combine with nitrogen oxides (NO, =NO + NOy), which are co-emitted with CO, during
combustion. A key challenge in using NO, to estimate ffCO; is the computational cost of modelling atmo-
spheric photochemistry. Additionally, the NO; : NO column ratio must be well understood to convert model NO,
columns to NO; columns for comparison with satellite data. We use random forest regression to parameterise
NO, chemistry, relying only on meteorological parameters and NO, concentration. The regression is trained on
outputs from a nested GEOS (Goddard Earth Observing System)-Chem model simulation for mainland Europe
in 2019. We develop a monthly NO, chemistry parameterisation that performs well when tested on perturbed
emission runs (R2 > 0.95) and on unseen meteorology for 2021 (R% > 0.79). We also parameterise the NO, : NO
ratio (R? > 0.99 on perturbed outputs, R? > 0.92 on unseen meteorology). Additionally, we present an alterna-
tive method to predict NO, rates by scaling baseline NO, rates with changes in NO, concentration (R*>=1.0
on perturbed outputs). Our models reproduce NO; columns with minimal deviation from full-chemistry mod-
els, with reconstruction error smaller than the TROPOspheric Monitoring Instrument (TROPOMI) precision in
over 99.9 % of cases, supporting robust ffCO; inversion efforts. These results provide a robust framework for
accurately estimating fossil fuel CO, emissions from atmospheric data, enabling more reliable monitoring and
verification of global emissions reductions.

tors but they are uncertain for various reasons, mainly asso-

Reaching net zero greenhouse gas emissions is a global goal,
needed to curb further warming of our planet. Achieving
that goal on a national scale requires accurate knowledge
about fossil fuel emissions of CO, (ffCO») to verify a coun-
try’s progress towards achieving their Nationally Determined
Contributions under the Paris Agreement. But how can a
country assess whether they are heading in the right direc-
tion? The default approach is to use national inventories
that are compiled from energy statistics and emission fac-

ciated with the veracity of the statistics and their spatial and
temporal distributions and the default assumption of time-
invariant emission factors (Kuenen et al., 2014; Hoesly et al.,
2018b). Such “bottom-up” inventories are typically available
with a delay of 2 years (Janssens-Maenhout et al., 2019)
thereby introducing a temporal disconnect between climate
action and results. The alternative “top-down”, data-driven
approach uses Bayes’ theory to infer CO; emission estimates
from observed changes in atmospheric CO;. This approach is
also subject to uncertainties including errors in atmospheric
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transport models, sparse observational coverage, and back-
ground concentration estimation (Peylin et al., 2013; An-
drew, 2020). One of the remaining challenges associated
with this atmospheric approach is isolating the combustion
and natural contributions to atmospheric CO, (Oda et al.,
2023). Various approaches have been proffered to address
that challenge, which fall into two broad categories: spatial
disaggregation of combustion (Shu and Lam, 2011; Liu et al.,
2018) and natural fluxes and using an additional trace gas
(Meijer et al., 1996; Lopez et al., 2013; Wenger et al., 2019;
Super et al., 2020), associated exclusively with combustion
or natural processes common to CO;. One such trace gas
is NOy, but due to the large computational overhead of di-
rectly modelling the atmospheric NO, photochemistry, we
endeavor to determine an alternative methodology to model
NO, chemistry. Here we describe a parameterisation of tro-
pospheric nitrogen oxide (NO, = NO + NO,) chemistry that
effectively unlocks our ability to use NO, alongside CO;
to quantify ffCO, estimates within an Bayesian inference
framework, particularly in the context of an operational sys-
tem.

Extracting energy from carbon-based fuels relies on break-
ing apart atomic bonds that form the molecular structure of
the fuel, thereby releasing energy. This is achieved by com-
bustion in which the fuel, composed primarily of hydrogen-
carbon bonds, is oxidized by molecular oxygen (O3). Gen-
erally, more energy is released during combustion for fuels
with a higher H: C ratio. The primary products of combus-
tion are CO; and water vapour. However, when combustion
is inefficient — for example, due to insufficient O, to fully
oxidise the fuel — a wider range of compounds is released,
depending on the composition of the fuel being burned. For
many combustion processes, air is used to provide O,. While
molecular nitrogen (N) in air does not take part in the com-
bustion reaction, the high temperatures involved can ther-
mally dissociate N to facilitate the production of NO (and to
a lesser extent NO;), which is subsequently co-emitted with
the CO, emissions. The advantage of using atmospheric NO,
as a tracer of ffCO, is its relatively short lifetime, on the or-
der of hours to days, which means that we can link elevated
NO3 satellite columns directly to their parent NO, emissions.
Numerous studies are using observations of NO, and NO,
to constrain estimates of ffCO; (Berezin et al., 2013; Lopez
et al., 2013; Goldberg et al., 2019; Super et al., 2020). With
the increasing availability of in situ and satellite measure-
ments of atmospheric CO,, NO; and other fossil-fuel trac-
ers, deriving ffCO, through multi-species model inversion
techniques is becoming a widely used approach (Feng et al.,
2009; Nayagam et al., 2023; Super et al., 2024; Wang et al.,
2025). However, a key limitation of this method is the un-
certainty in CO, : NO, emission ratios, which vary by sec-
tor, fuel type, and combustion technology (Jiang et al., 2010;
Wang et al., 2025) . Additional challenges include errors in
atmospheric transport modelling, accurate representation of
chemical processes, and limited observational coverage.
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We present a methodology for parameterising NO, chem-
istry to reduce the associated computational overhead. We
consider NO, because its constituents, NO and NO», rapidly
interconvert (Jacob, 1999). By modelling NO, as a proxy
for the combined NO and NO, we can save a consider-
able amount of computational time that would otherwise be
spent on photochemical calculations (previously shown in
Wau et al., 2023). To do this we need a model that can pre-
dict the net loss of NO, at each time step and grid point.
The rate of decay of NOy is driven by a number of mete-
orological parameters (Nguyen et al., 2022) including, but
not limited to, the irradiance from sunlight, air temperature
and solar zenith angle. In this study, we develop a machine
learning-based random forest regression model, trained on
a full-chemistry version of the GEOS (Goddard Earth Ob-
serving System)-Chem atmospheric chemistry model, to ac-
curately predict the atmospheric NO, rate of change using
a small set of driving variables. We evaluate the robustness
of our parameterised NO, chemistry using perturbed emis-
sions on the order of those we typically employ in ensemble
Kalman filter techniques. With atmospheric inversion meth-
ods in mind, atmospheric NO,, emission estimates tend to be
constrained by satellite column observations of NO, (Nape-
lenok et al., 2008; Zhao and Wang, 2009; Kemball-Cook
et al., 2015) so our parameterised model must also be able
to describe changes in NO,. We achieve this by developing
a further random forest-based model, which can predict the
species concentration NO; : NO ratio.

Figure 1 shows a schematic overview of the steps used
to parameterise NO, chemistry and partitioning for efficient
modelling of NO, columns. The first stage involves run-
ning atmospheric simulations of NO, using offline chemistry
rates, which are either predicted by random forest models
(described in Sect. 2.2) or estimated through relative scaling
(described in Sect. 2.3). In the second stage, the NO, output
from these simulations is converted to NO», enabling direct
comparison with satellite observations such as TROPOMI
NO;. This approach provides an efficient framework suitable
for data assimilation applications.

In the next section, we describe the GEOS-Chem atmo-
spheric chemistry transport model that we use to train our
random forest models, the satellite observations of column
NO; that we use to evaluate our parameterised atmospheric
chemistry model for NO,, and the approach we take to con-
struct the random forest model. In Sect. 3, we report the
performance of random forest models of atmospheric NO,
and NO; : NO, and evaluate the corresponding atmospheric
NO; columns using satellite data. We conclude the paper in
Sect. 4.

2 Data and methods

Here, we describe the GEOS-Chem atmospheric transport
model used to build our random forest regression models, the
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Figure 1. A schematic illustrates how NO, chemistry parameterisation models are integrated into GEOS-Chem for modelling of atmospheric

NO, without a full chemistry scheme.

satellite column data we use to evaluate our parameterised
model of atmospheric NO, chemistry, and details that de-
scribe how we develop our random forest regression mod-
els. A random forest regression model, or a constant lifetime
scaling based approach can be used to predict the chemistry
rates. The modelled NO, concentrations are then converted
to NO» using an additional random forest model. This effi-
cient approach significantly reduces GEOS-Chem’s compu-
tational cost for forward modelling of NO, columns. This
is particularly useful for high resolution data assimilation,
allowing anthropogenic NO, emission perturbations to be
compared with satellite NO;, observations, such as the TRO-
POspheric Monitoring Instrument (TROPOMI).

2.1 GEOS-Chem atmospheric chemistry transport
model

We use version 14.2.2 of the GEOS-Chem atmospheric
chemistry transport model (Bey et al., 2001) to describe the
emissions, transport, and chemical production/loss of atmo-
spheric NO. For the purpose of our study, we use a nested
version of the full chemistry model, centred over mainland
Europe (32.75 to 61.25°N, —15 to 40°E) with 47 verti-
cal levels, approximately 30 of which fall below the dy-
namic tropopause, where the first model layer has a depth of
130-180 m. The nested model runs with a horizontal spatial
resolution of 0.25° x 0.3125°. Initial conditions and lateral
boundary conditions to the nested domain were created from
a consistent global version of the GEOS-Chem model run at
4° x 5°, with three-hourly output fields. We ran the model
with a transport timestep of 5 min and a chemistry timestep
of 10 min.

The model is driven by offline meteorology fields from
the GEOS Forward Processing (GEOS-FP) product from
the Global modelling and Assimilation Office (GMAO) at
NASA Goddard Space Flight Center. GEOS-FP has a na-
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tive horizontal resolution of 0.25° x 0.3125° with 72 verti-
cal pressure levels and 3 h temporal resolution. To describe
the emissions of NO, we used anthropogenic emissions from
the Community Emissions Data System (CEDS) version 2
(Hoesly et al., 2018a, b), which provides NO emissions
for anthropogenic combustion (industry, energy extraction),
and non-combustion sources (agriculture, solvents), includ-
ing surface transport and shipping. Aircraft emissions for
NO and NO; are taken from the Aviation Emissions Inven-
tory Code (AEIC) (Simone et al., 2013). Pyrogenic emissions
of NO are taken from the Global Fire Emissions Database
(GFED) version 4.1 (Randerson et al., 2017).
GEOS-Chem’s full-chemistry mechanism simulates atmo-
spheric chemistry by explicitly solving a comprehensive net-
work of chemical reactions, capturing the production, trans-
formation, and loss of NO, and related species. NO, chem-
ical loss is simulated through key reactions such as NO;
reacting with ozone (O3) to form NOs3, hydroxyl radicals
(OH) to produce nitric acid (HNO3), and hydroperoxyl rad-
icals (HOy) to form peroxynitric acid (HNOy). Organic ni-
trate formation is included through the reactions of NO,
with methyl peroxy radicals (MO;) and methacryloyl per-
oxy radicals (MCO3), forming methyl peroxy nitrate (MPN)
and peroxyacetyl nitrate (PAN), respectively. Additional loss
occurs via NOs reacting with NO, to produce dinitrogen
pentoxide (N2Os). Simultaneously, the model accounts for
important regeneration pathways, including the thermal de-
composition of N;Os into NO3 and NO», the breakdown
of PAN to release NO; and methacryloyl peroxy radicals
(MCQO:3), and the photolysis of HNO4 to produce NO; and
HO;. Rapid NO to NO; exchange is simulated through key
reactions, including NO + O3 — NO; + O, which relies on
ozone to oxidize NO, and NO 4+ NO3z — 2 NO,, which oc-
curs through the reaction of nitric oxide with nitrate radicals.
Additionally, photochemical reactions driven by sunlight in-
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clude NO; + O3 + hv — NO + O3, where nitrogen dioxide
photodissociates to form nitric oxide. The mechanism deter-
mines reaction rates using reaction rate coefficients that de-
pend on temperature, pressure, and solar radiation, alongside
environmental inputs like meteorological fields and species
concentrations.

The average diurnal cycle of NO, chemical rate of change
calculated from full-chemistry simulations is presented in
Fig. A1 for the four seasons of the year. The shape of the diur-
nal cycle in the NO, tendency varies seasonally, influenced
by changing sunlight intensity and atmospheric conditions.
In winter, the net NO, loss peaks predominantly at night,
when photolytic regeneration ceases and reservoir species
like HNO3 and PAN accumulate, removing NO, from the
reactive pool. During spring and autumn, while a nighttime
peak loss remains, there is an additional peak of compara-
ble magnitude in the morning around 09:00-10:00 local solar
time (LST). In summer, the maximum net loss shifts to the
early morning hours 07:00-08:00 LST, likely driven by rapid
photochemical activity as sunlight increases. Meanwhile, by
the afternoon we find episodes of net NO, production, re-
flecting stronger photolytic regeneration under high solar in-
tensity. These seasonal and diurnal variations reflect complex
interactions between photochemistry, emission patterns, and
atmospheric transport, resulting in shifts of NO, sinks and
sources throughout the day and year.

The NO, concentration, the NO, chemical rates of
change, and relevant meteorology were output at a temporal
resolution of one hour. The chosen meteorological parame-
ters are shown in Table 1. These were selected as they were
all found to have a relationship with the net NO, chemical
rate of change.

The model was run for the full year 2019 with baseline
(unperturbed) NO, anthropogenic emissions taken from the
CEDs emission inventory. This data was used to train the re-
gression models. To further validate the regression model’s
performance under varying emissions, additional model runs
were conducted with random perturbations applied to anthro-
pogenic NO, emissions on the order of £20 %. We chose
this size of perturbation because a 20 % increase in emis-
sions induces changes in NO; columns on the same order of
magnitude as the difference observed between GEOS-Chem
and TROPOMI (as in Fig. 2a). These perturbed runs were
performed for 10d in January, April, July, and October. A
model run for the year 2021 was also performed in order to
test the regression performance for an unseen meterological
period.

2.2 Random Forest regression modelling

We trained two random forest regressor models to predict
the NO, net chemical rate of change, and the NO; : NO par-
titioning ratio. Random forest models are an ensemble ma-
chine learning method, which combine the predictions of
many decision trees to improve accuracy and reduce overfit-
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ting (Breiman, 2001). A decision tree is a simple predictive
model that makes a series of splits in the data based on input
variables. At each node, the algorithm chooses the predictor
and threshold that best separate the data with respect to the
target, continuing until each final branch (or “leaf”) gives a
prediction. While a single tree is easy to interpret, it can over-
fit the data. Random forests address this by building a “for-
est” of many trees, each trained on a random subset of the
data and predictors. This randomness ensures the trees cap-
ture diverse patterns, and averaging their outputs yields more
robust predictions. Such an algorithm is well-suited to this
study as, unlike traditional regression approaches, it does not
require assumptions about linearity and can flexibly capture
complex relationships and interactions between meteorolog-
ical drivers and chemical tendencies. Additionally, random
forests are relatively computationally efficient to train and
can handle correlated predictor variables, making them well
suited for large atmospheric datasets.

These models were built using the Sci-kit learn python
package (Pedregosa et al., 2011). We evaluated model per-
formance using the coefficient of determination (R2), which
quantifies the proportion of variance explained by the model;
the mean absolute error (MAE), which measures the mean
magnitude of prediction errors; and the mean bias, which
indicates the mean tendency of the model to overpredict or
underpredict relative to observations. These are defined by
the following equations, where y; are true values, y; are pre-
dicted values, y is the mean of the true values, and N is the
number of datapoints:

R2—1 vazl(yi —91')2
— T N —2
Zi:l(yi -y)
‘l N
MAE = — = 9
N ;}yl y:|
1 N
Mean Bias = NZ(y,- —5i) 1)
i=1

We separately trained both regression models for each
month of the year, for which we report results from January,
April, July, and October 2019. The models were developed
using the NO, concentration, the spatial location and a range
of meteorological variables as input parameters. We consid-
ered a total of 14 input parameters as predictors in the mod-
els, shown in Table 1.

To identify the most relevant features for the models, we
performed a comprehensive forward selection wrapper pro-
cedure, which iteratively adds the feature that yields the
largest improvement in mean absolute error until no further
gain is observed. Figure A2a and b detail how the perfor-
mance of the models changed as we added features for the
prediction of chemistry rate and the partitioning ratio, re-
spectively. Based on this procedure, we selected a set of nine
features for the chemistry rate model, and eight features for
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Table 1. Input parameters selected through forward feature selection for random forest regression models predicting the NO, chemical net

rate of change [molec. em 357! and the NO; : NO partitioning ratio.

Parameter Description Units Rate Ratio
predicition  predicition

NOy Species concentration molec. cm™3 v X

SZA Solar zenith angle at grid point ° v v

Longitude Grid point coordinate °E v v

Latitude Grid point coordinate °N v v

Altitude Height above ground level m v v

Radiation Incident short wave radiation Wm—2 v v

Temperature  Atmospheric temperature K v v

Humidity Water vapour mixing ratio vol. vol.~! v v

Wind speed ~ Wind speed magnitude ms~! v v

Density Dry air density kg m~3 X X

PBL height  Planetary boundary layer height m X X

Pressure Air pressure hPa X X

CO Carbon monoxide dry mixing ratio  vol. vol.~! X X

(07} Ozone dry mixing ratio vol. vol.~! X X
NE T === TROPOMI vs GEOSChem = = i i 107
% 20 GEOSChem 20% E E | |
mE X emission perturbation E 105 g 100 i i - 104
S g £ : '
2 154 5 T i | 10°

T ©
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Figure 2. (a) Sensitivity testing shows that the impact of 20 % emission perturbations on modelled NO, columns is on the same order as the
deviations between GEOS-Chem and TROPOMI. (b) The impact of emission perturbations on the NO, chemistry rate becomes negligible
(< 1% change, or ANO, rate <9 x 103 molec. cm =3 s~1) above 3 km from the ground. Additionally, chemistry rate change is negligible in

all cases where ANO, concentration < 5 x 10* molec. cm™3.

the partitioning ratio model (presented in Table 1). Five of
the parameters; air pressure, air density, height of the plan-
etary boundary layer, and the mixing ratio of ozone (O3)
and the mixing ratio of carbon monoxide (CO), were con-
sistently excluded from all models during feature selection.
The respective importance of each feature across both mod-
els for the 4 months studied are plotted in Fig. A2c. For the
chemistry rate prediction, the NO, concentration and the so-
lar zenith angle are consistently emerge as the most impor-
tant predictorss, contributing around 70 % of the total feature
importance in the model. In the ratio prediction, solar zenith
angle, altitude, and temperature are the primary predictors
during the colder months (January and October), while tem-
perature alone serves as the dominant predictor in the warmer
months (April and July). Additionally, the impact on model
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performance of removing each of the 14 parameters in turn
is presented in Fig. A2d. The individual relationship between
the nine selected predictors and the NO, chemistry rate of
change are shown in Fig. A3.

To avoid unnecessarily complex models, we tuned the
model hyperparameter values to optimise the trade-off be-
tween computational efficiency and prediction accuracy.
Specifically, we conducted a grid search across the four main
hyperparameters in the random forest regression model: the
number of trees (estimators), maximum tree depth, maxi-
mum number of leaf nodes, and maximum number of fea-
tures considered at each split. We selected each hyper-
parameter as the value at which performance plateaued, de-
fined here as the point beyond which further increases in
the parameter resulted in less than a 2% improvement in

Atmos. Chem. Phys., 25, 15631-15652, 2025
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model performance. The results of the tuning are presented
in Fig. A4. The final optimised model achieved a predic-
tion time of 6 ms per sample, providing a good balance be-
tween accuracy and computational cost. In addition to re-
ducing computational time, simplifying the random forest by
limiting tree complexity and number also reduces the risk
of overfitting, thereby improving the generalisability of the
model to new data.

We trained and tested our NO, chemistry regression mod-
els on model grid points in the first 3 km above the surface
— the region where changes to surface emissions were found
to directly influence the atmospheric chemistry, see Fig. 2b.
The regression model for the NO; : NO ratio was predicted
for each level in the troposphere, and trained on the subset of
model data that coincides with the TROPOMI swath (11:30-
15:30 LST overpass). The NO; : NO ratio can be used to con-
vert the concentration of NO, to NO;:

NO; : NO

NO, =NOy ————.
1+NO;, : NO

@)

To evaluate model generalisability, we tested model per-
formance using two complementary approaches. Primarily,
we assessed predictions on unseen emission perturbation
scenarios while holding meteorology fixed. Specifically, we
focused on £20 % emission perturbations similar to those
used in ensemble Kalman filter applications (Feng et al.,
2009, 2023). This isolates the model’s responsiveness to
emission changes under consistent atmospheric conditions
and reflects its intended use in inversion frameworks, where
emissions are perturbed while meteorology remains pre-
scribed. In addition, we include in the appendix (Fig. A6) an
evaluation on an entirely independent simulation run for the
year 2021, representing unseen meteorological conditions
due to its different temporal period. For both approaches,
training and testing datasets were constructed via random
sampling across all spatial locations and time steps. The
training set comprised a random 10 % subset of the unper-
turbed data, while the test set comprised 0.25 % of the per-
turbed (or 2021) data, ensuring minimal overlap in specific
spatiotemporal conditions. Combined, this dual testing strat-
egy rigorously evaluates the models’ ability to generalise
across both emission changes and meteorological variability,
providing confidence in their performance for atmospheric
inversion applications.

2.3 NOy chemical lifetime

In an alternative formulation, we apply the assumption that
the effective lifetime of atmospheric NO, remains con-
stant under stable meteorological conditions. Hence, if a full
chemistry model run is available for a baseline emission sce-
nario, the chemistry rates for perturbed scenarios can be cal-
culated by scaling the original rate according to the propor-
tional change in NO, concentration. This approach serves as
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an alternative to using regression models for predicting the
chemistry rates.
The effective atmospheric lifetime, T of NO, is given by:

_ NO,

T= ’
Rno,

3)

where NO, denotes the combined NO and NO; species
concentrations [molec. cm ™3] and Rno, is the instantaneous
chemical rate of net loss [molec. cm™3s~!], which accounts
for the balance between its chemical production (e.g., from
reactions involving NO or NO; precursors) and its chemical
loss processes (e.g., reactions forming reservoirs like HNO3
or NOy species). Note that when NO, experiences an instan-
taneous net chemical production, this effective atmospheric
lifetime becomes negative. We advise the reader that this ef-
fective lifetime does not represent an intrinsic first-order de-
cay timescale for NO,. Instead, it provides a practical frame-
work to express net rates of change relative to the amount
of NO, present, which we find to be an intrinsically sta-
ble metric. The benefit of looking at the effective chemical
lifetime, rather than the net rate of change, is that the quan-
tity is largely independent of species concentration. This in-
dependence allows for a more stable understanding of the
NO, chemistry, irrespective of fluctuations in its concentra-
tion caused by emission changes.

We found that while the influence of £20 % emission per-
turbations cause clear changes to the NO, chemical net rate
of change, the resulting changes to atmospheric lifetime are
considerably smaller (see Fig. AS). This result suggests that
the chemical lifetime is driven by the meteorology and lo-
cation in the model but is less sensitive to changing concen-
trations of NO,. The unperturbed model run provides NO,
concentrations and rates of change at a 1-hour temporal res-
olution, allowing the chemical rate of change to be updated
every hour under the assumption of an unchanged chemical
lifetime. The new rate of change can be determined using the
NO, lifetime, 7, and the local NO, concentration:

Rno, (1. y,2,1) = ~or o2 D), @
T(x,y,2,1)

For this method, an initial unperturbed full-chemistry
model run must be employed to determine the NO, chemical
lifetime t(x, y, z, t) for each grid-point and time-point for the
spatial and temporal region of interest. Then for any further
perturbed model runs, the chemistry rates can be determined
without the need of an integrated chemistry scheme, thereby
saving considerable computational time. The updated chem-
istry rates are then simply scaled by the ratio of the new NO,
concentration to the original NO, concentration; so, if the
concentration doubles then we assume a doubling in the net
chemical rate of change. This method for updating the NO,
chemistry is referred to as the constant lifetime scaling-based
method.

https://doi.org/10.5194/acp-25-15631-2025
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2.4 Regression-based atmospheric chemistry transport
modelling

For this study, we added the NO, species to the GEOS-Chem
tagged carbon model, CO;, CO, methane, and carbonyl sul-
phide, in which individual tagged tracers track contribu-
tions of these trace gases from geographical regions and/or
natural and human-driven fluxes. This model does not in-
clude an integrated chemistry scheme and therefore the NO,
species chemical rate of change is determined using the NO,
chemistry regression model. Going forward, we refer to this
model as the regression-based atmospheric chemistry trans-
port model (shown in Fig. 1).

We performed a full-chemistry model run with emission
perturbations to evaluate the impact of emission changes
on NO, chemistry, and later to assess the performance of
our regression model in predicting the effects of emission
changes. An analysis of how the emission-driven changes in
chemistry rate varied with the atmospheric altitude as well
as the change in NO, concentration is shown in Fig. 2b.
The net rate of change in NO, chemistry showed mini-
mal variability at altitudes above 3 km, where the chemistry
change was less than 9 x 10% molec. cm™> s~!. Additionally,
minimal variability in atmospheric chemistry was observed
when the absolute change in NO, concentration was less
than 5 x 10* molec. cm™3, which corresponds to a chemistry
change of less than 2 x 103 molec.cm ™3 s~!. Based on these
findings, we set a condition to update the NO, net chemical
rate of change using the unperturbed full-chemistry outputs
for altitudes above 3 km and for regions where the change
in NO, concentration is less than 5 x 10* molec. cm™3. For
all other regions, the chemistry regression model is used to
predict the new rate of change.

We also used the constant lifetime scaling method (see
above) to predict the new rate of change. Looking to Fig. 1
we can see that this methodology provides an alternative ap-
proach to the regression-based atmospheric chemistry model
for modelling NO, columns. Throughout this paper we
will compare the results of the regression-based chemistry
scheme and the constant lifetime scaling-based approach.

We ran the model for 10d in January, April, July, and Oc-
tober which provided contrasting seasonal conditions to test
the model. For each run, we use the £20 % perturbed anthro-
pogenic NO, emission sets. To evaluate the veracity of the
NO, column model outputs for the regression-based chem-
istry model and for the constant lifetime scaling model, we
compare them with the full-chemistry model outputs. We use
our NO3 : NO ratio regression model to convert NO, results
from our atmospheric chemistry regression model to NO,
columns, sampled at the time and location of TROPOMI
data, so they can be compared with TROPOMI NO; column
data.

https://doi.org/10.5194/acp-25-15631-2025
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2.5 TROPOMI satellite column observations of NO»

We use TROPOMI NO, tropospheric columns (S5P Level
2, product version 2.2.0, processing version 1.6.0.) (Euro-
pean Space Agency, 2021) to compare with the GEOS-Chem
model output (see Fig. 1). TROPOMI was launched in 2017
in a Sun-synchronous orbit with a local equatorial overpass
time of 13:30. It has a swath width of 2600 km and a ground
pixel of 7 x 7 km? in the nadir. Due to the width of the swath,
the 13:30 overpass time corresponds to data captured with
local solar time (LST) ranging from 11:30 and 15:30LST in
the highest latitude regions of the European domain. We only
used data with a quality flag > 0.75, filtering out data affected
by elevated cloud cover, aerosol loading, and larger solar and
viewing zenith angles. We analysed TROPOMI data for 10d
in January, April, July, and October 2019.

For our study, we regridded TROPOMI data to our
0.25° x 0.3125° GEOS-Chem model grid. To enable a com-
parison between TROPOMI and GEOS-Chem, we sampled
the model at the location and time of each TROPOMI ob-
servation. We applied scene-dependent TROPOMI averaging
kernels, describing the instrument sensitivity to changes in
atmospheric NO, to the corresponding model NO, profiles.

3 Results and discussion

Here, we report the model performance of our atmospheric
chemistry prediction models for NO, and the accompanying
regression model for the NO; : NO ratio that enables us to
convert NO, columns to NO; columns observed by satellites.
We assess the fidelity of our results from these models using
the full-chemistry version of GEOS-Chem and evaluate our
results using TROPOMI NO; column data.

3.1 Performance of atmospheric chemistry regression
models for NOy

3.1.1  NOy chemistry random forest

Figure 3a shows that the NO, chemistry random forest
model has an impressive performance at reproducing results
from the full-chemistry version of GEOS-Chem for the 4
months we study in 2019. The model performance R? val-
ues are 0.97, 0.97, 0.96 and, 0.95 for January, April, July,
and October 2019, respectively. The MAE values are largest
in July (4 x 10* molec.cm™3s™!) and smallest in January
(2.3 x 10* molec. cm™3 s™1), reflecting the increase in mag-
nitude of chemistry rates during summer months over Eu-
rope.

We also tested our regression-based atmospheric chem-
istry model with model data from 2021 (Fig. A6). As ex-
pected, the regression model performance has less skill in
reproducing data that has not been used for training. In this
case, the MAE values are higher by a factor of 1.3—1.8 com-
pared with the overall performance comparison shown in
Fig. 4). Nevertheless, the model still shows substantial skill
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Figure 3. Actual versus predicted scatter plots for models tested on simulations with unseen emission perturbations. (a) The random forest
regression model for predicting the NO, chemistry rate, (b) the constant lifetime scaling for reconstructing the NO, chemistry rate using
an unperturbed chemistry dataset, (¢) the reconstruction of NO; from NOy using the random forest regression model for predicting the

NO; : NO ratio.

despite substantial differences in anthropogenic emissions
between 2019 and 2021 due to COVID-19. Specifically, NO,
emissions were found to decrease by 18 %—24 % during lock-
down periods (Miyazaki et al., 2021) leading to a mean ob-
served reduction in NO; of 29 % (Cooper et al., 2022).

3.1.2 NOy chemistry prediction using constant lifetime
scaling

Figure 3b shows results from using our alternative atmo-
spheric chemistry regression NO, model that employs a con-
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stant atmospheric lifetime scaling approach (Eq. 4). The
resulting model performance is a significant improvement
above the other regression model for all 4 study months.
Using our scaling approach, we found consistent values of
R? =1.0 and MAE values that are approximately 2-3 times
smaller than the other regression model. As with the other re-
gression model, the size of the error is scaled by the seasonal
changes in chemistry rates.

While this approach shows extremely encouraging abili-
ties to determine NO, chemistry rates, its effectiveness re-
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Figure 4. Regression model prediction performance compared when tested on a 20 % perturbed model run for 2019 and an unseen year,
2021. Panel (a) shows the NO, chemistry regression model performance comparisons and panel (b) shows the NO, prediction performance

using the NOj : NO regression model.

lies on having a full-chemistry model run available for at
least one set of emission inputs. Consequently, this approach
is particularly useful for emission perturbation studies, for
which numerous emission distribution scenarios might be
needed for model inversion work. In this case, the full-
chemistry model would only need to be run once for the
given time period of interest. However, we cannot predict the
NO, chemistry using this method for a previously unmod-
elled meterological period.

3.1.3 NO2 :NO ratio regression model

We find the random forest regression model to predict
NO, : NO ratios also demonstrates significant performance.
The predicted ratio is used to convert NO, concentrations
to NO, concentrations (Eq. 2). Figure 3c shows that the re-
gression model can reproduce “true” NO, values from the
full-chemistry of the GEOS-Chem model, with values of R>
of 1.0; the exception is January when R? =0.99.

Generally, the model performance is better during sum-
mer months and worse in winter months, with MAE val-
ues an order of magnitude smaller in July compared to Jan-
uary. This is partly due to NO, concentrations increasing dur-
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ing colder months due to increased combustion and longer
nights, and because we find that NO; : NO ratios become in-
creasingly hard to determine at higher solar zenith angles,
typically experienced over Europe during daytime through
winter months. We also examine the performance of this re-
gression model using data from the unseen year 2021. As
with the atmospheric chemistry regression model, described
above, the performance was good but worse than for 2019 in
which data was used to train the model. The MAE increased
by a factor of 3.25, 3.52, 3.04, and 3.14 for January, April,
July, and October respectively. We found the R? performance
reduced most for January from 0.99 to 0.92, During April
and October R? reduced from 1.0 to 0.99, while RZ=1.0
was maintained in July.

3.2 NOy atmospheric modelling

Figure 5 shows the NO, column reconstruction for the two
regression models used to describe the NO, chemistry rates
from the full-chemistry version of the GEOS-Chem model.
From a visual inspection, there are no obvious differences
in the spatial distribution of the NO, columns reconstructed
using both the regression-based chemistry model and the

Atmos. Chem. Phys., 25, 15631-15652, 2025
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Figure 5. The modelled NO, columns sampled at 12:00 UTC after a 10 d model run with £20 % emission perturbations. NOx columns are
compared for the GEOS-Chem full-chemistry model and (a) NO, columns are simulated using the regression-based chemistry method and

(b) using the constant lifetime scaling method.

constant lifetime scaling model. However, when mapping
the differences, there are areas of deviation from the full-
chemistry model. Broadly, this deviation is significantly
smaller when we use the scaling-based model compared to
the regression-based. In addition, the error accumulation in
January is notably smaller than in other months.

Figure 6 shows the temporal variation in the recon-
struction error. The range, IQR, and median values are
shown in Fig. 6a and the mean absolute percentage er-
ror (MAPE) is shown in Fig. 6b. For the regression-based
chemistry method the range in deviation peaks at up to
3 x 10" molec.cm™2 in January, 5 x 10'* molec.cm™2 in
April and 6 x 10'* molec. cm~2 in July and October. This is
reflected in maximum MAPE values of 2.8 %, 9.7 %, 8.9 %,
and 9.3 % for the 4 months, respectively. On the whole, the
MAPE reduces through time, with final deviation values of
1.7 %, 3.4 %, 2.0 %, and 4.8 % after the full 10d run.

Reconstruction errors for the constant lifetime scaling
model show much smaller errors, particularly in January,
with MAPE < 0.2 % throughout the 10d run. This is driven
by the smaller impact that emission perturbations have on
the NO, chemistry in January as shown by Fig. AS. In par-
ticular, the lifetime of NO, is relatively unchanged between
the unperturbed and perturbed model runs. This reduced im-
pact in January is likely due to the slower rate of photo-
chemical reactions in the winter months and increased at-
mospheric stability at lower temperatures. The other months
do see a more prominent deviation of up to a maximum
of 4 x 10" molec. cm™2, with peak MAPE values of 6.6 %,
5.7 %, and 4.5 %, for April, July, and October, respectively.

Atmos. Chem. Phys., 25, 15631-15652, 2025

As with the regression-based model outputs, here the MAPE
also generally decreases through time with final deviation
values of 0.1 %, 1.1 %, 0.2 %, and 0.3 % for each month, re-
spectively. Interestingly, while the range and IQR are rela-
tively stable throughout the run when using the regression-
based reconstruction, these quantities decrease considerably
with time when we use the scaling-based reconstruction.

The reconstruction error has a small diurnal cycle, peaking
in the morning and to a lesser extent in the evening, reflecting
the diurnal cycle of NO, chemistry (Fig. A1). Overall the ab-
solute model error for both the regression-based and scaling-
based methods peaks after the first day and then gradually re-
duce, plateauing by ~day 6. This early peak in error followed
by a reduction and eventual plateau is likely due to compen-
sating errors, where the regression model’s over- and under-
predictions balance each other out over time, leading to a
stabilisation of the overall error. It is encouraging that there
is no accumulation of error through time, suggesting this ap-
proach would be suitable for studies longer than for 10d. It
is clear that the optimal reconstruction performance is found
when using the scaling-based method, but as we already note
there are limitations to this method. The regression-based
approach still provides excellent reconstruction performance
for our purposes.

To evaluate the performance of the regression-based chem-
istry modelling approach with regression models trained on a
different meteorological time period, the same models were
applied to simulate atmospheric NO, over Europe for 2021.
Figure 7a shows the reconstructed NO, columns after a 10d
model run. As expected, the reconstruction performance is

https://doi.org/10.5194/acp-25-15631-2025
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Figure 6. Comparison of the temporal variation in NO, column reconstruction for the regression-based and scaling-based model. (a) The
median (dashed line), IQR (light-shaded region) and range (dark-shaded region) of the NO, column reconstruction error over the 10 d runs.
(b) The mean absolute percentage error over the 10 d runs. (¢) Shows the reduction in computational time when modelling atmospheric NO
using each of our chemistry prediction methods compared to running with the full-chemistry model.

clearly worse than when the regression-based chemistry is
just applied in 2019 with emission perturbations (Fig. 5a).
However, from a visual inspection, there are no obvious
changes to the spatial distribution of the NO, columns re-
constructed using regression-based chemistry in comparison
to the full-chemistry model output. Additionally, the tempo-
ral variation in error is shown through plots of the MAPE
(Fig. 7b). We see maximum MAPE values of 11.0 %, 10.0 %,
16.7 %, and for January, April, July, and October 2021 re-
spectively. For all months this is an increase in the maximum
deviation observed when applying this methodology to a per-
turbed 2019 run. Overall, this is reflective of the reduction in
prediction power of the regression models when we apply to
2021, which has unseen meteorology. Overall, the same pat-
tern of the absolute error gradually reducing and plateauing
by >~ day 6 is also observed here. However, the diurnal cycle
of variation in the reconstruction error is more pronounced in
the 2021 case, likely due to the fact that the regression model
is worse performing during the night for unseen meteorology.
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The error tends to reduce dramatically towards the middle of
the day, which is helpful if we consider the application of
model comparison with satellite data such as a TROPOMI,
which has a 13:30 overpass time.

Substantial computational time is saved when we employ
these regression methods to model atmospheric NO,. Fig-
ure 6¢ shows the time taken for each model to perform a 1d
model run. This was calculated as the mean average for the
model to run for a single day out of the 10d run for each of
the 4 months, repeated for 3 model runs. Clearly, the full-
chemistry model takes the longest, with a mean of 52 min
per day for our nested model over Europe. The regression-
based chemistry model is significantly faster with a mean of
16 min (3.25 times improvement), while the constant lifetime
scaling method is even faster, with a mean of 12 min (4.3
times improvement). It is important to note that the model
run times reported here are subject to variability due to fluc-
tuations in the relative loading experienced by the computer
system used.

Atmos. Chem. Phys., 25, 15631-15652, 2025
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Figure 7. (a) The modelled NO, columns sampled at 12:00 UTC after a 10 d model run in 2021 using the regression models trained on 2019
compared with full-chemistry. (b) The mean absolute percentage error for the 10 d runs.

3.3 NO> column reconstruction

Finally, we assess the capability of our NO; : NO regression
model, convolved with TROPOMI instrument averaging ker-
nels, to reproduce observation column distributions of NOy
from TROPOMI. The absolute differences in NO; columns
between GEOS-Chem full-chemistry and the GEOS-Chem
regression-based and scaling-based models are compared to
the absolute difference in TROPOMI NO; and GEOS-Chem
full-chemistry, as well as to the magnitude of the TROPOMI
NO; column precision data. This is presented in Fig. 8a,
compared for 8 d in January, April, July, and October. We ap-
ply the regression-based method to a 2019 perturbed model
run, and to a 2021 model run.

We find comparable NO» reconstruction errors for the 4
months we study. Earlier, with the NO, reconstruction, we
found that the error was smaller for January than the other
months (Fig. 3a and b), however, the higher error from the
January NO» : NO regression model (Fig. 3c) offsets this ad-
vantage, ultimately bringing the overall reconstruction er-
ror for all months to a comparable level. We observe com-
parable magnitudes of reconstruction error when we com-
pare our NO; reconstructions based on the scaling-based
and regression-based methods applied to the 2019 model
run. However, the reconstruction error tends to be consis-
tently larger when we apply our regression-based method
to the year 2021. This is particularly notable in January and
July, which can be attributed to the greatest deterioration in
NO, chemistry regression performance in July 2021, and the
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greatest deterioration in the NO; prediction performance in
January 2021 (see Fig. 4).

When we compare the difference between GEOS-Chem
and TROPOMI NO; columns, we find that the NO; recon-
struction errors are much smaller and much smaller than
the estimated precision values for the data. This is the case
for the scaling-based approach and the regression-based ap-
proach applied to both 2019 and 2021. This provides con-
fidence that our model reconstruction performance is robust
enough for use in inversion work, even in the case of using
regression models that have been trained on unseen meteo-
rological periods. See Appendix B for a more detailed anal-
ysis on the difference between modelled column NO, and
observed TROPOMI data.

Figure 8b, shows that the median NO; column model re-
construction errors are 2.8 % of the actual deviation from
TROPOMI in the scaling-based approach, compared to 6.5 %
and 7.3 % in the regression-based approach for 2019 and
2021, respectively. Similarly, these construction errors rep-
resent a median value of 1.3 % of the TROPOMI precision
value for the scaling-based approach, compared to 2.9 % and
3.2 % for the regression-based approach for 2019 and 2021,
respectively. Across all reconstructed data points, we found
that over 99.9 % of the data had reconstruction errors smaller
than the corresponding TROPOMI column precision for both
reconstruction methods in 2019. For the regression-based
method applied in 2021, this was true for over 99.7 % of the
data.
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Figure 8. (a) The absolute difference in NO; between GEOS-Chem full-chemistry and the constant lifetime scaling based model (blue); the
regression-based chemistry model applied to a 2019 perturbed run (green) and applied to a 2021 run (purple); deviation from the observed
NO,; TROPOMI columns (red); as well as the TROPOMI NO, tropospheric column precision values (yellow). (b) The normalised NO;
differences are calculated by normalising the reconstructed model deviation by the absolute deviation between GEOS-Chem and TROPOMI,
as well as by the TROPOMI column precision values. For the different model reconstructions, the NO; deviation is consistently less than the
corresponding TROPOMI precision value in more than 99.5 % datapoints.

4 Concluding remarks

We have demonstrated that the NO, chemistry rates and
NO; :NO ratio described by a leading 3-D atmospheric
chemistry model can be reproduced using random forest-
based regression models using NO,. concentrations, the spa-
tial location, and meteorological variables as input parame-
ters. The models perform successfully on perturbed testing
data through all months of 2019 with R > 0.95 for predict-
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ing NO, chemistry rates and R” > 0.99 for predicting the
corresponding NO» : NO concentration ratios. We also show
that these models maintain their prediction capability when
tested on model outputs from an unseen year (2021) with
contrasting environment conditions.

We have also demonstrated that the atmospheric lifetime
of NO, is stable against varying emissions, particularly in
winter months. From this, we have demonstrated that it is
also possible to predict updated NO, chemistry rates of
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change as a result of emission perturbations, with knowl-
edge of NO, chemistry from an initial unperturbed model
run. This scaling-based approach has impressive prediction
performance with R? = 1.0.

We have developed two viable methodologies to model
atmospheric NO, in a more computationally efficient way
than using the GEOS-Chem 3-D model. The regression-
based chemistry method has the advantage of not requir-
ing prior knowledge of the NO, lifetimes for a baseline
model run, and reduces the computational time by a factor of
3.25. The lifetime scaling-based approach reduces the model
run time slightly further by a factor of 4.3, but a baseline
full-chemistry model run is required. This scaling-based ap-
proach has smaller model reconstruction errors, but gener-
ally both approaches have reconstruction errors smaller than
the TROPOMI precision values for over 99.9 % of the recon-
structed data (399 502 points).

Our study provides confidence in random forest models
being used to describe NO, chemistry to a sufficient accu-
racy for them to play an important role in inversion meth-
ods. Previous work has already found that NO; can be used
to help constrain ffCO;, (Berezin et al., 2013; Lopez et al.,
2013; Goldberg et al., 2019; Super et al., 2020), and this work
develops a new methodology to more efficiently infer NO;
column enhancements from changes to NO, emission in-
puts. The methodologies developed here will be used within
a joint NO, : CO, model inversion to constrain geographi-
cally resolved ffCO,. This will be explored using an ensem-
ble Kalman filter within the GEOS-Chem model framework,
as well as within the Integrated Forecasting System (IFS) us-
ing an incremental 4D-Var algorithm (Inness et al., 2013).
Results from our study are particularly timely with the launch
in the next few years of the Copernicus Anthropogenic Car-
bon Dioxide Monitoring constellation (CO2M) that include
column measurements of CO, and NO;. Overall this work
will support the development and employment of European
CO; measurement, reporting and verification systems.
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Figure A1. Diurnal cycle of NO, chemistry for 4 months of the year. Median and interquartile range net rates of change at the surface of the
atmosphere averaged across the European domain.
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Figure A2. (a) Feature selection results for the rate prediction models, obtained using a forward selection wrapper method. Plotted are
the coefficient of determination (R2) and mean absolute error (MAE) as functions of the number of features included, for each of the four
seasonal models (January, April, July, October). (b) Same as (a), but for the partitioning ratio prediction models. (¢) Feature importance
distributions for each of the four monthly models, showing the relative contributions of each predictor variable to the rate prediction models
(using nine features) and the partitioning ratio prediction models (using eight features). (d) Change in MAE resulting from the removal of
each of the 14 features in turn, demonstrating the individual impact of each feature on model performance and highlighting the importance
of specific predictors for accurate rate and ratio estimates.
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Figure A3. Individual relationships between the nine regression input parameters and the NO, net rate of change. A LOWESS fit (red
line) illustrates smoothed trends in the data, with R? values reported for each fit. Among the parameters, NO, concentration, altitude, and
temperature exhibit noticeable trends with chemistry rates, while the remaining parameters show little to no clear trends individually.
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Figure A4. Impact of hyperparameter changes on random forest regression model performance for predicting NOx chemistry rates. Plots
show the effect of varying the number of trees, maximum tree depth, maximum leaf nodes, and maximum features per decision on mean R2,
MAE, and prediction time (shaded regions represent performance ranges across monthly models). Increased algorithm complexity improves
R? and reduces MAE but increases prediction time. Optimal hyperparameters — 40 trees, depth of 30, 300 000 leaf nodes, and 4 features per
decision — achieve balanced performance with a prediction time of 6 ms.
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Figure A5. The spatial distribution of the impact of +20 % emission perturbations on (a) the NOy net rate of change, and (b) the atmospheric
lifetime of NOy. Overall, it is clear that the impact on the atmospheric lifetime is much smaller, due to its independence from the NOy species
concentration. Note that a negative lifetime of NO, arises in areas where we have a net chemical production of NOy.
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Figure A6. Testing the regression models on 2021. (a) The random forest regression model for predicting the NOy chemistry rate, (b) the
reconstruction of NO, from NO, using the random forest regression model for predicting the NO; : NO ratio.
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Appendix B: Comparison with TROPOMI

The NO, columns modelled by GEOS-Chem was compared
directly with the TROPOMI data for assessment of agree-
ment. Scatter plots between the two are shown in Fig. B,
where we found significant Pearson correlations (p < 0.001)
in all months. In January we observe a general positive bias,
where the model is overestimating NO;, while in July and
October, a negative bias is seen.

The spatial distribution of the deviation between GEOS-
Chem and TROPOMI is shown in Fig. B2. While there are
clear areas of difference, it is notable that the general regions
where we observe elevated levels of NO; are in alignment.
In general, the spatial distribution of high-emission regions
throughout Europe is fairly well understood. However, there
is likely some error on the magnitudes of the emissions in the
inventories used. This is likely to explain the majority of the
areas of large bias between the model and the observations.
However, it must be noted that other sources of error are
present, which include model errors in transport processes,
potential inaccuracies in the model meteorology used, errors
in parameterising deposition processes, and the limiting fac-
tor of the model spatial resolution. Furthermore, there is also
error on the TROPOMI measurements (largely characterised
by the TROPOMI column precision value) including from
instrument noise, cloud and aerosol interference, and verti-
cal profile and sensitivity assumptions. Looking to Fig. 8 it
is clear that there are many regions where the error between
the model and observations is significantly smaller than the
satellite precision, and for such areas the contribution of NO,
emissions is likely to be accurate.

On the whole, it is promising to the performance of the
model that there is a general correlation of agreement be-
tween the model and satellite data. However, there is room
for improvement in model agreement, and model inversions
would be one approach to achieve this.
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Figure B1. Correlation between modelled GEOS-Chem NO; columns and observed TROPOMI NO, for the 4 months of interest. The
Pearson rank and mean absolute area are shown in the legend. The best-fit line (red-dashed) can be compared to the y = x line (black).
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