Articles | Volume 25, issue 20
https://doi.org/10.5194/acp-25-13769-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-25-13769-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Convection-generated gravity waves in the tropical lower stratosphere from Aeolus wind profiling, GNSS-RO, and ERA5 reanalysis
Mathieu Ratynski
CORRESPONDING AUTHOR
Laboratoire Atmosphère Milieux et Observation Spatiales (LATMOS), UVSQ, CNRS, Univeristé Paris-Saclay, Guyancourt, France
now at: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
Sergey Khaykin
Laboratoire Atmosphère Milieux et Observation Spatiales (LATMOS), UVSQ, CNRS, Univeristé Paris-Saclay, Guyancourt, France
Alain Hauchecorne
Laboratoire Atmosphère Milieux et Observation Spatiales (LATMOS), UVSQ, CNRS, Univeristé Paris-Saclay, Guyancourt, France
M. Joan Alexander
NorthWest Research Associate, Boulder, CO, United States
Alexis Mariaccia
Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States
Philippe Keckhut
Laboratoire Atmosphère Milieux et Observation Spatiales (LATMOS), UVSQ, CNRS, Univeristé Paris-Saclay, Guyancourt, France
Antoine Mangin
ACRI-ST, 260 Route du Pin Montard, Sophia-Antipolis, Biot, France
Related authors
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Phoebe Noble, Haruka Okui, Joan Alexander, Manfred Ern, Neil P. Hindley, Lars Hoffmann, Laura Holt, Annelize van Niekerk, Riwal Plougonven, Inna Polichtchouk, Claudia C. Stephan, Martina Bramberger, Milena Corcos, William Putnam, Christopher Kruse, and Corwin J. Wright
EGUsphere, https://doi.org/10.5194/egusphere-2025-4878, https://doi.org/10.5194/egusphere-2025-4878, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Gravity waves are small-scale processes that drive the circulation in the middle and upper atmosphere. In this work, we assess 3 new high-resolution models against satellite data. Generally, models capture the spatial patterns and represent stratospheric northern hemisphere mountain generated waves well. However, they still underestimate amplitudes globally and struggle with the representation of southern hemispheric convective waves.
Aurélien Prat, Marine Bretagnon, Philippe Bryère, Quentin Jutard, and Antoine Mangin
State Planet Discuss., https://doi.org/10.5194/sp-2025-21, https://doi.org/10.5194/sp-2025-21, 2025
Preprint under review for SP
Short summary
Short summary
This study explores changes in water transparency across diverse marine environments. Satellite and river measurements were analyzed while accounting for uncertainties to provide reliable results. Estuaries displayed reduced clarity during high river flows, whereas offshore and tropical waters stayed stable. The study highlights the importance of combining satellite observations, uncertainty estimates, and on-site measurements for reliable monitoring of water clarity and ecosystem health.
Hongyan Xi, Marine Bretagnon, Ehsan Mehdipour, Julien Demaria, Antoine Mangin, and Astrid Bracher
State Planet, 6-osr9, 7, https://doi.org/10.5194/sp-6-osr9-7-2025, https://doi.org/10.5194/sp-6-osr9-7-2025, 2025
Short summary
Short summary
To better understand the marine phytoplankton variability on different scales in both space and time, this study proposes a machine-learning-based scheme to provide continuous and consistent long-term observations of various phytoplankton groups from space on a global scale, which enables time series analysis for further trend and anomaly investigations. This study provides an essential ocean variable to help assess the ocean health in the biogeochemical aspect.
Sergey Khaykin, Michael Sicard, Thierry Leblanc, Tetsu Sakai, Nickolay Balugin, Gwenael Berthet, Stéphane Chevrier, Fernando Chouza, Artem Feofilov, Dominique Gantois, Sophie Godin-Beekmann, Arezki Haddouche, Yoshitaka Jin, Isamu Morino, Nicolas Kadygrov, Thomas Lecas, Ben Liley, Richard Querel, Ghasssan Taha, and Vladimir Yushkov
EGUsphere, https://doi.org/10.5194/egusphere-2025-4377, https://doi.org/10.5194/egusphere-2025-4377, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In April 2024, the Ruang volcano in Indonesia sent large amounts of gas and particles high into the atmosphere, which then spread worldwide. Using the new European EarthCARE satellite and its advanced laser instrument ATLID, together with ground and balloon observations, we tracked how these particles doubled levels in the tropics and spread into both hemispheres. The study shows ATLID’s power to reveal how eruptions can affect climate, clouds, and ozone for more than a year.
Samuel Trémoulu, Fabrice Chane Ming, Sitraka Fabrice Raharimanjato, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
EGUsphere, https://doi.org/10.5194/egusphere-2025-3719, https://doi.org/10.5194/egusphere-2025-3719, 2025
Short summary
Short summary
We developed a new method to better detect and study small-scale gravity waves in the middle atmosphere using lidar data. This technique more clearly reveals wave patterns than older methods and gives more accurate energy estimates, especially high up near the stratopause. Our approach helps scientists understand how these waves behave and interact across different scales, improving knowledge of atmospheric dynamics.
Sergey Khaykin, Slimane Bekki, Sophie Godin-Beekmann, Michael D. Fromm, Philippe Goloub, Qiaoyun Hu, Béatrice Josse, Alexandra Laeng, Mehdi Meziane, David A. Peterson, Sophie Pelletier, and Valérie Thouret
EGUsphere, https://doi.org/10.5194/egusphere-2025-3152, https://doi.org/10.5194/egusphere-2025-3152, 2025
Short summary
Short summary
In 2023, massive wildfires in Canada injected huge amounts of smoke into the atmosphere. Surprisingly, despite their intensity, the smoke didn’t rise very high but lingered at flight cruising altitudes, causing widespread pollution. This study shows how two different pathways lifted smoke into the lower stratosphere and reveals new insights into how wildfires affect air quality and climate, challenging what we thought we knew about fire and atmospheric impacts.
Benjamin W. Clouser, Laszlo C. Sarkozy, Clare E. Singer, Carly C. KleinStern, Adrien Desmoulin, Dylan Gaeta, Sergey Khaykin, Stephen Gabbard, Stephen Shertz, and Elisabeth J. Moyer
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-98, https://doi.org/10.5194/amt-2024-98, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
The water molecule comes in several different varieties, which are nearly indistinguishable in daily life. However, slight differences between the water molecule types can be exploited to achieve better scientific understanding of parts of Earth's atmosphere. In this work we describe the design, construction, and operation of an instrument meant to measure these molecules aboard research aircraft up to altitudes of 20 kilometers.
Nelson Bègue, Alexandre Baron, Gisèle Krysztofiak, Gwenaël Berthet, Corinna Kloss, Fabrice Jégou, Sergey Khaykin, Marion Ranaivombola, Tristan Millet, Thierry Portafaix, Valentin Duflot, Philippe Keckhut, Hélène Vérèmes, Guillaume Payen, Mahesh Kumar Sha, Pierre-François Coheur, Cathy Clerbaux, Michaël Sicard, Tetsu Sakai, Richard Querel, Ben Liley, Dan Smale, Isamu Morino, Osamu Uchino, Tomohiro Nagai, Penny Smale, John Robinson, and Hassan Bencherif
Atmos. Chem. Phys., 24, 8031–8048, https://doi.org/10.5194/acp-24-8031-2024, https://doi.org/10.5194/acp-24-8031-2024, 2024
Short summary
Short summary
During the 2020 austral summer, the pristine atmosphere of the southwest Indian Ocean basin experienced significant perturbations. Numerical models indicated that the lower-stratospheric aerosol content was influenced by the intense and persistent stratospheric aerosol layer generated during the 2019–2020 extreme Australian bushfire events. Ground-based observations at Réunion confirmed the simultaneous presence of African and Australian aerosol layers.
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024, https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Short summary
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Xue Wu, Lars Hoffmann, Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Silvio Kalisch, Xin Wang, Bing Chen, Yinan Wang, and Daren Lyu
EGUsphere, https://doi.org/10.5194/egusphere-2023-3008, https://doi.org/10.5194/egusphere-2023-3008, 2024
Preprint archived
Short summary
Short summary
This study identified a noteworthy time-lagged correlation between hurricane intensity and stratospheric gravity wave intensities during hurricane intensification. Meanwhile, the study reveals distinct frequencies, horizontal wavelengths, and vertical wavelengths in the inner core region during hurricane intensification, offering essential insights for monitoring hurricane intensity via satellite observations of stratospheric gravity waves.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Hongyan Xi, Marine Bretagnon, Svetlana N. Losa, Vanda Brotas, Mara Gomes, Ilka Peeken, Leonardo M. A. Alvarado, Antoine Mangin, and Astrid Bracher
State Planet, 1-osr7, 5, https://doi.org/10.5194/sp-1-osr7-5-2023, https://doi.org/10.5194/sp-1-osr7-5-2023, 2023
Short summary
Short summary
Continuous monitoring of phytoplankton groups using satellite data is crucial for understanding global ocean phytoplankton variability on different scales in both space and time. This study focuses on four important phytoplankton groups in the Atlantic Ocean to investigate their trend, anomaly and phenological characteristics both over the whole region and at subscales. This study paves the way to promote potentially important ocean monitoring indicators to help sustain the ocean health.
Hubert Loisel, Lucile Duforêt-Gaurier, Trung Kien Tran, Daniel Schaffer Ferreira Jorge, François Steinmetz, Antoine Mangin, Marine Bretagnon, and Odile Hembise Fanton d'Andon
State Planet, 1-osr7, 11, https://doi.org/10.5194/sp-1-osr7-11-2023, https://doi.org/10.5194/sp-1-osr7-11-2023, 2023
Short summary
Short summary
In this paper, we will show how a proxy for particulate composition (PPC), classifying the suspended particulate matter into its organic, mineral, or mixed fractions, can be estimated from remote-sensing observations. The selected algorithm will then be applied to MERIS observations (2002–2012) over global coastal waters to discuss the significance of this new product. A specific focus will be on the English Channel and the southern North Sea.
Mathieu Ratynski, Sergey Khaykin, Alain Hauchecorne, Robin Wing, Jean-Pierre Cammas, Yann Hello, and Philippe Keckhut
Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, https://doi.org/10.5194/amt-16-997-2023, 2023
Short summary
Short summary
Aeolus is the first spaceborne wind lidar providing global wind measurements since 2018. This study offers a comprehensive analysis of Aeolus instrument performance, using ground-based wind lidars and meteorological radiosondes, at tropical and mid-latitudes sites. The analysis allows assessing the long-term evolution of the satellite's performance for more than 3 years. The results will help further elaborate the understanding of the error sources and the behavior of the Doppler wind lidar.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
J. Douglas Goetz, Lars E. Kalnajs, Terry Deshler, Sean M. Davis, Martina Bramberger, and M. Joan Alexander
Atmos. Meas. Tech., 16, 791–807, https://doi.org/10.5194/amt-16-791-2023, https://doi.org/10.5194/amt-16-791-2023, 2023
Short summary
Short summary
An instrument for in situ continuous 2 km vertical profiles of temperature below high-altitude balloons was developed for high-temporal-resolution measurements within the upper troposphere and lower stratosphere using fiber-optic distributed temperature sensing. The mechanical, electrical, and temperature calibration systems were validated from a short mid-latitude constant-altitude balloon flight within the lower stratosphere. The instrument observed small-scale and inertial gravity waves.
Florent Tencé, Julien Jumelet, Marie Bouillon, David Cugnet, Slimane Bekki, Sarah Safieddine, Philippe Keckhut, and Alain Sarkissian
Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, https://doi.org/10.5194/acp-23-431-2023, 2023
Short summary
Short summary
Polar stratospheric clouds (PSCs) are critical precursors to stratospheric ozone depletion, and measurement-driven classifications remain a key to accurate cloud modelling. We present PSC lidar observations conducted at the French Antarctic station Dumont d'Urville between 2007 and 2020. This dataset is analyzed using typical PSC classification schemes. We present a PSC climatology along with a significant and slightly negative 14-year trend of PSC occurences of −4.6 PSC days per decade.
Bing Cao, Jennifer S. Haase, Michael J. Murphy, M. Joan Alexander, Martina Bramberger, and Albert Hertzog
Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022, https://doi.org/10.5194/acp-22-15379-2022, 2022
Short summary
Short summary
Atmospheric waves that carry momentum from tropospheric weather systems into the equatorial stratosphere modify the winds there. The Strateole-2 2019 campaign launched long-duration stratospheric superpressure balloons to measure these equatorial waves. We deployed a GPS receiver on one of the balloons to measure atmospheric temperature profiles beneath the balloon. Temperature variations in the retrieved profiles show planetary-scale waves with a 20 d period and 3–4 d period waves.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Fernando Chouza, Thierry Leblanc, Mark Brewer, Patrick Wang, Giovanni Martucci, Alexander Haefele, Hélène Vérèmes, Valentin Duflot, Guillaume Payen, and Philippe Keckhut
Atmos. Meas. Tech., 15, 4241–4256, https://doi.org/10.5194/amt-15-4241-2022, https://doi.org/10.5194/amt-15-4241-2022, 2022
Short summary
Short summary
The comparison of water vapor lidar measurements with co-located radiosondes and aerosol backscatter profiles indicates that laser-induced aerosol fluorescence in smoke layers injected into the stratosphere can introduce very large and chronic wet biases above 15 km, thus impacting the ability of these systems to accurately estimate long-term water vapor trends. The proposed correction method presented in this work is able to reduce this fluorescence-induced bias from 75 % to under 5 %.
Audrey Lecouffe, Sophie Godin-Beekmann, Andrea Pazmiño, and Alain Hauchecorne
Atmos. Chem. Phys., 22, 4187–4200, https://doi.org/10.5194/acp-22-4187-2022, https://doi.org/10.5194/acp-22-4187-2022, 2022
Short summary
Short summary
This study uses a model developped at LATMOS (France) to analyze the behavior of the Antarctic polar vortex from 1979 to 2020 at 675 K, 550 K, and 475 K isentropic levels. We found that the vortex edge intensity is stronger during the September–October–November period, while its edge position is less extended during this period. The polar vortex is stronger and lasts longer during solar minimum years. Breakup dates of the polar vortex are linked to the ozone hole and maximum wind speed.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Abhinna K. Behera, Emmanuel D. Rivière, Sergey M. Khaykin, Virginie Marécal, Mélanie Ghysels, Jérémie Burgalat, and Gerhard Held
Atmos. Chem. Phys., 22, 881–901, https://doi.org/10.5194/acp-22-881-2022, https://doi.org/10.5194/acp-22-881-2022, 2022
Short summary
Short summary
Deep convection overshooting the stratosphere's contribution to the global stratospheric water budget is still being quantified. We ran three different cloud-resolving simulations of an observed case of overshoots in Bauru during the TRO-Pico balloon campaign in the context of upscaling the impact of overshoots at a large scale. These simulations, which have been validated with balloon-borne and S-band radar measurements, shed light on the local-scale variability and composition of overshoots.
Andrea Pazmiño, Matthias Beekmann, Florence Goutail, Dmitry Ionov, Ariane Bazureau, Manuel Nunes-Pinharanda, Alain Hauchecorne, and Sophie Godin-Beekmann
Atmos. Chem. Phys., 21, 18303–18317, https://doi.org/10.5194/acp-21-18303-2021, https://doi.org/10.5194/acp-21-18303-2021, 2021
Short summary
Short summary
UV-Visible Système d'Analyse par Observations Zénithales (SAOZ) NO2 tropospheric columns were evaluated to quantify the impact of the lockdown in limiting the COVID-19 propagation. Meteorological conditions and NO2 trends were considered. The negative anomaly in tropospheric columns in 2020, attributed to the lockdown (17 March–10 May and related emissions reductions), was 56 % at Paris and 46 % at a suburban site. A similar anomaly was found in the Airparif data of surface concentrations.
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021, https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
Short summary
Measuring atmospheric gravity waves in low vertical-resolution data is technically challenging, especially when the waves are significantly longer in the vertical than in the length of the measurement domain. We introduce and demonstrate a modification to the existing Stockwell transform methods of characterising these waves that address these problems, with no apparent reduction in the other capabilities of the technique.
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Laurence Twigg
Atmos. Meas. Tech., 14, 3773–3794, https://doi.org/10.5194/amt-14-3773-2021, https://doi.org/10.5194/amt-14-3773-2021, 2021
Short summary
Short summary
This paper is a validation study of the newly installed ozone and temperature lidar at Hohenpeißenberg, Germany. As part of the Network for the Detection of Atmospheric Composition Change (NDACC), lidar stations are routinely compared against a travelling reference lidar operated by NASA. We have also attempted to assess potential biases in the reference lidar by comparing the results of this validation campaign with a previous campaign at the Observatoire de Haute-Provence, France.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Cited articles
Achatz, U., Alexander, M. J., Becker, E., Chun, H.-Y., Dörnbrack, A., Holt, L., Plougonven, R., Polichtchouk, I., Sato, K., Sheshadri, A., Stephan, C. C., van Niekerk, A., and Wright, C. J.: Atmospheric Gravity Waves: Processes and Parameterization, J. Atmos. Sci., 81, 237–262, https://doi.org/10.1175/JAS-D-23-0210.1, 2024.
Alexander, M. J. and Ortland, D. A.: Equatorial waves in High Resolution Dynamics Limb Sounder (HIRDLS) data, J. Geophys. Res. Atmospheres, 115, https://doi.org/10.1029/2010JD014782, 2010.
Alexander, M. J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Francis, G., Halvorson, C., Hannigan, J., Khosravi, R., Kinnison, D., Lee, H., Massie, S., Nardi, B., Barnett, J., Hepplewhite, C., Lambert, A., and Dean, V.: Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations, J. Geophys. Res. Atmospheres, 113, https://doi.org/10.1029/2007JD008807, 2008a.
Alexander, M. J., Liu, C. C., Bacmeister, J., Bramberger, M., Hertzog, A., and Richter, J. H.: Observational Validation of Parameterized Gravity Waves From Tropical Convection in the Whole Atmosphere Community Climate Model, J. Geophys. Res. Atmospheres, 126, e2020JD033954, https://doi.org/10.1029/2020JD033954, 2021.
Alexander, S., Tsuda, T., and Kawatani, Y.: COSMIC GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033174, 2008b.
Alexander, S. P., Tsuda, T., and Kawatani, Y.: COSMIC GPS Observations of Northern Hemisphere winter stratospheric gravity waves and comparisons with an atmospheric general circulation model, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL033174, 2008c.
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., Gentry, B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma, Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System, Bull. Am. Meteorol. Soc., 95, 543–564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014.
Banyard, T. P., Wright, C. J., Hindley, N. P., Halloran, G., Krisch, I., Kaifler, B., and Hoffmann, L.: Atmospheric Gravity Waves in Aeolus Wind Lidar Observations, Geophys. Res. Lett., 48, e2021GL092756, https://doi.org/10.1029/2021GL092756, 2021.
Banyard, T. P., Wright, C. J., Osprey, S. M., Hindley, N. P., Halloran, G., Coy, L., Newman, P. A., and Butchart, N.: Aeolus wind lidar observations of the 2019/2020 Quasi-Biennial Oscillation disruption with comparison to radiosondes and reanalysis, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-285, 2023.
Baumgarten, G., Fiedler, J., Hildebrand, J., and Lübken, F.-J.: Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar, Geophys. Res. Lett., 42, 10929–10936, https://doi.org/10.1002/2015GL066991, 2015.
Bedka, K. M., Velden, C. S., Petersen, R. A., Feltz, W. F., and Mecikalski, J. R.: Comparisons of Satellite-Derived Atmospheric Motion Vectors, Rawinsondes, and NOAA Wind Profiler Observations, J. Appl. Meteorol. Clim., 48, 1542–1561, https://doi.org/10.1175/2009JAMC1867.1, 2009.
Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM), J. Geophys. Res. Atmospheres, 110, https://doi.org/10.1029/2004JD005504, 2005.
Bramberger, M., Alexander, M. J., Davis, S., Podglajen, A., Hertzog, A., Kalnajs, L., Deshler, T., Goetz, J. D., and Khaykin, S.: First Super-Pressure Balloon-Borne Fine-Vertical-Scale Profiles in the Upper TTL: Impacts of Atmospheric Waves on Cirrus Clouds and the QBO, Geophys. Res. Lett., 49, e2021GL097596, https://doi.org/10.1029/2021GL097596, 2022.
Campos, R. M., Gramcianinov, C. B., de Camargo, R., and da Silva Dias, P. L.: Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data, Remote Sens., 14, 4918, https://doi.org/10.3390/rs14194918, 2022.
Cao, B., Haase, J. S., Murphy, M. J., Alexander, M. J., Bramberger, M., and Hertzog, A.: Equatorial waves resolved by balloon-borne Global Navigation Satellite System radio occultation in the Strateole-2 campaign, Atmos. Chem. Phys., 22, 15379–15402, https://doi.org/10.5194/acp-22-15379-2022, 2022.
Chane Ming, F., Ibrahim, C., Barthe, C., Jolivet, S., Keckhut, P., Liou, Y.-A., and Kuleshov, Y.: Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008), Atmos. Chem. Phys., 14, 641–658, https://doi.org/10.5194/acp-14-641-2014, 2014.
Chen, Q., Ntokas, K., Linder, B., Krasauskas, L., Ern, M., Preusse, P., Ungermann, J., Becker, E., Kaufmann, M., and Riese, M.: Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): feasibility and requirements, Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, 2022.
Corcos, M., Bramberger, M., Alexander, M. J., Hertzog, A., Liu, C., and Wright, C.: Observation of Gravity Waves Generated by Convection and the “Moving Mountain” Mechanism During Stratéole-2 Campaigns and Their Impact on the QBO, J. Geophys. Res. Atmospheres, 130, e2024JD041804, https://doi.org/10.1029/2024JD041804, 2025.
Danzer, J., Pieler, M., and Kirchengast, G.: Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator, Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024, 2024.
Dee, D. P.: Bias and data assimilation, Q. J. R. Meteorol. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137, 2005.
Dhaka, S. K., Yamamoto, M. K., Shibagaki, Y., Hashiguchi, H., Fukao, S., and Chun, H.-Y.: Equatorial Atmosphere Radar observations of short vertical wavelength gravity waves in the upper troposphere and lower stratosphere region induced by localized convection, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027026, 2006.
Dzambo, A. M., Hitchman, M. H., and Chang, K.-W.: The Influence of Gravity Waves on Ice Saturation in the Tropical Tropopause Layer over Darwin, Australia, Atmosphere, 10, 778, https://doi.org/10.3390/atmos10120778, 2019.
Ern, M., Preusse, P., Alexander, M. J., and Warner, C. D.: Absolute values of gravity wave momentum flux derived from satellite data, J. Geophys. Res. Atmospheres, 109, https://doi.org/10.1029/2004JD004752, 2004.
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018.
Ern, M., Diallo, M. A., Khordakova, D., Krisch, I., Preusse, P., Reitebuch, O., Ungermann, J., and Riese, M.: The QBO and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-408, 2023.
Evan, S., Brioude, J., Rosenlof, K., Davis, S. M., Vömel, H., Héron, D., Posny, F., Metzger, J.-M., Duflot, V., Payen, G., Vérèmes, H., Keckhut, P., and Cammas, J.-P.: Effect of deep convection on the tropical tropopause layer composition over the southwest Indian Ocean during austral summer, Atmos. Chem. Phys., 20, 10565–10586, https://doi.org/10.5194/acp-20-10565-2020, 2020.
Forbes, J. M., Ern, M., and Zhang, X.: The Global Monsoon Convective System as Reflected in Upper Atmosphere Gravity Waves, J. Geophys. Res. Space Phys., 127, e2022JA030572, https://doi.org/10.1029/2022JA030572, 2022.
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, https://doi.org/10.1029/2001RG000106, 2003.
Fritts, D. C., Wang, L., and Werne, J.: Gravity wave–fine structure interactions: A reservoir of small-scale and large-scale turbulence energy, Geophys. Res. Lett., 36, https://doi.org/10.1029/2009GL039501, 2009.
Fröhlich, K., Schmidt, T., Ern, M., Preusse, P., de la Torre, A., Wickert, J., and Jacobi, Ch.: The global distribution of gravity wave energy in the lower stratosphere derived from GPS data and gravity wave modelling: Attempt and challenges, J. Atmospheric Sol.-Terr. Phys., 69, 2238–2248, https://doi.org/10.1016/j.jastp.2007.07.005, 2007.
Geldenhuys, M., Kaifler, B., Preusse, P., Ungermann, J., Alexander, P., Krasauskas, L., Rhode, S., Woiwode, W., Ern, M., Rapp, M., and Riese, M.: Observations of Gravity Wave Refraction and Its Causes and Consequences, J. Geophys. Res. Atmospheres, 128, e2022JD036830, https://doi.org/10.1029/2022JD036830, 2023.
Gubenko, V. N., Pavelyev, A. G., Salimzyanov, R. R., and Andreev, V. E.: A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth's atmosphere, Cosm. Res., 50, 21–31, https://doi.org/10.1134/S0010952512010029, 2012.
Guharay, A., Venkat Ratnam, M., Nath, D., and Dumka, U. C.: Investigation of saturated gravity waves in the tropical lower atmosphere using radiosonde observations, Radio Sci., 45, https://doi.org/10.1029/2010RS004372, 2010.
Hei, H., Tsuda, T., and Hirooka, T.: Characteristics of atmospheric gravity wave activity in the polar regions revealed by GPS radio occultation data with CHAMP, J. Geophys. Res. Atmospheres, 113, https://doi.org/10.1029/2007JD008938, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hindley, N. P., Wright, C. J., Hoffmann, L., Moffat-Griffin, T., and Mitchell, N. J.: An 18-Year Climatology of Directional Stratospheric Gravity Wave Momentum Flux From 3-D Satellite Observations, Geophys. Res. Lett., 47, e2020GL089557, https://doi.org/10.1029/2020GL089557, 2020.
Huang, K. M., Liu, H., Liu, A. Z., Zhang, S. D., Huang, C. M., Gong, Y., and Ning, W. H.: Investigation on Spectral Characteristics of Gravity Waves in the MLT Using Lidar Observations at Andes, J. Geophys. Res. Space Phys., 126, e2020JA028918, https://doi.org/10.1029/2020JA028918, 2021.
John, S. R. and Kumar, K. K.: A discussion on the methods of extracting gravity wave perturbations from space-based measurements, Geophys. Res. Lett., 40, 2406–2410, https://doi.org/10.1002/grl.50451, 2013.
Kalisch, S., Chun, H.-Y., Ern, M., Preusse, P., Trinh, Q. T., Eckermann, S. D., and Riese, M.: Comparison of simulated and observed convective gravity waves, J. Geophys. Res. Atmospheres, 121, 13474–13492, https://doi.org/10.1002/2016JD025235, 2016.
Kang, M.-J., Chun, H.-Y., and Kim, Y.-H.: Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization. Part : Spatiotemporal Variations at Source Level, J. Atmos. Sci., 74, 3167–3189, https://doi.org/10.1175/JAS-D-17-0053.1, 2017.
Khaykin, S. M., Hauchecorne, A., Mzé, N., and Keckhut, P.: Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations, Geophys. Res. Lett., 42, 1251–1258, https://doi.org/10.1002/2014GL062891, 2015.
Krisch, I., Hindley, N. P., Reitebuch, O., and Wright, C. J.: On the derivation of zonal and meridional wind components from Aeolus horizontal line-of-sight wind, Atmos. Meas. Tech., 15, 3465–3479, https://doi.org/10.5194/amt-15-3465-2022, 2022.
Kruse, C. G., Richter, J. H., Alexander, M. J., Bacmeister, J. T., Heale, C., and Wei, J.: Gravity Wave Drag Parameterizations for Earth's Atmosphere, in: Fast Processes in Large-Scale Atmospheric Models, American Geophysical Union (AGU), 229–256, https://doi.org/10.1002/9781119529019.ch9, 2023.
Kumari, K., Wu, H., Long, A., Lu, X., and Oberheide, J.: Mechanism Studies of Madden–Julian Oscillation Coupling Into the Mesosphere/Lower Thermosphere Tides Using SABER, MERRA-2, and SD-WACCMX, J. Geophys. Res. Atmospheres, 126, e2021JD034595, https://doi.org/10.1029/2021JD034595, 2021.
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res. Atmospheres, 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997.
Ladstädter, F., Steiner, A. K., Foelsche, U., Haimberger, L., Tavolato, C., and Kirchengast, G.: An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation, Atmos. Meas. Tech., 4, 1965–1977, https://doi.org/10.5194/amt-4-1965-2011, 2011.
Liu, C., Alexander, J., Richter, J., and Bacmeister, J.: Using TRMM Latent Heat as a Source to Estimate Convection Induced Gravity Wave Momentum Flux in the Lower Stratosphere, J. Geophys. Res. Atmospheres, 127, e2021JD035785, https://doi.org/10.1029/2021JD035785, 2022.
Luna, D., Alexander, P., and de la Torre, A.: Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements, Adv. Space Res., 52, 879–882, https://doi.org/10.1016/j.asr.2013.05.015, 2013.
Lux, O., Witschas, B., Geiß, A., Lemmerz, C., Weiler, F., Marksteiner, U., Rahm, S., Schäfler, A., and Reitebuch, O.: Quality control and error assessment of the Aeolus L2B wind results from the Joint Aeolus Tropical Atlantic Campaign, Atmos. Meas. Tech., 15, 6467–6488, https://doi.org/10.5194/amt-15-6467-2022, 2022.
Mack, L. R. and Jay, B. E.: The partition of energy in standing gravity waves of finite amplitude, J. Geophys. Res. 1896–1977, 72, 573–581, https://doi.org/10.1029/JZ072i002p00573, 1967.
Mathieu, R., Sergey, K., Joan, A., Alain, H., Alexis, M., and Philippe, K.: Perturbation Profiles Dataset used for “Convection-generated gravity waves in the tropical lower stratosphere from Aeolus wind profiling and ERA5 reanalysis”, Zenodo [data set], https://doi.org/10.5281/zenodo.8113261, 2023.
Marquardt, C. and Healy, S.: Measurement Noise and Stratospheric Gravity Wave Characteristics Obtained from GPS Occultation Data, J. Meteorol. Soc. Jpn., 83, 417–428, https://doi.org/10.2151/jmsj.83.417, 2005.
Munday, C., Engelstaedter, S., Ouma, G., Ogutu, G., Olago, D., Ong'ech, D., Lees, T., Wanguba, B., Nkatha, R., Ogolla, C., Gàlgalo, R. A., Dokata, A. J., Kirui, E., Hope, R., and Washington, R.: Observations of the Turkana Jet and the East African Dry Tropics: The RIFTJet Field Campaign, Bull. Am. Meteorol. Soc., 103, E1828–E1842, https://doi.org/10.1175/BAMS-D-21-0214.1, 2022.
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.
Nastrom, G. D., Hansen, A. R., Tsuda, T., Nishida, M., and Ware, R.: A comparison of gravity wave energy observed by VHF radar and GPS/MET over central North America, J. Geophys. Res. Atmospheres, 105, 4685–4687, https://doi.org/10.1029/1999JD901164, 2000.
Orr, A., Bechtold, P., Scinocca, J., Ern, M., and Janiskova, M.: Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization, J. Climate, 23, 5905–5926, https://doi.org/10.1175/2010JCLI3490.1, 2010.
Pahlavan, H. A., Fu, Q., Wallace, J. M., and Kiladis, G. N.: Revisiting the Quasi-Biennial Oscillation as Seen in ERA5. Part I: Description and Momentum Budget, J. Atmos. Sci., 78, 673–691, https://doi.org/10.1175/JAS-D-20-0248.1, 2021.
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014.
Plougonven, R., Jewtoukoff, V., de la Cámara, A., Lott, F., and Hertzog, A.: On the Relation between Gravity Waves and Wind Speed in the Lower Stratosphere over the Southern Ocean, J. Atmos. Sci., 74, 1075–1093, https://doi.org/10.1175/JAS-D-16-0096.1, 2017.
Podglajen, A., Hertzog, A., Plougonven, R., and Žagar, N.: Assessment of the accuracy of (re)analyses in the equatorial lower stratosphere, J. Geophys. Res. Atmospheres, 119, 11166–11188, https://doi.org/10.1002/2014JD021849, 2014.
Randel, W. J. and Wu, F.: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements, J. Geophys. Res. Atmospheres, 110, https://doi.org/10.1029/2004JD005006, 2005.
Randel, W. J., Wu, F., and Podglajen, A.: Equatorial Waves, Diurnal Tides and Small-Scale Thermal Variability in the Tropical Lower Stratosphere From COSMIC-2 Radio Occultation, J. Geophys. Res. Atmospheres, 126, e2020JD033969, https://doi.org/10.1029/2020JD033969, 2021.
Ratynski, M., Khaykin, S., Hauchecorne, A., Wing, R., Cammas, J.-P., Hello, Y., and Keckhut, P.: Validation of Aeolus wind profiles using ground-based lidar and radiosonde observations at Réunion island and the Observatoire de Haute-Provence, Atmos. Meas. Tech., 16, 997–1016, https://doi.org/10.5194/amt-16-997-2023, 2023.
Rennie, M. and Isaksen, L.: The NWP impact of Aeolus Level-2B winds at ECMWF, report, ECMWF, https://doi.org/10.21957/d4ea1c09d4, 2024.
Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T., and Reitebuch, O.: The impact of Aeolus wind retrievals on ECMWF global weather forecasts, Q. J. R. Meteorol. Soc., 147, 3555–3586, https://doi.org/10.1002/qj.4142, 2021.
Šácha, P., Foelsche, U., and Pišoft, P.: Analysis of internal gravity waves with GPS RO density profiles, Atmos. Meas. Tech., 7, 4123–4132, https://doi.org/10.5194/amt-7-4123-2014, 2014.
Schmidt, T., de la Torre, A., and Wickert, J.: Global gravity wave activity in the tropopause region from CHAMP radio occultation data, Geophys. Res. Lett., 35, https://doi.org/10.1029/2008GL034986, 2008.
Schmidt, T., Alexander, P., and de la Torre, A.: Stratospheric gravity wave momentum flux from radio occultations, J. Geophys. Res. Atmospheres, 121, 4443–4467, https://doi.org/10.1002/2015JD024135, 2016.
Scinocca, J. F.: An Accurate Spectral Nonorographic Gravity Wave Drag Parameterization for General Circulation Models, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2, 2003.
Stephan, C. C. and Mariaccia, A.: The signature of the tropospheric gravity wave background in observed mesoscale motion, Weather Clim. Dynam., 2, 359–372, https://doi.org/10.5194/wcd-2-359-2021, 2021.
Stephan, C. C., Zagar, N., and Shepherd, T. G.: Waves and coherent flows in the tropical atmosphere: new opportunities, old challenges, Q. J. R. Meteorol. Soc., 147, 2597–2624, https://doi.org/10.1002/qj.4109, 2021.
Tsuda, T., Nishida, M., Rocken, C., and Ware, R. H.: A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET), J. Geophys. Res. Atmospheres, 105, 7257–7273, https://doi.org/10.1029/1999JD901005, 2000.
Tsuda, T., Ratnam, M. V., May, P. T., Alexander, M. J., Vincent, R. A., and MacKinnon, A.: Characteristics of gravity waves with short vertical wavelengths observed with radiosonde and GPS occultation during DAWEX (Darwin Area Wave Experiment), J. Geophys. Res. Atmospheres, 109, https://doi.org/10.1029/2004JD004946, 2004.
VanZandt, T. E.: A model for gravity wave spectra observed by Doppler sounding systems, Radio Sci., 20, 1323–1330, https://doi.org/10.1029/RS020i006p01323, 1985.
von Engeln, A., Andres, Y., Marquardt, C., and Sancho, F.: GRAS radio occultation on-board of Metop, Adv. Space Res., 47, 336–347, https://doi.org/10.1016/j.asr.2010.07.028, 2011.
Waite, M. L. and Snyder, C.: The Mesoscale Kinetic Energy Spectrum of a Baroclinic Life Cycle, https://doi.org/10.1175/2008JAS2829.1, 2009.
Wang, L. and Alexander, M. J.: Global estimates of gravity wave parameters from GPS radio occultation temperature data, J. Geophys. Res. Atmospheres, 115, https://doi.org/10.1029/2010JD013860, 2010.
Weiler, F., Kanitz, T., Wernham, D., Rennie, M., Huber, D., Schillinger, M., Saint-Pe, O., Bell, R., Parrinello, T., and Reitebuch, O.: Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite, Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, 2021.
Wing, R., Strelnikova, I., Dörnbrack, A., Gerding, M., Franco-Diaz, E., Holt, L., Mossad, M., and Baumgarten, G.: Direct Observation of Quasi-Monochromatic Gravity Wave Packets Associated With the Polar Night Jet Using a Doppler-Rayleigh Lidar, J. Geophys. Res. Atmospheres, 130, e2025JD043707, https://doi.org/10.1029/2025JD043707, 2025.
Woiwode, W., Dörnbrack, A., Geldenhuys, M., Friedl-Vallon, F., Giez, A., Gulde, T., Höpfner, M., Johansson, S., Kaifler, B., Kleinert, A., Krasauskas, L., Kretschmer, E., Maucher, G., Neubert, T., Nordmeyer, H., Piesch, C., Preusse, P., Rapp, M., Riese, M., Schumann, U., and Ungermann, J.: Non-Orographic Gravity Waves and Turbulence Caused by Merging Jet Streams, J. Geophys. Res. Atmospheres, 128, e2022JD038097, https://doi.org/10.1029/2022JD038097, 2023.
Wright, C. J. and Gille, J. C.: HIRDLS observations of gravity wave momentum fluxes over the monsoon regions, J. Geophys. Res. Atmospheres, 116, https://doi.org/10.1029/2011JD015725, 2011.
Wright, C. J. and Hindley, N. P.: How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?, Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, 2018.
Wright, C. J., Ungermann, J., Preusse, P., and Polichtchouk, I.: Using sub-limb observations to measure gravity waves excited by convection, Npj Microgravity, 9, 14, https://doi.org/10.1038/s41526-023-00259-2, 2023.
Wüst, S. and Bittner, M.: Gravity wave reflection: Case study based on rocket data, J. Atmospheric Sol.-Terr. Phys., 70, 742–755, https://doi.org/10.1016/j.jastp.2007.10.010, 2008.
Yang, S.-S., Pan, C.-J., and Das, U.: Investigating the Spatio-Temporal Distribution of Gravity Wave Potential Energy over the Equatorial Region Using the ERA5 Reanalysis Data, Atmosphere, 12, 311, https://doi.org/10.3390/atmos12030311, 2021.
Žagar, N., Gustafsson, N., and Källén, E.: Variational data assimilation in the tropics: The impact of a background-error constraint, Q. J. R. Meteorol. Soc., 130, 103–125, https://doi.org/10.1256/qj.03.13, 2004.
Žagar, N., Rennie, M., and Isaksen, L.: Uncertainties in Kelvin Waves in ECMWF Analyses and Forecasts: Insights From Aeolus Observing System Experiments, Geophys. Res. Lett., 48, e2021GL094716, https://doi.org/10.1029/2021GL094716, 2021.
Žagar, N., Pilch Kedzierski, R., De Chiara, G., Healy, S., Rennie, M., and Sielmann, F.: ESA's Aeolus Mission Reveals Uncertainties in Tropical Wind and Wave-Driven Circulations, Geophys. Res. Lett., 52, e2025GL114832, https://doi.org/10.1029/2025GL114832, 2025.
Zhang, J., Guo, J., Xue, H., Zhang, S., Huang, K., Dong, W., Shao, J., Yi, M., and Zhang, Y.: Tropospheric Gravity Waves as Observed by the High-Resolution China Radiosonde Network and Their Potential Sources, J. Geophys. Res. Atmospheres, 127, e2022JD037174, https://doi.org/10.1029/2022JD037174, 2022.
Zhang, K., Randel, W. J., and Fu, R.: Relationships between outgoing longwave radiation and diabatic heating in reanalyses, Clim. Dyn., 49, 2911–2929, https://doi.org/10.1007/s00382-016-3501-0, 2017.
Zhang, S. D. and Yi, F.: A statistical study of gravity waves from radiosonde observations at Wuhan (30° N, 114° E) China, Ann. Geophys., 23, 665–673, https://doi.org/10.5194/angeo-23-665-2005, 2005.
Zhang, S. D., Yi, F., Huang, C. M., and Zhou, Q.: Latitudinal and seasonal variations of lower atmospheric inertial gravity wave energy revealed by US radiosonde data, Ann. Geophys., 28, 1065–1074, https://doi.org/10.5194/angeo-28-1065-2010, 2010.
Short summary
This study investigates how tropical convection generates gravity waves, which play a key role in transporting energy across the atmosphere. By combining Aeolus satellite data with ERA5 reanalysis data and radio occultation measurements, we identified significant wave activity overlooked by ERA5, particularly over the Indian Ocean. Aeolus fills major gaps in wind data, offering a clearer picture of wave dynamics and challenging assumptions about their behavior, thereby improving climate models.
This study investigates how tropical convection generates gravity waves, which play a key role...
Altmetrics
Final-revised paper
Preprint