Articles | Volume 25, issue 19
https://doi.org/10.5194/acp-25-12549-2025
https://doi.org/10.5194/acp-25-12549-2025
Research article
 | 
09 Oct 2025
Research article |  | 09 Oct 2025

Aerosol type classification with machine learning techniques applied to multiwavelength lidar data from EARLINET

Ana del Águila, Pablo Ortiz-Amezcua, Siham Tabik, Juan Antonio Bravo-Aranda, Sol Fernández-Carvelo, and Lucas Alados-Arboledas

Related authors

Characterization of filter photometer artifacts in soot and dust measurements – laboratory and ambient experiments using a traceably calibrated aerosol absorption reference
Jesús Yus-Díez, Luka Drinovec, Lucas Alados-Arboledas, Gloria Titos, Elena Bazo, Andrea Casans, Diego Patrón, Xavier Querol, Adolfo Gonzalez-Romero, Carlos Perez García-Pando, and Griša Močnik
Atmos. Meas. Tech., 18, 3073–3093, https://doi.org/10.5194/amt-18-3073-2025,https://doi.org/10.5194/amt-18-3073-2025, 2025
Short summary
Phase matrix characterization of long-range-transported Saharan dust using multiwavelength-polarized polar imaging nephelometry
Elena Bazo, Daniel Pérez-Ramírez, Antonio Valenzuela, J. Vanderlei Martins, Gloria Titos, Alberto Cazorla, Fernando Rejano, Diego Patrón, Arlett Díaz-Zurita, Francisco José García-Izquierdo, David Fuertes, Lucas Alados-Arboledas, and Francisco José Olmo
Atmos. Chem. Phys., 25, 6325–6352, https://doi.org/10.5194/acp-25-6325-2025,https://doi.org/10.5194/acp-25-6325-2025, 2025
Short summary
Fine and coarse dust radiative impact during an intense Saharan dust outbreak over the Iberian Peninsula – short-wave direct radiative effect
María-Ángeles López-Cayuela, Carmen Córdoba-Jabonero, Michaël Sicard, Jesús Abril-Gago, Vanda Salgueiro, Adolfo Comerón, María José Granados-Muñoz, Maria João Costa, Constantino Muñoz-Porcar, Juan Antonio Bravo-Aranda, Daniele Bortoli, Alejandro Rodríguez-Gómez, Lucas Alados-Arboledas, and Juan Luis Guerrero-Rascado
Atmos. Chem. Phys., 25, 3213–3231, https://doi.org/10.5194/acp-25-3213-2025,https://doi.org/10.5194/acp-25-3213-2025, 2025
Short summary
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024,https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024,https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary

Cited articles

Alabadla, M., Sidi, F., Ishak, I., Ibrahim, H., Affendey, L. S., Che Ani, Z., Jabar, M. A., Bukar, U. A., Devaraj, N. K., Muda, A. S., Tharek, A., Omar, N., and Jaya, M. I. M.: Systematic Review of Using Machine Learning in Imputing Missing Values, IEEE Access, 10, 44483–44502, https://doi.org/10.1109/access.2022.3160841, 2022. 
Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010gl045999, 2011. 
Baars, H., Seifert, P., Engelmann, R., and Wandinger, U.: Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements, Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, 2017. 
Belegante, L., Nicolae, D., Nemuc, A., Talianu, C., and Derognat, C.: Retrieval of the boundary layer height from active and passive remote sensors, Comparison with a NWP model, Acta Geophys., 62, 276–289, https://doi.org/10.2478/s11600-013-0167-4, 2014. 
Download
Short summary
This study applies machine learning (ML) techniques to classify aerosols using high-resolution multiwavelength lidar data from EARLINET network. We developed a reference dataset and evaluated six ML models, with LightGBM achieving over 90 % accuracy. Depolarization data proved critical for improving dust classification. Validated against independent datasets, our approach improves aerosol classification and may help refine lidar-based processing strategies.
Share
Altmetrics
Final-revised paper
Preprint