Articles | Volume 25, issue 19
https://doi.org/10.5194/acp-25-12549-2025
https://doi.org/10.5194/acp-25-12549-2025
Research article
 | 
09 Oct 2025
Research article |  | 09 Oct 2025

Aerosol type classification with machine learning techniques applied to multiwavelength lidar data from EARLINET

Ana del Águila, Pablo Ortiz-Amezcua, Siham Tabik, Juan Antonio Bravo-Aranda, Sol Fernández-Carvelo, and Lucas Alados-Arboledas

Related authors

Hybrid methodology for optimised water vapour mixing ratio profiles from Raman lidar measurements
Arlett Díaz-Zurita, Daniel Pérez-Ramírez, David N. Whiteman, Onel Rodríguez-Navarro, Víctor Manuel Naval-Hernández, Jorge Andrés Muñiz-Rosado, María Soledad Fernández-Carvelo, Jesús Abril-Gago, Ana del Águila, Pablo Ortiz-Amezcua, Juan Antonio Bravo-Aranda, María José Granados-Muñoz, Juan Luis Guerrero-Rascado, Manuel Antón, Javier Vaquero-Martínez, Inmaculada Foyo-Moreno, José Antonio Benavent-Oltra, Lucas Alados-Arboledas, and Francisco Navas-Guzmán
EGUsphere, https://doi.org/10.5194/egusphere-2025-5035,https://doi.org/10.5194/egusphere-2025-5035, 2026
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Cited articles

Alabadla, M., Sidi, F., Ishak, I., Ibrahim, H., Affendey, L. S., Che Ani, Z., Jabar, M. A., Bukar, U. A., Devaraj, N. K., Muda, A. S., Tharek, A., Omar, N., and Jaya, M. I. M.: Systematic Review of Using Machine Learning in Imputing Missing Values, IEEE Access, 10, 44483–44502, https://doi.org/10.1109/access.2022.3160841, 2022. 
Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo, F. J.: Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star-and sun-photometry, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010gl045999, 2011. 
Baars, H., Seifert, P., Engelmann, R., and Wandinger, U.: Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements, Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, 2017. 
Belegante, L., Nicolae, D., Nemuc, A., Talianu, C., and Derognat, C.: Retrieval of the boundary layer height from active and passive remote sensors, Comparison with a NWP model, Acta Geophys., 62, 276–289, https://doi.org/10.2478/s11600-013-0167-4, 2014. 
Download
Short summary
This study applies machine learning (ML) techniques to classify aerosols using high-resolution multiwavelength lidar data from EARLINET network. We developed a reference dataset and evaluated six ML models, with LightGBM achieving over 90 % accuracy. Depolarization data proved critical for improving dust classification. Validated against independent datasets, our approach improves aerosol classification and may help refine lidar-based processing strategies.
Share
Altmetrics
Final-revised paper
Preprint