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Abstract. Aerosol typing is essential for understanding atmospheric composition and its impact on the climate.
Lidar-based aerosol typing has been often addressed with manual classification using optical property ranges.
However, few works addressed it using automated classification with machine learning (ML) mainly due to the
lack of annotated datasets. In this study, a high-vertical-resolution dataset is generated and annotated for the
University of Granada (UGR) station in Southeastern Spain, which belongs to the European Aerosol Research
Lidar Network (EARLINET), identifying five major aerosol types: Continental Polluted, Dust, Mixed, Smoke
and Unknown. Six ML models – Decision Tree, Random Forest, Gradient Boosting, XGBoost, LightGBM and
Neural Network- were applied to classify aerosol types using multiwavelength lidar data from EARLINET,
for two system configurations: with and without depolarization data. LightGBM achieved the best performance,
with precision, recall, and F1-Score above 90 % (with depolarization) and close to 87 % (without depolarization).
The performance for each aerosol type was evaluated and dust classification improved by ∼ 30 % with depo-
larization, highlighting its critical role in distinguishing aerosol types. Validation against independent datasets,
including a smoke case and a Saharan dust event, confirmed robust classification under real and extreme con-
ditions. Compared to NATALI, a neural network-based EARLINET algorithm, the approach presented in this
work shows improved aerosol classification accuracy, which emphasize the benefits of using high-resolution
multiwavelength lidar data from real measurements. This highlights the potential of ML-based methods for ro-
bust and accurate aerosol typing, establishing a benchmark for future studies using multiwavelength lidar at
high-resolution data from EARLINET.

1 Introduction

The accurate and automated classification of aerosol types
is crucial for understanding atmospheric composition and
their interactions with the climate system. Aerosols originate
from several sources and influence the Earth’s radiative bal-
ance directly, by absorbing or scattering radiation, and indi-
rectly, through their role in cloud formation and precipitation

(IPCC, 2023). Moreover, different aerosol types have distinct
effects in such radiative balance (Matus et al., 2019). Thus,
accurate aerosol classification is highly relevant for improv-
ing climate models and enhancing the accuracy of satellite
data retrievals (Chen et al., 2024).

Multiwavelength lidars provide atmospheric vertically re-
solved information on aerosol optical properties (namely
backscattering and extinction coefficients), which reveal im-
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portant details about particle size, shape and composition
(Ortiz-Amezcua et al., 2017; Benavent-Oltra et al., 2019,
2021; Soupiona et al., 2019, 2020). Thus, this information
enables the inference of aerosol types, providing a deeper
understanding of their role in the atmosphere.

Aerosol typing schemes for lidar systems are generally
based on observational results which attribute a certain type
of aerosol to a specific range of optical properties. The most
common optical properties used in the literature for aerosol
typing are intensive properties such as the lidar ratio and the
particle linear depolarization ratio at either 355 or 532 nm
(Groß, et al., 2013, 2014; Navas-Guzmán et al., 2013; Illing-
worth et al., 2015; Soupiona et al., 2020). Despite depolar-
ization products require calibration and uncertainty assess-
ment (Bravo-Aranda et al., 2016; Freudenthaler, 2016; Bel-
egante et al., 2018), their critical role in the aerosol typing
process justifies the effort. Moreover, the intensive proper-
ties are type-dependent and thus provide a higher level of
information for classifying aerosols. Other authors include
additional intensive properties to their classification schemes
such as the Ångström exponent (Baars et al., 2017) or the
color ratio for different pairs of wavelengths (Groß et al.,
2013), as well as extensive properties such as the backscatter
coefficient (Baars et al., 2017; Kim et al., 2018).

One of the major challenges in aerosol typing from lidar
measurements is the variability in optical property ranges
across studies, which mostly depend on the location. While
the ranges are generally similar for the same aerosol type, the
associated error can vary significantly among studies (Nico-
lae et al., 2018). To address this, datasets such as DeLiAn
(Floutsi et al., 2023) compile lidar-derived intensive optical
properties from ground-based observations, which provide
typical values for different aerosol types. However, the global
datasets might have limitations in capturing detailed verti-
cally resolved aerosol properties, which are important for
achieving an accurate aerosol classification. Given the vari-
ability and complexity of aerosol properties, machine learn-
ing (ML) offers a robust approach to overcome these chal-
lenges and to improve the accuracy and consistency in the
aerosol typing task.

In the recent years, there is a focus on finding automatic
aerosol classification schemes by either applying statistical
methods to lidar-derived intensive properties (Floutsi et al.,
2024), by the source of aerosols based on the geographical
region information (Mylonaki et al., 2021), by applying su-
pervised learning techniques such as clustering analysis (Pa-
pagiannopoulus et al., 2018) or by applying artificial neu-
ral network-based techniques (Nicolae et al., 2018). To the
best of our knowledge, no previous studies have evaluated
different ML algorithms for aerosol typing using lidar op-
tical properties. To fill the gap, this study provides an as-
sessment of various ML algorithms applied to both exten-
sive and intensive lidar properties for aerosol classification.
Using data from the the European Aerosol Research Lidar
Network (EARLINET, Pappalardo et al., 2014), specifically

from the University of Granada (UGR) station in Spain, the
aerosol layers are automatically detected and the extensive
and intensive properties are computed at high vertical res-
olution. The use of Aerosol, Clouds and Trace Gases (AC-
TRIS)/EARLINET validated data ensures robustness and
consistency in the testing of the proposed ML methods. By
evaluating several ML models, we have identified the most
accurate ML algorithm for aerosol typing, improving on cur-
rent state-of-the-art methods and thus establishing a bench-
mark for future research on this field.

This work is organized into the following sections: Sect. 2
provides an overview of the methodology employed, from
the preprocessing of the lidar data, going through the refer-
ence dataset design and finally to annotating the data. In addi-
tion, the ML methods applied are explained, including details
of the feature selection and hyperparameter tuning process.
Section 3 presents the results, comparing the performance
of different ML models and configurations: with and with-
out depolarization. Also, a validation of the ML model and
a comparison with NATALI model is presented. Section 4
discusses the findings, novelties and potential applications of
the proposed approach. In Sect. 5 the conclusions of the work
are presented, offering an overview of the future research di-
rections.

2 Methods

2.1 Reference dataset: data acquisition, processing and
annotation

The multiwavelength lidar data used in this work were
collected from the ACTRIS-EARLINET database (https://
earlinet.org, last access: 20 January 2025) for the UGR sta-
tion, which is located in Granada (Spain) at the Andalu-
sian Institute for Earth System Research (37.16° N, 3.6° W,
680 m a.s.l.) and is part of the Andalusian Global Observa-
tory of the Atmosphere (AGORA). The UGR station also
belongs to the ACTRIS research infrastructure (Laj et al.,
2024). The city of Granada is located in the southeastern part
of the Iberian Peninsula, where its local aerosol loading and
meteorological characteristics are strongly influenced by its
urban nature and by the complex-terrain of Sierra Nevada
Mountain area (del Águila et al., 2018, 2024). The major ex-
ternal source of aerosols in this region is North Africa, which
leads to frequent Saharan dust events (Guerrero-Rascado et
al., 2008, 2009; Cazorla et al., 2017; Soupiona et al., 2020).
In addition, biomass burning aerosols transported from the
Iberian Peninsula, North Africa and North America are fre-
quent (Alados-Arboledas et al., 2011; Ortiz-Amezcua et al.,
2017; Titos et al., 2017). The conceptual overview of the
methodology of this work is shown in Fig. 1 and described
in detail in the following sections.

EARLINET database includes information on the vertical
profiles of particle backscatter (βpar), extinction coefficient
(αpart) and linear particle depolarization ratio (δpart) at sev-
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Figure 1. Conceptual diagram of the methodology developed for aerosol typing.

eral wavelengths with high vertical resolution (several me-
ters) and time resolution (typically, between 30 min to a few
hours), measured by multiwavelength elastic or Raman li-
dar systems located in different stations across Europe. The
UGR station was equipped with the MULHACEN Raman
lidar (LR331D400, Raymetrics S.A.) from 2005 until 2020
(e.g. Granados-Muñoz et al., 2012), and provided profiles of
βpar at 355, 532 and 1064 nm, αpart at 355 and 532 nm, and
δpart at 532 nm with a vertical resolution of 7.5 m for half-
hour profiles.

A well-characterized dataset of MULHACEN particle op-
tical profiles and their respective errors for a period be-
tween 2012 and 2015 was selected and obtained from EAR-
LINET database for this analysis. Then, we computed the
following intensive properties: the extinction Ångström ex-
ponent (AE) for the pair 355–532 nm (Eq. 1); the backscatter
Ångström exponent (color index, CI) for the pairs 355–532,
532–1064 nm (Eq. 2); the backscatter ratio (color ratio, CR)
for the pairs 355–532 and 532–1064 nm (Eq. 3) and the lidar
ratio (LR) at 355 and 532 nm (Eq. 4). In addition, the respec-
tive uncertainties of the derived optical products were also
computed.

AE=−
ln(αλ1/αλ2)
ln(λ1/λ2)

(1)

CI=−
ln(βλ1/βλ2)
ln(λ1/λ2)

(2)

CR=
βλ1

βλ2
(3)

LR=
αλ1

βλ1
(4)

The aerosol layer boundaries (top and bottom) were deter-
mined following the methodology explained in Nicolae et
al. (2018), which makes use of the aerosol backscatter co-
efficient at 1064 nm and applies the gradient method (Bele-

gante et al., 2014). Thus, the first and second derivatives of
β1064 are computed with a third order Savitzky-Golay filter,
in order to obtain the inflexion points of the second deriva-
tive that delimitate the boundaries of the aerosol layer for
each profile. The window size used was set to 700 m with a
minimum height of 300 m and a signal-to-noise ratio of 5.

We calculated the average intensive parameters for each
aerosol layer. These average values were then assigned uni-
formly across the entire layer. As a result, the database in-
cludes two representations of the intensive properties: one at
the lidar resolution, where the properties are height-resolved,
and another where the average intensive properties are as-
signed to each aerosol layer. In the latter case, the same aver-
age value is repeated across the height of the layer, i.e., main-
taining the lidar resolution (height-resolved) for consistency.
The use of height-resolved data provides a detailed repre-
sentation of the vertical distribution of aerosol properties,
while the layer-averaged values, repeated across all height
levels within each layer, provide a consistent profile repre-
sentative of the overall aerosol type. This combination allows
ML models to learn from both fine-scale variability and aver-
aged layer characteristics, which is particularly beneficial for
improving prediction accuracy and capturing more complex
aerosol variations within layers.

For annotating the aerosol types of the reference database,
we applied a manual labelling to 416 aerosol layers. Based
on the literature (Groß et al., 2013, 2014; Navas-Guzmán et
al., 2013; Illingworth et al., 2015; Soupiona et al., 2020), we
assigned a single type of aerosol to each aerosol layer at av-
erage resolution according to certain ranges of the calculated
average intensive properties, as described in Table 1. These
properties range criteria were a first attempt for aerosol clas-
sification. This initial approach was followed by a thorough
review of each vertical profile and its optical properties by
experts. Corrections were made to the aerosol type in cases of
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misclassification identified during the first attempt. Finally,
to ensure accurate classification, we employed ancillary in-
formation to verify the aerosol type assigned to each layer.
Therefore, further analysis was carried out by running HYS-
PLIT backtrajectories (Stein et al., 2015) and NAAPS model
(Lynch et al., 2016) to support the labelling. For the cases
where the aerosol type was not clear enough, we computed
the backtrajectories with the HYSPLIT model, taking as the
starting point of the altitude for the backtrajectory analysis
the one of each identified aerosol layer. Thus, for uncertain
aerosol layer types, we ran the model for 5 d in advance to
trace the air mass origin for the altitude corresponding to
each layer. In addition, we assessed temporal consistency by
verifying that the aerosol types between layers remained con-
sistent from subsequent profiles.

Finally, the aerosol types found at UGR station are: Con-
tinental polluted, Dust, Smoke, Mixed and Unknown. The
inclusion of the “Unknown” class is a novel approach in this
field, as it represents cases where the aerosol type cannot be
definitively classified. In contrast, methods like NATALI as-
sign an equivalent “unknown” label when the neural network
fails to identify a final class, either due to error thresholds
being exceeded or the inability to compute intensive proper-
ties. The “Mixed” aerosol type corresponds to two or more
aerosol components (Li et al., 2016) such as dust and smoke,
or dust and continental polluted.

Once the aerosol types were certain for each layer, we
applied the same label for each altitude at the lidar height-
resolution. Finally, the height-resolved labels from the ref-
erence dataset are used for comparison with the outputs of
each ML method. The overview of the approach to design
the reference dataset is shown in Fig. 2.

2.2 Missing values

Missing values can be addressed using different methods,
ranging from simple techniques like mean imputation to
more advanced approaches such as Long Short-Term Mem-
ory (LSTM)-based modelling (Alabadla et al., 2022). In this
study, the missing values of each variable at vertical resolu-
tion have been imputed with the median value of each profile.
Let us name each profile by j = 0,1,2, . . .,n− 1 and define
the height discretization zji = z

j

0+i1z, i = 0,1,2, . . .,m−1,
where n, m are positive integer values.1z represents the step
in altitude, i.e., the vertical spatial resolution, and zji denotes
that zj0 depends on the profile. Thus, each variable p of the

reference dataset complies with: pji := p
(
z
j
i ,j

)
and the se-

quence of values for all the profiles be written as
(
p
j
i

)
i,j≥0

Finally, the imputation of the missing values has been per-
formed as follows:

(
p
j
i

)
i≥0
=

{
p
j
i if it exists

median
(
p
j
i

)
i≥0

(5)

Which means that for a fixed profile we assign for each height
z
j
i the value pji if it exists and the median of the existing

values for that profile if it does not exist.

2.3 Machine learning models for classification

We have evaluated different supervised machine learn-
ing (ML) models for two configurations of the reference
database: (1) with depolarization and (2) without depolar-
ization. For each configuration, the reference dataset (del
Águila et al., 2025) was divided into training (80 %) and test-
ing (20 %). We assessed the performance of Decision Trees
(Quinlan, 1986), Random Forest (Breiman, 2001), Light-
GBM (Ke et al., 2017), Gradient Boosting, XGboost (Chen
and Guestrin, 2016) and Neural Networks (Li et al., 2022).
Below there is a summary of each ML model applied in this
study:

– Decision Tree. this model was used to build a sim-
ple baseline classifier by splitting the dataset into sev-
eral feature thresholds to predict the aerosol type. The
key hyperparameters of these models are the maximum
depth (max_depth) of the trees and the minimum sam-
ples of the split (min_samples_split).

– Random forest. the method builds multiple decision
trees and merge them together to get a more accurate
and stable prediction and controls overfitting by aver-
aging multiple deep decision trees, trained on different
parts of the same training set. To find the best configura-
tion for this method, we have varied the number of trees
(n_estimators) and the maximum depth (max_depth) of
the trees.

– Gradient boosting. the method builds an additive model
incrementally to allow optimizing arbitrary differen-
tiable loss functions. The key hyperparameters of
this method include the number of boosting stages
(n_estimators) and the learning rate (learning_rate).

– XGBoost. the method consists of an implementation of
gradient boosting decision trees for speed and perfor-
mance. The method is tuned by the number of boosting
rounds (n_estimators), the learning rate (learning_rate)
and the maximum tree depth (max_depth).

– LightGBM. the method is a high-performance gradient
boosting framework which uses tree-based learning al-
gorithms. The method is adjusted by the number of
leaves in a tree (num_leaves), the learning rate (learn-
ing_rate), and the number of trees (n_estimators).

– Neural network (MLPClassifier). It captures com-
plex relationships in data, the neural network (NN)
has been configured with different architectures (hid-
den_layer_sizes), regularization terms (alpha), and ini-
tial learning rates (learning_rate_init).
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Table 1. Indicative ranges of lidar properties for manual aerosol typing at UGR station, adapted for this study and based on typical ranges in
the literature, were used as an initial reference for the manual labelling process. This first attempt for aerosol classification was followed by
a thorough review of each vertical profile and corrections were made when necessary to ensure accurate classification. Lidar ratios (LR) are
expressed in steradians (sr).

Aerosol type Properties range criteria

Clean Cont. 22≤LR355 ≤ 36 & 0.02≤ δpart ≤ 0.06
Volcanic 30≤LR532 ≤ 60 & 0.33≤ δpart ≤ 0.46
Smoke 26≤LR532 ≤,100 & 0.001≤ δpart ≤ 0.14
Dust 32≤LR532 ≤ 71 & 0.1≤ δpart ≤ 0.32
Mixed 32≤LR532 ≤ 71 & 0.1≤ δpart ≤ 0.2
Cont. Polluted 42≤LR532 ≤ 81 & 0.025≤ δpart ≤ 0.07 & 1.7≤CR355,1064 ≤ 2.7 & 0.4≤AE355,532 ≤ 1.6
Unknown Else

Figure 2. Diagram of the reference dataset design.

The ML models (ML_models) were chosen to solve the clas-
sification problem framed as the aerosol typing for each ver-
tical profile and layer as follows:

ĉ
j
i =ML_model[pji,k] (6)

Where pji,k represents the reference dataset, with all the vari-

ables k = 0, 1, . . ., l− 1 from the dataset (Fig. 2), and ĉji is
the predicted class for each layer at height resolution. For all
ML models, each point of the aerosol layer was considered
as a discrete observation for supervised learning. Therefore,
the methodology automatically classifies the aerosol type for
vertically resolved data, given the detected aerosol layers.
The ML models have been implemented using libraries like
scikit-learn (Pedregosa et al., 2011) in Python. This approach
enables the automatic classification of aerosol types in a ver-
tical column, providing high vertical resolution information
for atmospheric studies.

2.4 Feature importance analysis

In order to understand which features (variables) of the ML
models have more influence to predict the aerosol type, we
have performed feature importance analysis by calculating
the importance score for each feature with the Shapley addi-
tive explanations (SHAP) method (Lundberg and Lee, 2017).
This approach makes use of game theory to quantify the fea-
tures with respect to the output model. SHAP assigns each

feature an importance value for a particular prediction (Lund-
berg and Lee, 2017), helping the correct interpretation of
the output of a prediction model. Thus, the SHAP method
provides an interpretation scheme for the ML models and,
specifically, the use of SHAP to lidar data helps evaluating
the significance of the lidar properties into achieving the de-
sired aerosol typing.

2.5 Hyperparameters optimization

ML methods are parametrized with the named hyperparam-
eters. To ensure that the ML models were neither overfit-
ted nor underfitted, we performed hyperparameter tuning us-
ing the GridSearchCV function from Python’s scikit-learn li-
brary (Pedregosa et al., 2011), with five-fold cross-validation
(Breiman and Spector, 1992). The tuning process was ap-
plied to all models, including Decision Tree, Random For-
est, Gradient Boosting, XGBoost, LightGBM, and Neural
Networks, with a focus on optimizing recall for the multi-
class classification problem. The selected ranges of hyper-
parameters were based on similar studies of the literature
(e.g. Philippus et al., 2024; see Table 3 for evaluated val-
ues). For the decision tree, we varied the maximum tree depth
(max_depth) and the minimum number of samples required
to split a node (min_samples_split). In the random forest,
we adjusted both the number of trees (n_estimators) and the
maximum depth (max_depth). Similarly, for gradient boost-
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ing and XGBoost, hyperparameters such as the number of
boosting rounds (n_estimators), learning rate (learning_rate),
and tree depth (max_depth) were optimized. LightGBM was
fine-tuned by varying the number of leaves (num_leaves),
learning rate, and the number of boosting stages. The Neural
Network model was configured with different architectures
by adjusting the number of hidden layers and neurons (hid-
den_layer_sizes), learning rate (learning_rate_init), and reg-
ularization parameter (alpha). All models were evaluated us-
ing GroupKFold to ensure consistent cross-validation across
different groups (layers) of the training dataset. GroupKFold
is a cross-validation strategy in which the data is split into
training and testing sets while ensuring that the same group
is not represented in both sets. The detailed explanation is
included in the scikit-learn documentation on GroupKFold
(scikit-learn developers, 2025a). The best hyperparameters
for each model were identified based on the weighted accu-
racy, and the optimal configurations were subsequently used
to evaluate the models on the testing dataset. Thus, an opti-
mal set of hyperparameters for each method, will result in the
best configuration which minimizes the corresponding loss
function.

2.6 Performance evaluation

Once the ML models were applied, we evaluated their per-
formance using the reference dataset, which was divided into
training (80 %) and testing (20 %) sets. The 80/20 split is a
commonly adopted practice in ML, as it provides a good bal-
ance between the amount of data available for training and
a sufficiently large test set for reliable performance evalua-
tion (Kohavi, 1995). This proportion is usually considered to
offer an optimal balance, ensuring that the model is evalu-
ated on a sufficiently diverse test set and maintains the in-
tegrity of the evaluation process (Zhou, 2018). The division
was done using stratified sampling to maintain the propor-
tional distribution of aerosol classes across both sets. To en-
sure that data from the same aerosol layers did not leak into
both the training and testing phases, we applied group-based
segregation using GroupShuffleSplit, which ensured that data
points from the same aerosol layer were kept together either
in the training or testing sets. GroupShuffleSplit is a cross-
validation strategy in which the data is split into training and
testing sets while ensuring that the same group is not present
in both sets, similar to GroupKFold. However, unlike Group-
KFold, GroupShuffleSplit randomly shuffles the groups and
allows for more flexible splits, where each group is assigned
to either the training or testing set (scikit-learn developers,
2025b). This approach was essential to avoid data leakage,
as our dataset includes repeated measurements from the same
aerosol layers.

The metrics to evaluate the performance of the classifica-
tion of the ML models are based on the proportion of cor-
rectly predicted classes (both true positives and true nega-
tives) of the total classes. To account for the imbalance in the

distribution of aerosol classes, weighted metrics were used,
which assign weights to each class, that are proportional to
their representation in the reference dataset. Thus, the fol-
lowing metrics are evaluated:

Precision=
TP

TP+FP
(7)

Recall=
TP

TP+FN
(8)

F1= 2 ·
Precision ·Recall

Precision+Recall
(9)

where TP is True Positives, TN is True Negatives, FP is False
Positives and FN is False Negatives. Therefore, precision
indicates the model’s ability to avoid false positives; recall
shows the model’s ability to identify true positives and the
F1-score captures the balance between accuracy and recall,
which is especially useful when the distribution of classes is
uneven. The weights used in the calculation of the weighted
metrics (such as weighted precision, recall, and F1-score) are
based on the relative support of each class in the reference
dataset. That is, each class is weighted proportionally to its
number of instances in the dataset and is calculated as:

Mweighted =

C∑
i=1

ni

N
·Mi (10)

Where M is the metric (precision, recall or F1-score), C is
the number of classes (aerosol types), ni is the number of
samples in class i, N is the total number of samples, and Mi

is the metric for each class i. These weighted metrics were
used specifically to mitigate the influence of class imbalance
in the evaluation. To ensure robustness and reliability, these
metrics were calculated for the final testing dataset. The mod-
els’ ability to generalize was further assessed by analyzing
how they performed under different aerosol layer configu-
rations, with special attention paid to handling class imbal-
ances in the dataset.

3 Results

3.1 Reference dataset overview

In this work, we use high-resolution vertical data for the
aerosol typing task, rather than using averaged values for
each aerosol layer. The vertical resolution data included in
EARLINET is directly used, ensuring a robust and detailed
representation of aerosol properties which have passed qual-
ity assurance filters. This inclusion of all data is one of the
major assets of this study, because it allows the application
of the resulting ML-model automatically even for datasets
including noise or high associated errors (e.g. due to low
aerosol concentrations). Usually, the aerosol classification
methods ignore those data, but in our approach the associ-
ated aerosol layer are classified as Unknown. Therefore, this
class represents layers where the aerosol type could not be
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identified due to significant errors or non-physical meaning.
The Unknown class is included as an additional category into
the ML models. Hence, they are trained to recognize and cor-
rectly predict these challenging cases, as will be shown in the
following sections.

Figure 3 provides an overview of the reference dataset,
showing the distributions of the main variables for two cate-
gories: (1) the Unknown class and (2) the rest of the aerosol
types, including Dust, Mixed, Smoke and Continental Pol-
luted. The Unknown class is characterized by backscatter
values clustered near 0 and extinction coefficients concen-
trated between 0 and 50 Mm−1. These low values impact on
the derived intensive properties such as the LR, which shows
higher values (> 150 sr), as well as the CR and CI. Regarding
the classified aerosol types (Dust, Mixed, Smoke, and Conti-
nental Polluted), the distributions of intensive properties fall
within the expected ranges. Backscatter coefficients range
from 0 to 3 Mm−1 sr−1 at 355 nm and from 0 to 2.5 Mm−1

sr−1 at 532 and 1064 nm. Extinction coefficients span from 0
to 200 Mm−1 for both wavelengths, while the Angstrom Ex-
ponent (AE) ranges from−2 to 2.5. The CI values vary from
−0.5 to 2.5, and LR ranges from 0 to 200 sr for both wave-
lengths. Depolarization values range from 0 % to 32 %, with
approximately 80 % of values below 20 %, reflecting pre-
dominantly spherical particles. Notably, the ranges of these
intensive properties align with those reported in previous
studies (e.g., Nicolae et al., 2018). However, in some cases,
the ranges are slightly broader due to the nature of high-
resolution data compared to the averaged data. In contrast,
the high-resolution approach provides more detailed infor-
mation of aerosol properties, improving the ability of ML
models to effectively classify the aerosol types.

Figure 4 shows the histograms of the altitude for each
aerosol type. Each color represents a different aerosol type,
illustrating the variation in altitude aerosol layers across the
different types. The Unknown class is the most numerous
and prevalent type over a wide distribution across all alti-
tudes. The Smoke type is mostly comprised between 1300
and 6000 m. The Dust type shows a significant presence
with predominancy at altitudes from 2300 to 5500 m. The
Mixed type shows a similar distribution to dusty aerosols
but reaches up to 4300 m. Finally, the Continental Polluted
aerosol type show a narrow distribution over 1500 to 3000 m.

Table 2 lists the number of manually classified layers and
the number of counts for each class. Thus, 416 individual
aerosol layers are identified, with the predominant aerosol
types being, in order of frequency: Smoke, Dust, Mixed and
Continental Polluted, which sum 145 classified aerosol lay-
ers for the four aerosol types and 11 579 counts or heights.
In contrast, 271 layers were classified as Unknown, reflect-
ing the inherent challenges of manual labelling when aerosol
types are difficult to discern. These Unknown layers often
correspond to non-physical values or exhibit high associated
errors, yet they remain an integral part of the dataset, thereby

Table 2. Number of manually classified aerosol layers by aerosol
type and their corresponding counts for the reference dataset.

Aerosol type # layers # of counts

Smoke 91 7044
Dust 30 2257
Mixed 19 1649
Continental Polluted 5 629
Unknown 271 20 027
Total 416 31 606

underlining the complexity of accurately classifying certain
aerosol layers.

3.2 Model design and performance

3.2.1 Hyperparameter optimization

The strategy for obtaining the optimal hyperparameters for
each ML model was to use the module GridSearchCV as
explained in Sect. 2.5, which performs an exhaustive search
over a specified parameter grid. Thus, the approach ensures
that the chosen configuration is the best configuration in
terms of performance and minimizes overfitting. Table 3
summarizes the set of hyperparameters evaluated and pro-
vides the optimal hyperparameters for each ML model and
for both configurations: (1) with depolarization and (2) with-
out depolarization. Therefore, depending on each ML model,
the hyperparameters that influence the performance are dif-
ferent. Furthermore, we observe that the optimal parameters
for the different ML models also change with the configura-
tions.

3.2.2 Evaluation of different ML models

Six ML models were evaluated on the 416 layers from the
reference dataset for the period 2012–2015, assessing all
metrics on the test dataset for two configurations: (1) with
depolarization and (2) without depolarization. The best hy-
perparameters for each ML model were selected in order to
evaluate the different ML models (Table 3). Figure 5 shows
the weighted metrics of recall, precision and F1-Score. In
general, the ML models that incorporate depolarization data
demonstrate significantly higher performance compared to
those without depolarization, except for the neural network.
These results are in line with those reported by Nicolae et
al. (2018), where a neural network (NN)-based classification
algorithm was considered for cases with and without depo-
larization. In that study, the inclusion of depolarization led to
a higher number of aerosol types. However, this study shows
that for the NN model, the configuration without depolariza-
tion depicts higher performance. This might be explained due
to a stronger influence of the remaining features rather than
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Figure 3. Distributions of the key extensive and intensive properties derived from the multiwavelength lidar for the Unknown class (blue)
and the rest of the aerosol types (red). The distributions of the properties include the backscatter coefficients (β355,β532,β1064), color
indexes (CI355,532,CI532,1064), color ratios (CR355,532,CR532,1064), lidar ratios (LR355,LR532) and particle linear depolarization ratio of
the reference dataset.

depolarization on the aerosol classification problem with the
NN setup.

All ML models show good performance for both config-
urations with all the metrics consistently above 80 %, ex-
cept for the Decision Tree model without depolarization, as
it is the simplest model and configuration. On the one hand,
the performance of the configuration without depolarization

for LightGBM is above 85 %, while for Random Forest it
is around 80 %. On the other hand, the ML models with
the best performance for the depolarization configuration are
Random Forest and LightGBM, achieving metrics exceed-
ing 90 %. Thus, the LightGBM model is providing the best
metrics for both configurations, indicating a strong capabil-
ity of this model to minimize the false positives in aerosol
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Table 3. Ranges of hyperparameters evaluated for each ML model and optimal hyperparameters selected for the different configurations.

ML model Hyperparameters evaluated Configuration: with
depolarization

Configuration: without
depolarization

Decision Tree max_depth: None, 10, 20, 30
min_samples_split: 2, 10, 20

max_depth: None
min_samples_split: 2

max_depth: None
min_samples_split: 2

Random Forest max_depth: None, 10, 20
n_estimators: 100, 200

max_depth: 10
n_estimators: 100

max_depth: 10
n_estimators: 200

Gradient Boosting learning_rate: 0.01, 0.1, 0.2
n_estimators: 100, 200

learning_rate: 0.1
n_estimators: 200

learning_rate: 0.2
n_estimators: 100

XGBoost learning_rate: 0.01, 0.1, 0.2
max_depth: 3, 6, 9
n_ estimators: 100, 200

learning_rate: 0.2
max_depth: 9
n_estimators: 200

learning_rate: 0.2
max_depth: 6
n_estimators: 200

LightGBM learning_rate: 0.01, 0.1, 0.2
n_estimators: 100, 200
num_leaves: 31, 50, 100

learning_rate: 0.2
n_estimators: 100
num_leaves: 31

learning_rate: 0.2
n_estimators: 100
num_leaves: 31

Neural Network alpha: 0.0001, 0.001, 0.01
hidden_layer_sizes: (64, 64),
(128,64), (128, 128)
learning_rate_init: 0.001, 0.01

alpha: 0.001
hidden_layer_sizes: (64, 64)
learning_ rate_init: 0.01

alpha: 0.01
hidden_layer_sizes: (128, 128)
learning_rate_init: 0.01

typing. Moreover, the recall scores above and close to 90 %
for the configuration with and without depolarization, re-
spectively, also indicate that no significant overfitting or un-
derfitting occurred. Therefore, the ranking of models based
on their performance of both configurations of the testing
dataset showed that the LightGBM model achieved the best
performance followed by XGBoost, Random Forest, Gradi-
ent Boosting, Neural Network and Decision Tree. Finally,
these results highlight the LightGBM model robustness and
generalization capacity, making it the most reliable model for
the aerosol typing in this study. Thus, the LightGBM model
is selected as the optimal performing algorithm in terms of
recall, precision and F1-Score of the overall classification
accuracy for the two configurations. This result can be ex-
plained due to the inherent nature of the LightGBM model in
handling feature importance effectively, hence, selecting the
most relevant variables, which aligns with the aerosol typing
task.

To evaluate the computational costs of the models, we
recorded the total computational time on a standard worksta-
tion equipped with a 12th Gen Intel(R) Core(TM) i7-12700H
CPU and 32 GB of RAM. Simpler models such as Deci-
sion Trees and Random Forests completed training in under
20 s. More complex models like XGBoost and LightGBM re-
quired between 20 s and 1 min. The Neural Network model
required approximately 2 min. The Gradient Boosting model
had the highest computational cost, with a training time of
around 8 min. Despite these differences, once the models are
trained, all models provide near-instantaneous predictions.

3.2.3 Feature importance analysis

We have applied feature importance analysis to the best per-
forming ML model to analyze which variables are more sig-
nificant for the aerosol typing classification problem. Fig-
ure 6 shows a summary of the feature importance by means
of a SHAP plot for the LightGBM model. The most impor-
tant features (up to twenty features) according to their mean
absolute SHAP value, are shown in descending order, with
the most important feature at the top. The SHAP plot shows
the results for both configurations of the reference dataset.

We observe that the first feature is the most important and
is the same: the average lidar ratio at 532 nm (LR532) of the
aerosol layers. However, the second most important feature
is different between the two configurations: for the configu-
ration with depolarization the average depolarization of the
layer (δpart) is the most important feature, while for the con-
figuration without depolarization is CI532,1064. This property
is crucial as it is a strong proxy for aerosol size and type,
particularly in the absence of depolarization data but also for
the configuration with depolarization. The third most impor-
tant feature is the altitude (z) for both configurations. The
results highlight the relevance of the physical information of
the intensive properties (e.g. CI, CR, LR, AE) in the gen-
eral aerosol classification problem. It should be noted that
although depolarization appears as a highly relevant feature,
this does not automatically lead to improved performance for
all model types, as occurred with the MLP classified (Fig. 5),
because the improvement depends on how each algorithm
processes and learns from the available information.
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Figure 4. Distribution of altitudes for the different aerosol types of
the reference dataset.

Classical aerosol typing schemes in the literature predom-
inantly rely on the LR and depolarization ratio at 532 nm to
manually classify aerosols (e.g. Soupiona et al., 2020). In
this regard, the results for the configuration with depolar-
ization are in agreement with these traditional classification
approaches, as the ML models make use of physically in-
terpretable features, such as LR and depolarization ratio to
classify aerosols.

Although averaged layer properties significantly con-
tribute to the model performance, the SHAP plot also high-
lights the important role of vertically resolved features in
capturing aerosol properties with precision. Features like de-
polarization ratio at high resolution in the configuration with
depolarization, or backscatter properties at high resolution
for both configurations, are crucial in the decision-making
process of the ML model as they enhance the interpretabil-
ity of the LightGBM model. In general, the error variables
exhibit null importance for this ML model, with the excep-
tion of the depolarization error in the configuration with de-
polarization. This result implies that the error variables can
be excluded from the model and reduce the dimensionality
of the reference dataset without compromising its perfor-

mance whilst optimising the feature set and potentially im-
proving computational efficiency (del Águila et al., 2019).
This is supported by the fact that LightGBM model uses Ex-
clusive Feature Bundling (EFB), which in turn optimizes fea-
ture handling by grouping sparse and mutually exclusive fea-
tures (Ke et al., 2017). Thus, the zero importance of error
variables suggests their redundancy. Furthermore, the signif-
icant importance of the depolarization error at vertical reso-
lution for the configuration with depolarization, emphasises
the unique role for this variable in the context of the aerosol
typing.

3.2.4 Performance evaluation by aerosol type

In order to further analyse the aerosol classification capacity
of the LightGBM model, we have evaluated the performance
by aerosol type. Figure 7 shows the confusion matrices for
the ML model under two configurations: (1) with depolar-
ization and (2) without depolarization. This figure provides
additional information for distinguishing aerosol classifica-
tion, where the diagonal values represent the correct clas-
sifications, i.e., coincidence between the true and predicted
labels. For the configuration with depolarization, the accu-
racies of the diagonal are very high, particularly for Dust
(94 %), Unknown (93 %) and Smoke (89 %) types, while the
Continental Polluted (66 %) and Mixed (69 %) are usually
misclassified with Smoke (34 %) and both Smoke (12 %) and
Unknow (19 %), respectively.

For the configuration without depolarization, there is an
absolute decrease of 4 % in classification accuracy for Smoke
and a strong decrease of 28 % for Dust aerosol. This suggests
that the depolarization has an important role in the classifi-
cation task of those two aerosol types. However, the accura-
cies for Continental Polluted, Mixed and Unknown types are
maintained compared to the configuration with depolariza-
tion, indicating that those types are less sensible to depolar-
ization. Finally, we can draw the following conclusions from
the figure:

– The inclusions of depolarization improve the general
ability of the ML model to distinguish among aerosol
types, especially for Dust and Smoke, suggesting that
depolarization plays an important role in classifying
these types of aerosols. This result is expected and more
relevant for Dust aerosol, since dust particles are non-
spherical which in turn depolarize light when measured
by the lidar in a major extent (e.g. Baars et al., 2017).

– The Continental Polluted and Mixed types show similar
performances (∼ 70 %) in both configurations, suggest-
ing that these aerosol types are more challenging to pre-
dict in the classification process. This is partly due to the
broad and overlapping ranges of lidar properties (e.g.,
LR and particle depolarization ratio) used for initial la-
belling, which can lead to confusion between classes
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Figure 5. Summary of the metrics of the ML models applied to lidar data taking into account depolarization (blue) and without depolarization
(orange) for all the variables in the testing dataset. The green box indicates the best metrics for both configurations.

Figure 6. SHAP summary plots of feature importance for the LightGBM model applied to lidar data (a) taking into account depolarization
and (b) without depolarization. The variables with a bar at the top indicate the average layer values, while the symbol 1 indicates the error
of the variable. The rest of the variables are at high-vertical resolution.
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Figure 7. Confusion matrix of the LightGBM model for the configuration (a) with depolarization and (b) without depolarization.

such as Mixed, Continental Polluted, and Smoke. Al-
though the Mixed type does not necessarily imply a
physical dominance of Smoke, the optical properties as-
sociated with Smoke (e.g., lidar ratio from 26 to 100 sr,
linear depolarization ratio from 0.001 to 0.14 in Table 1)
can overlap with those of other classes, making separa-
tion difficult. Thus, a thorough expert review and the in-
tegration of additional information (e.g., backward tra-
jectories and aerosol concentration models) were nec-
essary to refine the final labels. Indeed, the Mixed class
was less confused (around 12 %) with Smoke type in
the scenario with depolarization data, probably due to
the smaller overlap between these classes.

– The Unknown type maintains a high accuracy of 93 %
for both configurations, indicating a high prediction of
the unclassified aerosol types independent on the con-
figuration.

3.3 External validation with independent datasets: a
smoke case and a Saharan dust event

To validate the best performing ML model of this study,
and evaluate its generalization capabilities, we have applied
LightGBM to two independent datasets which were used for
neither training nor testing the model. The first case cor-
responds to a less-depolarizing aerosol with predominancy
of medium and long-range transported smoke that occurred
on 14 September 2024 at 21:29 UTC at UGR station while,
the second corresponds to a well-documented dust event dis-
cussed in Benavent-Oltra et al. (2019).

The first study case on 14 September 2024 presented sev-
eral layers that were annotated as long- and medium-range
transported smoke from Canada and North of Portugal, re-
spectively, thanks to the ancillary information of model back-

ward trajectories and satellite global fire map products (not
shown here). This event was captured by a different multi-
wavelength Raman lidar, ALHAMBRA, that also provided,
among other products, βpar at 355, 532 and 1064 nm, αpart
at 355 and 532 nm. The retrieved profiles and their derived
products are shown in Fig. 8. The predictions with Light-
GBM of the first aerosol layer correspond to the Continental
Polluted aerosol while for the second to fourth layers, the
predictions correspond to Smoke aerosol. Thus, the predic-
tions are coincident with the actual aerosol type, as previ-
ously classified by experts following the criteria of Sect. 2.1.
Hence, the correct predictions of this independent dataset
prove the generalization of the ML model due and accu-
rate prediction for another instrument with different spatial
resolution (3.5 m) and for low-depolarizing aerosols such as
Smoke and Continental Polluted aerosol.

The second study case is an intense Saharan dust event
occurred during a field campaign called SLOPE I, from 18
to 21 July 2016. During this campaign, the MULHACEN
multiwavelength lidar measured at three wavelengths (355,
532 and 1064 nm) with predominant Dust and Mixed aerosol
types, and containing a number of height-resolved values
classified as Dust of 1527 and 523 for Mixed. Moreover, the
independent dataset comprises 26 aerosol layers, providing a
comprehensive case for testing the performance of our clas-
sification model in unseen data, specially under challenging
atmospheric conditions. Saharan dust events are frequent on
the Iberian Peninsula and several efforts in previous studies
have been made to correctly identifying dust aerosol (e.g.
Córdoba-Jabonero et al., 2018; López-Cayuela et al., 2023).

The independent dust event dataset was manually labelled
following the same criteria described in Sect. 2.1, in or-
der to test the accuracy of the ML model. Thus, we have
validated the LightGBM model for the configuration with
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Figure 8. Vertical profile of aerosol optical properties with layers and classification for Granada on 14 September 2024 at 21:29 UTC
obtained from EARLINET. (a) Backscatter coefficient profile at 355, 532 and 1064 nm. (b) Extinction coefficient profiles at 355 and 532 nm.
(c) Lidar ratio at 532 nm. (d) Angstrom exponent and Color Ratio. (e) Aerosol type prediction with trained LightGBM model. The lidar data
from this case corresponds to the ALHAMBRA lidar.

depolarization with the independent dataset of the Saha-
ran dust event for the same lidar instrument. The accu-
racy results demonstrate good performance in classifying
the predominant aerosol type, by correctly classifying 82 %
of Dust aerosol instances, and F1-score of 90 %. However,
there are some misclassifications between Dust and Un-
known aerosols, with 18 % of Dust samples classified as Un-
known and the Mixed samples are mainly confused with Un-
known aerosol and in a minor extent with Continental pol-
luted aerosol, indicating some overlap in their features. Fi-
nally, the Unknown classification is of 100 %. Overall, the
model struggles more with Mixed aerosols, but the accu-
racy is very high for Dust classification, which is the major
aerosol component during the Saharan dust event (78 % of
the aerosol types).

The profile evolution of the dust event has been also ana-
lyzed to assess the model’s ability to capture the spatial and
temporal variability of the aerosol layers. Figure 9 shows the
vertical profiles of backscatter, extinction, LR and AE during
the event, on 19 July 2016 at 22:00 UTC, along with the pre-
dicted aerosol types for the five detected layers. Comparing
the predictions with the reference dataset, Layer 1 was clas-
sified as Mixed but it is predicted by the LightGBM model as

Unknown (blue). This discrepancy with the first layer occurs
for two other profiles, which could indicate that the model
struggles to classify aerosols on the bottom layer, potentially
due to the complex mixture of aerosol types or limited fea-
ture representation for this particular case. For Layers 2, 3
and 4, both the reference and the ML model classify them
as Dust, showing strong agreement in identifying this layer’s
predominant aerosol type. Finally, Layer 5 was classified as
Unknown in the reference dataset and is also predicted as Un-
known by the model, which suggests that the ML model en-
counters occasional uncertainty in distinguishing the aerosol
types, particularly when several intensive properties lack of
information, leading to its classification as Unknown.

In conclusion, the LightGBM model achieves top accu-
racy in predicting intermediate layers, whereas the bottom
and top layers are usually misclassified (35 % of the total
amount of layers) probably caused due to lack of information
about the intensive properties of those layers. Additionally,
there might be overlapping features or presence of secondary
aerosol components that contribute to confusion on the bot-
tom and top layers.

To further evaluate the performance of the LightGBM ML
approach, we compared it with the automatic algorithm for
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Figure 9. Similar to Fig. 8 but for the date 19 July 2016 at 22:00 UTC obtained from EARLINET. The lidar data from this case corresponds
to the MULHACEN lidar.

aerosol classification called NATALI (Nicolae et al., 2018),
which is also applied to EARLINET data. We executed NA-
TALI version 1.4.1. (Nicolae et al., 2016) on the independent
dataset of the Saharan dust event in this section for classi-
fying aerosol types on the detected layers. It is worth men-
tioning that the detected layers are the same for both models,
so that the two models are under comparable conditions. De-
polarization information was unavailable in the EARLINET
database during that period; however, depolarization data
was provided by the research group for the same event. As
a result, NATALI algorithm provides a “low-resolution typ-
ing”, able to identify 5 predominant aerosol types (Nicolae
et al., 2018). When evaluating LightGBM without depolar-
ization data, its performance was comparable to that of NA-
TALI. However, when depolarization data was included, the
performance of LightGBM improved significantly, correctly
identifying the predominant aerosol type in 65 % of the lay-
ers, compared to 23 % for NATALI under the same dataset.
This highlights the critical role of depolarization in differen-
tiating challenging aerosol types, such as dust and smoke.

The differences in classifying the aerosol types between
the two models can be explained by the different aerosol
type definition between the two automatic typing models

(Voudouri et al., 2019). NATALI uses synthetic data to train
the neural networks and is conservative in classification, of-
ten leaving layers unclassified due to high errors or missing
intensive parameters. On the other hand, the approach pre-
sented in this work uses real data at high-resolution and al-
lows for classification even in cases where certain variables
(such as intensive parameters) cannot be calculated or have
high uncertainties.

4 Discussion

After the evaluation of six ML models, the best-performing
ML model was LightGBM, using two data configurations:
with depolarization and without depolarization. Given its
strong performance in classifying aerosol types with both
configurations, this model could serve as a benchmark for fu-
ture aerosol classification efforts, knowing which ML model
is more suitable for this purpose. Its ability to generalize
across different atmospheric conditions, while maintaining
high accuracy, makes it a valuable starting point for com-
parisons in future studies or implementations across various
lidar networks.
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Our study introduces several key innovations in the field
of aerosol classification of lidar data using ML:

1. Design and preparation of a reference dataset for ML
applications: we have designed and created a reference
dataset from scratch of multiwavelength lidar data, in-
cluding extensive and intensive properties with their
corresponding errors at high vertical resolution. In ad-
dition, we have manually labelled the detected lay-
ers. This information is crucial for having a reference
dataset and for applying different supervised ML mod-
els.

2. High-resolution aerosol typing: this study represents the
first instance of aerosol typing conducted using high-
resolution EARLINET data, rather than the conven-
tional approach of using averaged aerosol layer values.
While high-resolution data inherently introduces higher
uncertainty or noise, the results show good performance
and the ML models manage to accurately classifying
aerosol types at high resolution. In this regard, the Un-
known class plays a crucial role in accounting for cases
when insufficient information prevents a definitive clas-
sification.

3. Validation of satellite products: The approach of this
work will contribute to validate aerosol typing of satel-
lite remote sensing missions like EarthCARE (Wehr et
al., 2023) at high resolution.

4. Applicability to other lidar stations: Although our
model is currently trained for the UGR station, the
methodology can be extended to other EARLINET sta-
tions and serve as benchmark dataset. By training the
model with additional aerosol types that are prevalent
in other locations, the model could predict aerosol types
in various regions with different compositions. For in-
stance, incorporating some representative EARLINET
stations with diverse aerosol types, such as marine or
continental polluted aerosols, could enhance the model
performance in other parts of the globe.

5. Computation of extinction-to-mass coefficients: By
identifying the aerosol type for each layer using the ML
approach, different extinction-to-mass conversion fac-
tors tailored to specific aerosol types can be applied,
thereby reducing uncertainties in the estimation of par-
ticle mass concentration (PM10) [µg m−3].

Our model is currently trained with data from the UGR
station, which means that it is primarily designed for the spe-
cific aerosol types present in this region. However, this also
presents an opportunity: the methodology developed in this
study can be extended to similar instruments within the same
station (Alados-Arboledas and Guerrero-Rascado, 2024), to
other lidar stations within the EARLINET network or sim-
ilar lidar databases like DeliAn (Floutsi et al., 2023), en-
abling the creation of region-specific labelled datasets for

aerosol classification. This flexibility allows for adaptation to
other geographical locations, provided that the aerosol types
for those regions are included in the training set. Future re-
search should focus on expanding the dataset to include more
aerosol types. Furthermore, extending the model’s applica-
tion to real-time aerosol classification across multiple lidar
stations could significantly enhance the operational capabil-
ity of lidar networks like EARLINET.

5 Conclusions

This work highlights the effectiveness and versatility of
machine learning (ML) models for aerosol typing using
high-resolution EARLINET data. Among the tested mod-
els, LightGBM demonstrated superior performance, achiev-
ing up to 90 % accuracy after hyperparameter optimization,
outperforming existing approaches. In addition, it has been
found that the linear particle depolarization ratio is as a key
feature for classifying aerosol types, particularly dust, but
also show that the model remains robust when such features
are unavailable, achieving 83 % accuracy in external valida-
tion with fewer features or high uncertainties.

The LightGBM model was successfully validated against
two independent datasets representing a Saharan dust event
and less-depolarizing aerosol with predominancy of medium
and long-range transported smoke, demonstrating consistent
performance across layers and aerosol types. This work in-
troduces several innovations, including the development of
a high-resolution reference dataset, the prediction of ”Un-
known” classes and its implications with real measurements,
and the potential for validating satellite aerosol products at
high resolution. The use of vertically-resolved data plays a
key role in accurately predicting aerosol types at high resolu-
tion, as supported by the feature importance analysis. Fur-
thermore, the methodology can be extended to other lidar
stations within EARLINET, enabling the inclusion of region-
specific aerosol types and enhancing its applicability across
diverse geographical areas.

Future research should focus on expanding the dataset to
include more aerosol types and exploring unsupervised ML
approaches. The implementation of real-time aerosol classi-
fication across lidar stations could significantly enhance the
operational capabilities of lidar networks like EARLINET,
contributing to a better understanding of atmospheric com-
position and its impact on the climate.

Data availability. The files of the lidar MULHACEN at UGR
(Spain) station are available at EARLINET archive (https://www.
earlinet.org/index.php?id=earlinet_homepage, last access: 20 Jan-
uary 2025). The reference dataset used in this study, including pro-
cessed layers and manual classification is openly available at Zen-
odo (https://doi.org/10.5281/zenodo.16925786, del Águila et al.,
2025).
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