Articles | Volume 24, issue 1
https://doi.org/10.5194/acp-24-123-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-123-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Particulate-bound alkyl nitrate pollution and formation mechanisms in Beijing, China
Jiyuan Yang
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Guoyang Lei
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Jinfeng Zhu
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Yutong Wu
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Chang Liu
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Kai Hu
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Junsong Bao
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
Zitong Zhang
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Weili Lin
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Jun Jin
CORRESPONDING AUTHOR
College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
Related authors
Jiyuan Yang, Guoyang Lei, Chang Liu, Yutong Wu, Kai Hu, Jinfeng Zhu, Junsong Bao, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, https://doi.org/10.5194/acp-23-3015-2023, 2023
Short summary
Short summary
The characteristics of n-alkanes and the contributions of various sources of PM2.5 in the atmosphere in Beijing were studied. There were marked seasonal and diurnal differences in the n-alkane concentrations (p<0.01). Particulate-bound n-alkanes were supplied by anthropogenic and biogenic sources; fossil fuel combustion was the dominant contributor. Vehicle exhausts strongly affect PM2.5 pollution. Controlling vehicle exhaust emissions is key to control n-alkane and PM2.5 pollution in Beijing.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-643, https://doi.org/10.5194/egusphere-2024-643, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process removing surface O3, affecting air quality, ecosystem and climate change. This study conducted an O3 deposition measurement over wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities of O3 deposition were detected mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanism, model optimization.
Shuzheng Guo, Chunxiang Ye, Weili Lin, Yi Chen, Limin Zeng, Xuena Yu, Jinhui Cui, Chong Zhang, Jing Duan, Haobin Zhong, Rujin Huang, Xuguang Chi, Wei Nie, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-262, https://doi.org/10.5194/egusphere-2024-262, 2024
Preprint archived
Short summary
Short summary
@Tibet field campaigns 2021 discovered surprisingly high levels and activity contributions of oxygenated volatile organic compounds on the southeast of the Tibetan Plateau, which suggests that OVOCs may play a larger role in the chemical reactions that occur in high-altitude regions than previously thought.
Chunxiang Ye, Shuzheng Guo, Weili Lin, Fangjie Tian, Jianshu Wang, Chong Zhang, Suzhen Chi, Yi Chen, Yingjie Zhang, Limin Zeng, Xin Li, Duo Bu, Jiacheng Zhou, and Weixiong Zhao
Atmos. Chem. Phys., 23, 10383–10397, https://doi.org/10.5194/acp-23-10383-2023, https://doi.org/10.5194/acp-23-10383-2023, 2023
Short summary
Short summary
Online volatile organic compound (VOC) measurements by gas chromatography–mass spectrometry, with other O3 precursors, were used to identify key VOC and other key sources in Lhasa. Total VOCs (TVOCs), alkanes, and aromatics are half as abundant as in Beijing. Oxygenated VOCs (OVOCs) consist of 52 % of the TVOCs. Alkenes and OVOCs account for 80 % of the ozone formation potential. Aromatics dominate secondary organic aerosol potential. Positive matrix factorization decomposed residential sources.
Yaru Wang, Yi Chen, Suzhen Chi, Jianshu Wang, Chong Zhang, Weixiong Zhao, Weili Lin, and Chunxiang Ye
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-192, https://doi.org/10.5194/amt-2023-192, 2023
Revised manuscript not accepted
Short summary
Short summary
We reported an optimized system (Mea-OPR) for direct measurement of ozone production rate, which showed a precise, sensitive and reliable measurement of OPR for at least urban and suburban atmosphere, and active O3 photochemical production in winter Beijing. Herein, the Mea-OPR system also shows its potential in exploring the fundamental O3 photochemistry, i.e., surprisingly high ozone production even under high-NOx conditions.
Wanyun Xu, Yuxuan Bian, Weili Lin, Yingjie Zhang, Yaru Wang, Zhiqiang Ma, Xiaoyi Zhang, Gen Zhang, Chunxiang Ye, and Xiaobin Xu
Atmos. Chem. Phys., 23, 7635–7652, https://doi.org/10.5194/acp-23-7635-2023, https://doi.org/10.5194/acp-23-7635-2023, 2023
Short summary
Short summary
Tropospheric ozone (O3) and peroxyacetyl nitrate (PAN) are both photochemical pollutants harmful to the ecological environment and human health, especially in the Tibetan Plateau (TP). However, the factors determining their variations in the TP have not been comprehensively investigated. Results from field measurements and observation-based models revealed that day-to-day variations in O3 and PAN were in fact controlled by distinct physiochemical processes.
Jiyuan Yang, Guoyang Lei, Chang Liu, Yutong Wu, Kai Hu, Jinfeng Zhu, Junsong Bao, Weili Lin, and Jun Jin
Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, https://doi.org/10.5194/acp-23-3015-2023, 2023
Short summary
Short summary
The characteristics of n-alkanes and the contributions of various sources of PM2.5 in the atmosphere in Beijing were studied. There were marked seasonal and diurnal differences in the n-alkane concentrations (p<0.01). Particulate-bound n-alkanes were supplied by anthropogenic and biogenic sources; fossil fuel combustion was the dominant contributor. Vehicle exhausts strongly affect PM2.5 pollution. Controlling vehicle exhaust emissions is key to control n-alkane and PM2.5 pollution in Beijing.
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys., 22, 7071–7085, https://doi.org/10.5194/acp-22-7071-2022, https://doi.org/10.5194/acp-22-7071-2022, 2022
Short summary
Short summary
Significant decreases in annual mean NOx from 2011 to 2016 and SO2 from 2008 to 2016 confirm the effectiveness of relevant control measures on the reduction in NOx and SO2 emissions in the North China Plain (NCP). NOx at SDZ had a weaker influence than SO2 on the emission reduction in Beijing and other areas in the NCP. An increase in the number of motor vehicles and weak traffic restrictions have caused vehicle emissions of NOx, which indicates that NOx emission control should be strengthened.
Qingqing Yin, Qianli Ma, Weili Lin, Xiaobin Xu, and Jie Yao
Atmos. Chem. Phys., 22, 1015–1033, https://doi.org/10.5194/acp-22-1015-2022, https://doi.org/10.5194/acp-22-1015-2022, 2022
Short summary
Short summary
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx and SO2 measurements from 2006 to 2016 at the Lin’an World Meteorological Organization Global Atmospheric Watch station were used to characterize the seasonal and diurnal variations and study the long-term trends. This study reaffirms China’s success in controlling both NOx and SO2 in the Yangtze River Delta but indicates at the same time a necessity to strengthen the NOx emission control.
Ziru Lan, Weili Lin, Weiwei Pu, and Zhiqiang Ma
Atmos. Chem. Phys., 21, 4561–4573, https://doi.org/10.5194/acp-21-4561-2021, https://doi.org/10.5194/acp-21-4561-2021, 2021
Short summary
Short summary
Haze related to particulate matter has become a big problem in eastern China, and ammonia (NH3) plays an important role in secondary particulate matter formation. In this work, variations in the NH3 mixing ratio showed that the contributions of NH3 sources and sinks in urban and suburban areas were quite different, although the areas were under the influence of similar weather systems. This study furthers the understanding of the behavior of NH3 in a megacity environment.
Weili Lin, Feng Wang, Chunxiang Ye, and Tong Zhu
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-32, https://doi.org/10.5194/tc-2021-32, 2021
Preprint withdrawn
Short summary
Short summary
Field observations found that released NOx on the glacier surface of the Tibetan Plateau, an important snow-covered region in the northern mid-latitudes, had a higher concentration than in Antarctic and Arctic regions. Such evidence, and such high fluxes as observed here on the Tibetan plateau is novel. That such high concentrations of nitrogen oxides can be found in remote areas is interesting and important for the oxidative budget of the boundary layer.
Yijing Chen, Qianli Ma, Weili Lin, Xiaobin Xu, Jie Yao, and Wei Gao
Atmos. Chem. Phys., 20, 15969–15982, https://doi.org/10.5194/acp-20-15969-2020, https://doi.org/10.5194/acp-20-15969-2020, 2020
Short summary
Short summary
CO is one of the major air pollutants. Our study showed that the long-term CO levels at a background station in one of the most developed areas of China decreased significantly and verified that this downward trend was attributed to the decrease in anthropogenic emissions, which indicated that the adopted pollution control policies were effective. Also, this decrease has an implication for the atmospheric chemistry considering the negative correlation between CO levels and OH radical's lifetime.
Wanyun Xu, Ye Kuang, Chunsheng Zhao, Jiangchuan Tao, Gang Zhao, Yuxuan Bian, Wen Yang, Yingli Yu, Chuanyang Shen, Linlin Liang, Gen Zhang, Weili Lin, and Xiaobin Xu
Atmos. Chem. Phys., 19, 10557–10570, https://doi.org/10.5194/acp-19-10557-2019, https://doi.org/10.5194/acp-19-10557-2019, 2019
Short summary
Short summary
The study of HONO, the primary source of OH radicals, is crucial for atmospheric photochemistry and heterogeneous chemistry. Heterogeneous NO2 conversion was shown to be one of the missing sources of HONO on the North China Plain, but the reaction path is still under debate. In this work, evidence was found that NH3 was the key factor that promoted the hydrolysis of NO2, leading to the explosive growth of HONO and nitrate, suggesting that NH3 emission control measures are urgently needed.
Ruijing Ni, Jintai Lin, Yingying Yan, and Weili Lin
Atmos. Chem. Phys., 18, 11447–11469, https://doi.org/10.5194/acp-18-11447-2018, https://doi.org/10.5194/acp-18-11447-2018, 2018
Short summary
Short summary
By integrating several modeling methods, we find considerable contributions of foreign anthropogenic emissions to surface ozone over China (2–11 ppb). For anthropogenic ozone over China, the foreign contribution is 40–50 % below 2 km and 85 % in the upper troposphere. For total foreign anthropogenic ozone over China, the portion of transboundary ozone produced within foreign emission source regions is less than 50 %, with the rest produced by precursors transported out of those source regions.
Xiaobin Xu, Hualong Zhang, Weili Lin, Ying Wang, Wanyun Xu, and Shihui Jia
Atmos. Chem. Phys., 18, 5199–5217, https://doi.org/10.5194/acp-18-5199-2018, https://doi.org/10.5194/acp-18-5199-2018, 2018
Short summary
Short summary
We present the first simultaneous PAN and O3 measurements from the central Tibetan Plateau. Both gases showed unique diurnal cycles with steep rises in the early morning and broader daytime platforms, which is attributed to the PBL evolution. Some high PAN and O3 episodes were observed and caused either by long-range transport of pollutants from south Asia or by downward transport of air masses from the upper troposphere, indicating the dynamic impacts on tropospheric chemistry over the Tibet.
Wanyun Xu, Xiaobin Xu, Meiyun Lin, Weili Lin, David Tarasick, Jie Tang, Jianzhong Ma, and Xiangdong Zheng
Atmos. Chem. Phys., 18, 773–798, https://doi.org/10.5194/acp-18-773-2018, https://doi.org/10.5194/acp-18-773-2018, 2018
Short summary
Short summary
The impact of anthropogenic emissions and climate variability on the long-term trends and periodicity of surface ozone measured at Mt Waliguan (WLG) for the period of 1994–2013 is studied. STT ozone and rising emissions in eastern China contribute to spring and autumnal increasing trends, respectively. The 2–3-, 3–7-, and 11-year periodicities in the ozone data are linked to the QBO, EASMI, and sunspot cycle, respectively. An empirical model is obtained for normalised monthly ozone at WLG.
Zhaoyang Meng, Xiaobin Xu, Weili Lin, Baozhu Ge, Yulin Xie, Bo Song, Shihui Jia, Rui Zhang, Wei Peng, Ying Wang, Hongbing Cheng, Wen Yang, and Huarong Zhao
Atmos. Chem. Phys., 18, 167–184, https://doi.org/10.5194/acp-18-167-2018, https://doi.org/10.5194/acp-18-167-2018, 2018
Short summary
Short summary
This paper presents simultaneous measurements of NH3, other trace gases, and water-soluble ions in PM2.5 from May to September 2013 at a rural site in the North China Plain. Atmospheric ammonia and related parameters are characterised and the impact of ammonia on formation of secondary aerosols is investigated. The results presented in this paper may improve our understanding of the role of ammonia in aerosol formation.
Rui Wang, Xiaobin Xu, Shihui Jia, Ruisheng Ma, Liang Ran, Zhaoze Deng, Weili Lin, Ying Wang, and Zhiqiang Ma
Atmos. Chem. Phys., 17, 3891–3903, https://doi.org/10.5194/acp-17-3891-2017, https://doi.org/10.5194/acp-17-3891-2017, 2017
Short summary
Short summary
Knowledge about the vertical distributions of air pollutants is limited. We present first unmanned aerial vehicle (UAV) observations of vertical profiles of O3 and size-resolved aerosol number concentrations over a rural site in the North China Plain. We show the determination of mixed and residual layer depth and characterization of diurnal O3 and aerosol number concentrations in the mixed and residual layer. We confirm a rapid increase of O3 in the lower troposphere during the recent decade.
Yingruo Li, Chunxiang Ye, Jun Liu, Yi Zhu, Junxia Wang, Ziqiang Tan, Weili Lin, Limin Zeng, and Tong Zhu
Atmos. Chem. Phys., 16, 14265–14283, https://doi.org/10.5194/acp-16-14265-2016, https://doi.org/10.5194/acp-16-14265-2016, 2016
Short summary
Short summary
We developed the surface flux intensity calculation method based on 2-year continuous ground measurement at a cross-boundary site between Beijing and the NCP to investigate the surface regional transport. The long-term and multispecies observation demonstrated the regional transport influence of the megacity Beijing and the NCP on Yufa. Our study has a direct implication in air quality control measures implemented in Beijing and its surrounding areas.
Liang Ran, Zhaoze Deng, Xiaobin Xu, Peng Yan, Weili Lin, Ying Wang, Ping Tian, Pucai Wang, Weilin Pan, and Daren Lu
Atmos. Chem. Phys., 16, 10441–10454, https://doi.org/10.5194/acp-16-10441-2016, https://doi.org/10.5194/acp-16-10441-2016, 2016
Short summary
Short summary
Vertical profiles of black carbon within 1 km above the ground were measured using a micro-aethalometer attached to a tethered balloon during the VOGA field campaign in summer 2014 at a semirural site in the North China Plain. The diurnal cycle of black carbon vertical distributions following the development of the mixing layer was analyzed for a selected dataset of 67 profiles.
Wanyun Xu, Weili Lin, Xiaobin Xu, Jie Tang, Jianqing Huang, Hao Wu, and Xiaochun Zhang
Atmos. Chem. Phys., 16, 6191–6205, https://doi.org/10.5194/acp-16-6191-2016, https://doi.org/10.5194/acp-16-6191-2016, 2016
Short summary
Short summary
Long-term characteristics and trends of baseline surface ozone concentration at Waliguan station in western China for the period of 1994 to 2013 were analysed, using a modified Mann–Kendall test and the Hilbert–Huang transform analysis for the trend and periodicity analysis, respectively. Significant increasing trends were detected in all seasons, except for summer. The non-linearity caused by the interannual variation of ozone concentrations is evident, showing a 2–4-year, 7- and 11-year periodicity.
Zhiqiang Ma, Jing Xu, Weijun Quan, Ziyin Zhang, Weili Lin, and Xiaobin Xu
Atmos. Chem. Phys., 16, 3969–3977, https://doi.org/10.5194/acp-16-3969-2016, https://doi.org/10.5194/acp-16-3969-2016, 2016
Short summary
Short summary
In this paper, we find that the daily maximum 8 h O3 in the eastern China has undergone a significant increase during 2003–2015, with a rate of 1.1 ppb per year. The increase of surface ozone was mainly induced by the emission changes and the meteorological factors just played a tiny negative influence. Our result also indicates that VOCs seem to play more important role in the ozone increase than the effect of NO titration.
L. Ran, W. L. Lin, Y. Z. Deji, B. La, P. M. Tsering, X. B. Xu, and W. Wang
Atmos. Chem. Phys., 14, 10721–10730, https://doi.org/10.5194/acp-14-10721-2014, https://doi.org/10.5194/acp-14-10721-2014, 2014
W. Y. Xu, C. S. Zhao, L. Ran, W. L. Lin, P. Yan, and X. B. Xu
Atmos. Chem. Phys., 14, 7757–7768, https://doi.org/10.5194/acp-14-7757-2014, https://doi.org/10.5194/acp-14-7757-2014, 2014
H. Zhang, X. Xu, W. Lin, and Y. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-12-31871-2012, https://doi.org/10.5194/acpd-12-31871-2012, 2012
Revised manuscript not accepted
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Automated compound speciation, cluster analysis, and quantification of organic vapours and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Atmospheric evolution of environmentally persistent free radicals in rural North China Plain: insights into water solubility and effects on PM2.5 oxidative potential
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
A Multi-site Passive Approach for Studying the Emissions and Evolution of Smoke from Prescribed Fires
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Primary and secondary emissions from a modern fleet of city buses
Dominant Influence of Biomass Combustion and Cross-Border Transport on Nitrogen-Containing Organic Compound Levels in the Southeastern Tibetan Plateau
Measurement report: Characteristics of aminiums in PM2.5 during winter clean and polluted episodes in China: aminium outbreak and its constraint
Impact assessment of terrestrial and marine air-mass on the constituents and intermixing of bioaerosols over coastal atmosphere
Assessing the influence of long-range transport of aerosols on the PM2.5 chemical composition and concentration in the Aburrá Valley
Bridging Gas and Aerosol Properties between Northeast U.S. and Bermuda: Analysis of Eight Transit Flights
Measurement report: Characteristics of nitrogen-containing organics in PM2.5 in Ürümqi, northwestern China – differential impacts of combustion of fresh and aged biomass materials
Measurement report: Bio-physicochemistry of tropical clouds at Maïdo (Réunion, Indian Ocean): overview of results from the BIO-MAÏDO campaign
Impacts of elevated anthropogenic emissions on physicochemical characteristics of BC-containing particles over the Tibetan Plateau
Chemical properties and single-particle mixing state of soot aerosol in Houston during the TRACER campaign
Measurement report: Evaluation of the TOF-ACSM-CV for PM1.0 and PM2.5 measurements during the RITA-2021 field campaign
Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset
Measurement report: Atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia
Morphological and optical properties of carbonaceous aerosol particles from ship emissions and biomass burning during a summer cruise measurement in the South China Sea
Tropical tropospheric aerosol sources and chemical composition observed at high altitude in the Bolivian Andes
Chemical composition, sources and formation mechanism of urban PM2.5 in Southwest China: a case study at the beginning of 2023
Chemical characterization of atmospheric aerosols at a high-altitude mountain site: a study of source apportionment
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1671, https://doi.org/10.5194/egusphere-2024-1671, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
EGUsphere, https://doi.org/10.5194/egusphere-2024-1622, https://doi.org/10.5194/egusphere-2024-1622, 2024
Short summary
Short summary
A study in rural North China Plain revealed Environmental persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs’ atmospheric evolution for climate and health impacts.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O’Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1485, https://doi.org/10.5194/egusphere-2024-1485, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires, however, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in two different years, we characterize the emissions and evolution up to 8 hours of PM2.5 mass, BC, and BrC in smoke from burning of forested lands in the southeastern US.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
EGUsphere, https://doi.org/10.5194/egusphere-2024-1262, https://doi.org/10.5194/egusphere-2024-1262, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterized: sulfate-rich plumes from use of heavy fuel oil with scrubbers and organic-rich plumes from use of low sulfur fuels. The latter were more frequent, emitting double the particle number, and having atypical V/Ni ratio for ship emission.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
EGUsphere, https://doi.org/10.5194/egusphere-2024-494, https://doi.org/10.5194/egusphere-2024-494, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1130, https://doi.org/10.5194/egusphere-2024-1130, 2024
Short summary
Short summary
This study explores nitrogen-containing organic compounds (NOCs) in PM2.5 particles on the Southeastern Tibetan Plateau. We discovered that biomass burning and transboundary transport are the primary sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they contribute to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-975, https://doi.org/10.5194/egusphere-2024-975, 2024
Short summary
Short summary
This study has explored the characteristics of aminiums, ammonium, and PM2.5 from the clean days to the polluted days according to the observational data from 11 different Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols, or the displacement of aminiums by ammonia under a high ammonia condition. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristic and formation in China.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
EGUsphere, https://doi.org/10.5194/egusphere-2024-841, https://doi.org/10.5194/egusphere-2024-841, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing processes of terrestrial and marine aerosols. Terrestrial air mass constituted a larger proportion during severe air pollution, harboring more animal and human pathogens. A relative shift towards marine air-mass with respect to pollution elimination, where saprophytic bacteria and fungi were predominant. Mixed air-mass reveals the intermixing processes of terrestrial and marine sources.
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
EGUsphere, https://doi.org/10.5194/egusphere-2024-695, https://doi.org/10.5194/egusphere-2024-695, 2024
Short summary
Short summary
For the Aburrá Valley, Colombia, local emissions dominate aerosol concentrations, which degrade air quality (AQ) and impact human health. However, this can be exacerbated by the influx of external emissions from sources such as regional fires, Saharan dust, and volcanic degassing. While substantially increasing city-wide aerosols, these external sources can also degrade the aerosol chemical composition (i.e. their toxicity) and impact AQ, which we investigate in this study.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-926, https://doi.org/10.5194/egusphere-2024-926, 2024
Short summary
Short summary
Using aircraft measurements over the northwest Atlantic between the U.S. East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high resolution measurements of concentrations as well as particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Yi-Jia Ma, Yu Xu, Ting Yang, Hong-Wei Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 24, 4331–4346, https://doi.org/10.5194/acp-24-4331-2024, https://doi.org/10.5194/acp-24-4331-2024, 2024
Short summary
Short summary
This study provides field-based evidence about the differential impacts of combustion of fresh and aged biomass materials on aerosol nitrogen-containing organic compounds (NOCs) in different seasons in Ürümqi, bridging the linkages between the observations and previous laboratory studies showing the formation mechanisms of NOCs.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-879, https://doi.org/10.5194/egusphere-2024-879, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black carbon -containing aerosol in TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Ryan N. Farley, James E. Lee, Laura-Hélèna Rivellini, Alex K. Y. Lee, Rachael Dal Porto, Christopher D. Cappa, Kyle Gorkowski, Abu Sayeed Md Shawon, Katherine B. Benedict, Allison C. Aiken, Manvendra K. Dubey, and Qi Zhang
Atmos. Chem. Phys., 24, 3953–3971, https://doi.org/10.5194/acp-24-3953-2024, https://doi.org/10.5194/acp-24-3953-2024, 2024
Short summary
Short summary
The black carbon aerosol composition and mixing state were characterized using a soot particle aerosol mass spectrometer. Single-particle measurements revealed the major role of atmospheric processing in modulating the black carbon mixing state. A significant fraction of soot particles were internally mixed with oxidized organic aerosol and sulfate, with implications for activation as cloud nuclei.
Xinya Liu, Bas Henzing, Arjan Hensen, Jan Mulder, Peng Yao, Danielle van Dinther, Jerry van Bronckhorst, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 3405–3420, https://doi.org/10.5194/acp-24-3405-2024, https://doi.org/10.5194/acp-24-3405-2024, 2024
Short summary
Short summary
We evaluated the time-of-flight aerosol chemical speciation monitor (TOF-ACSM) following the implementation of the PM2.5 aerodynamic lens and a capture vaporizer (CV). The results showed that it significantly improved the accuracy and precision of ACSM in the field observations. The paper elucidates the measurement outcomes of various instruments and provides an analysis of their biases. This comprehensive evaluation is expected to benefit the ACSM community and other aerosol field measurements.
Eva-Lou Edwards, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Claire E. Robinson, Michael A. Shook, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 3349–3378, https://doi.org/10.5194/acp-24-3349-2024, https://doi.org/10.5194/acp-24-3349-2024, 2024
Short summary
Short summary
We investigate Cl− depletion in sea salt particles over the northwest Atlantic from December 2021 to June 2022 using an airborne dataset. Losses of Cl− are greatest in May and least in December–February and March. Inorganic acidic species can account for all depletion observed for December–February, March, and June near Bermuda but none in May. Quantifying Cl− depletion as a percentage captures seasonal trends in depletion but fails to convey the effects it may have on atmospheric oxidation.
Yue Sun, Yujiao Zhu, Yanbin Qi, Lanxiadi Chen, Jiangshan Mu, Ye Shan, Yu Yang, Yanqiu Nie, Ping Liu, Can Cui, Ji Zhang, Mingxuan Liu, Lingli Zhang, Yufei Wang, Xinfeng Wang, Mingjin Tang, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 24, 3241–3256, https://doi.org/10.5194/acp-24-3241-2024, https://doi.org/10.5194/acp-24-3241-2024, 2024
Short summary
Short summary
Field observations were conducted at the summit of Changbai Mountain in northeast Asia. The cumulative number concentration of ice-nucleating particles (INPs) varied from 1.6 × 10−3 to 78.3 L−1 over the temperature range of −5.5 to −29.0 ℃. Biological INPs (bio-INPs) accounted for the majority of INPs, and the proportion exceeded 90% above −13.0 ℃. Planetary boundary layer height, valley breezes, and long-distance transport of air mass influence the abundance of bio-INPs.
Cuizhi Sun, Yongyun Zhang, Baoling Liang, Min Gao, Xi Sun, Fei Li, Xue Ni, Qibin Sun, Hengjia Ou, Dexian Chen, Shengzhen Zhou, and Jun Zhao
Atmos. Chem. Phys., 24, 3043–3063, https://doi.org/10.5194/acp-24-3043-2024, https://doi.org/10.5194/acp-24-3043-2024, 2024
Short summary
Short summary
In a May–June 2021 expedition in the South China Sea, we analyzed black and brown carbon in marine aerosols, key to light absorption and climate impact. Using advanced in situ and microscope techniques, we observed particle size, structure, and tar balls mixed with various elements. Results showed biomass burning and fossil fuels majorly influence light absorption, especially during significant burning events. This research aids the understanding of carbonaceous aerosols' role in marine climate.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Junke Zhang, Yunfei Su, Chunying Chen, Wenkai Guo, Qinwen Tan, Miao Feng, Danlin Song, Tao Jiang, Qiang Chen, Yuan Li, Wei Li, Yizhi Wang, Xiaojuan Huang, Lin Han, Wanqing Wu, and Gehui Wang
Atmos. Chem. Phys., 24, 2803–2820, https://doi.org/10.5194/acp-24-2803-2024, https://doi.org/10.5194/acp-24-2803-2024, 2024
Short summary
Short summary
Typical haze events in Chengdu at the beginning of 2023 were investigated with bulk-chemical and single-particle analyses along with numerical model simulations. By integrating the obtained chemical composition, source, mixing state and numerical simulation results, we infer that Haze-1 was mainly caused by pollutants related to fossil fuel combustion, especially local mobile sources, while Haze-2 was triggered by the secondary pollutants, which mainly came from regional transmission.
Elena Barbaro, Matteo Feltracco, Fabrizio De Blasi, Clara Turetta, Marta Radaelli, Warren Cairns, Giulio Cozzi, Giovanna Mazzi, Marco Casula, Jacopo Gabrieli, Carlo Barbante, and Andrea Gambaro
Atmos. Chem. Phys., 24, 2821–2835, https://doi.org/10.5194/acp-24-2821-2024, https://doi.org/10.5194/acp-24-2821-2024, 2024
Short summary
Short summary
The study analyzed a year of atmospheric aerosol composition at Col Margherita in the Italian Alps. Over 100 chemical markers were identified, including major ions, organic compounds, and trace elements. It revealed sources of aerosol, highlighted impacts of Saharan dust events, and showed anthropogenic pollution's influence despite the site's remoteness. Enrichment factors emphasized non-natural sources of trace elements. Source apportionment identified four key factors affecting the area.
Cited articles
Atherton, C. S. and Penner, J. E.: The transformation of nitrogen oxides in the polluted troposphere, Tellus B, 40, 380, https://doi.org/10.3402/tellusb.v40i5.16003, 1988.
Aumont, B., Valorso, R., Mouchel-Vallon, C., Camredon, M., Lee-Taylor, J., and Madronich, S.: Modeling SOA formation from the oxidation of intermediate volatility n-alkanes, Atmos. Chem. Phys., 12, 7577–7589, https://doi.org/10.5194/acp-12-7577-2012, 2012.
Bai, J. H., de Leeuw, G., De Smedt, I., Theys, N., Van Roozendael, M., Sogacheva, L., and Chai, W.: Variations and photochemical transformations of atmospheric constituents in North China, Atmos. Environ., 189, 213–226, https://doi.org/10.1016/j.atmosenv.2018.07.004, 2018.
Barnes, I,, Becker, K. H., and Zhu, T.: Near UV absorption spectra and photolysis products of difunctional organic nitrates: Possible importance as NOx reservoirs, J. Atmos. Chem., 17, 353–373, https://doi.org/10.1007/BF00696854, 1993.
Barnes, I., Bastian, V., Becker, K. H., and Zhu, T.: Kinetics and products of the reactions of nitrate radical with monoalkenes, dialkenes, and monoterpenes, J. Phys. Chem. C, 94, 2413–2419, https://doi.org/10.1021/j100369a041, 1990.
Berkemeier, T., Ammann, M., Mentel, T. F., Pöschl, U., and Shiraiwa, M.: Organic nitrate contribution to new particle formation and growth in secondary organic aerosols from α-pinene ozonolysis, Environ. Sci. Technol., 50, 6334–6342, https://doi.org/10.1021/acs.est.6b00961, 2016.
Browne, E. C. and Cohen, R. C.: Effects of biogenic nitrate chemistry on the NOx lifetime in remote continental regions, Atmos. Chem. Phys., 12, 11917–11932, https://doi.org/10.5194/acp-12-11917-2012, 2012.
Calvert, J. G. and Madronich, S.: Theoretical study of the initial products of the atmospheric oxidation of hydrocarbons, J. Geophys. Res.-Atmos., 92, 2211–2220, https://doi.org/10.1029/JD092iD02p02211, 1987.
Capouet, M. and Müller, J.-F.: A group contribution method for estimating the vapour pressures of α-pinene oxidation products, Atmos. Chem. Phys., 6, 1455–1467, https://doi.org/10.5194/acp-6-1455-2006, 2006.
Chen, X. H., Hulbert, D., and Shepson, P. B.: Measurement of the organic nitrate yield from OH reaction with isoprene, J. Geophys. Res.-Atmos., 103, 25563–25568, https://doi.org/10.1029/98JD01483, 1998.
Cui, M., Chen, Y. J., Li, C., Yin, J., Li, J., and Zheng, J.: Parent and methyl polycyclic aromatic hydrocarbons and n-alkanes emitted by construction machinery in China, Sci. Total Environ., 775, 144759, https://doi.org/10.1016/j.scitotenv.2020.144759, 2021.
Duan, J. C., Tan, J. H., Hao, J. M., and Chai, F. H.: Size distribution, characteristics and sources of heavy metals in haze episod in Beijing, J. Environ. Sci., 26, 189–196, https://doi.org/10.1016/S1001-0742(13)60397-6, 2014.
Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Atmospheric Chemistry Special Feature: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. P. Natl. Acad. Sci. USA, 107, 6670–6675, https://doi.org/10.1073/pnas.0912340107, 2010.
Fry, J. L., Kiendler-Scharr, A., Rollins, A. W., Wooldridge, P. J., Brown, S. S., Fuchs, H., Dubé, W., Mensah, A., dal Maso, M., Tillmann, R., Dorn, H.-P., Brauers, T., and Cohen, R. C.: Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model, Atmos. Chem. Phys., 9, 1431–1449, https://doi.org/10.5194/acp-9-1431-2009, 2009.
Fry, J. L., Draper, D. C., Zarzana, K. J., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Brown, S. S., Cohen, R. C., Kaser, L., Hansel, A., Cappellin, L., Karl, T., Hodzic Roux, A., Turnipseed, A., Cantrell, C., Lefer, B. L., and Grossberg, N.: Observations of gas- and aerosol-phase organic nitrates at BEACHON-RoMBAS 2011, Atmos. Chem. Phys., 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, 2013.
Garnes, L. A. and Allen, D. T.: Size Distributions of Organonitrates in Ambient Aerosol Collected in Houston, Texas. Aerosol Sci. Tech., 36, 983–992, https://doi.org/10.1080/02786820290092186, 2002.
Gen, M. S., Liang, Z. C, Zhang, R.F., Mabato, B. R. G., and Chan, C. K.: Particulate nitrate photolysis in the atmosphere, Environ. Sci. Atmos., 2, 111–127, https://doi.org/10.1039/D1EA00087J, 2022.
Gonzalez, R. O., Strekopytov, S., Amato, F., Querol, X., Reche, C., and Weiss, D.: New insights from zinc and copper isotopic compositions into the sources of atmospheric particulate matter from two major European cities, Environ. Sci. Technol., 50, 9816–9824, https://doi.org/10.1021/acs.est.6b00863, 2016.
Goodman, A. L., Miller, T. M., and Grassian, V. H.: Heterogeneous reactions of NO2 on NaCl and Al2 O3 particles, J. Vac. Sci. Technol. A, 16, 2585–2590, https://doi.org/10.1116/1.581386, 1998.
Gu, F. T., Hu, M., Zheng, J., and Guo, S.: Research Progress on Particulate Organonitrates, Prog. Chem., 29, 962–969, https://doi.org/10.7536/PC170324, 2017 (in Chinese).
Han, D., Fu, Q., Gao, S., Li, L., Ma, Y., Qiao, L., Xu, H., Liang, S., Cheng, P., Chen, X., Zhou, Y., Yu, J. Z., and Cheng, J.: Non-polar organic compounds in autumn and winter aerosols in a typical city of eastern China: size distribution and impact of gas–particle partitioning on PM2.5 source apportionment, Atmos. Chem. Phys., 18, 9375–9391, https://doi.org/10.5194/acp-18-9375-2018, 2018.
Jordan, C. E., Ziemann, P. J., Griffin, R. J., Lim, Y. B., Atkinson, R., Arey, J.: Modeling SOA formation from OH reactions with C8–C17 n-alkanes, Atmos. Environ., 42, 8015–8026, https://doi.org/10.1016/j.atmosenv.2008.06.017, 2008.
Kang, M. J., Fu, P. Q., Aggarwal, S. G., Kumar, S., Zhao, Y., Sun, Y. L., and Wang, Z. F.: Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India, Environ. Pollut., 219, 957–966, https://doi.org/10.1016/j.envpol.2016.09.077, 2016.
Kang, M. J., Ren, L., Ren, H., Zhao, Y., Kawamura, K., Zhang, H., Wei, L., Sun, Y., Wang, Z., and Fu, P.: Primary biogenic and anthropogenic sources of organic aerosols in Beijing, China: Insights from saccharides and n-alkanes, Environ. Pollut., 243, 1579–1587, https://doi.org/10.1016/j.envpol.2018.09.118, 2018.
Kenagy, H. S., Romer Present, P. S., Wooldridge, P. J., Nault, B. A., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Zare, A., Pye, H. O., and Yu, J.: Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55, 16326–16338, https://doi.org/10.1021/acs.est.1c05521, 2021.
Li, G. B., Cai, S. H., and Long, B.: New reactions for the formation of organic nitrate in the atmosphere, ACS omega, 7, 39671–39679, https://doi.org/10.1021/acsomega.2c03321, 2022.
Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmos. Chem. Phys., 18, 5293–5306, https://doi.org/10.5194/acp-18-5293-2018, 2018.
Li, Q., Wang, E. R., Zhang, T. T., and Hu, H.: Spatial and temporal patterns of air pollution in Chinese cities, Water Air Soil Pollut., 228, 1–22, https://doi.org/10.1007/s11270-017-3268-x, 2017.
Li, Q. Q., Su, G. J., Li, C. Q., Liu, P. F., Zhao, X. X., Zhang, C. L., Sun, X., Mu, Y. J., Wu, M. G., and Wang, Q. L.: An investigation into the role of VOCs in SOA and ozone production in Beijing, China, Sci. Total Environ., 720, 137536, https://doi.org/10.1016/j.scitotenv.2020.137536, 2020.
Lim, Y. B. and Ziemann, P. J.: Products and Mechanism of Secondary Organic Aerosol Formation from Reactions of n-Alkanes with OH Radicals in the Presence of NOx Environ. Sci. Technol., 39, 9229–9236, https://doi.org/10.1021/es051447g, 2005.
Lim, Y. B. and Ziemann, P. J.: Chemistry of Secondary Organic Aerosol Formation from OH Radical-Initiated Reactions of Linear, Branched, and Cyclic Alkanes in the Presence of NOx, Aerosol Sci. Technol., 43, 604–619, https://doi.org/10.1080/02786820902802567, 2009.
Ling, Z., Guo, H., Simpson, I. J., Saunders, S. M., Lam, S. H. M., Lyu, X., and Blake, D. R.: New insight into the spatiotemporal variability and source apportionments of C1–C4 alkyl nitrates in Hong Kong, Atmos. Chem. Phys., 16, 8141–8156, https://doi.org/10.5194/acp-16-8141-2016, 2016.
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L., Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.: Enhanced nitrogen deposition over China, Nature, 494, 458–463, https://doi.org/10.1038/nature11917, 2013.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 2: The effects of emission changes and implications for multi-pollutant control, Atmos. Chem. Phys., 20, 6323–6337, https://doi.org/10.5194/acp-20-6323-2020, 2020.
Luxenhofer, O., Schneider, E., and Ballschmiter, K.: Separation, detection and occurrence of (C2–C8)-alkyl- and phenyl-alkyl nitrates as trace compounds in clean and polluted air, Fresenius J. Anal. Chem., 350, 384–394, https://doi.org/10.1007/BF00325611, 1994.
Luxenhofer, O., Schneider, M., Dambach, M. and Ballschmiter, K.: Semivolatile long chain C6–C17 alkyl nitrates as trace compounds in air, Chemosphere, 33, 393–404, https://doi.org/10.1016/0045-6535(96)00205-6, 1996.
Lyu, R. H., Shi, Z. B., Alam, M. S., Wu, X. F., Liu, D., Vu, T. V, Stark, C., Xu, R. X., Fu, P. Q., Feng, Y. C., and Harrison, R. M: Alkanes and aliphatic carbonyl compounds in wintertime PM2.5 in Beijing, China, Atmos. Environ., 202, 244–255, https://doi.org/10.1016/j.atmosenv.2019.01.023, 2019.
Lyu, Y., Xu, T. T., Yang, X., Chen, J. M., Cheng, T. T., and Li, X.: Seasonal contributions to size-resolved n-alkanes (C8–C40) in the Shanghai atmosphere from regional anthropogenic activities and terrestrial plant waxes, Sci. Total Environ., 579, 1918–1928, https://doi.org/10.1016/j.scitotenv.2016.11.201, 2016.
Ma, J. Z., Xu, X. B., Zhao, C. S., and Yan, P.: A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions, Adv. Atmos. Sci., 29, 1006–1026, https://doi.org/10.1007/s00376-012-1188-7, 2012.
Matsunaga, A., Ziemann, P. J.: Yields of beta-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NOx, J. Phys. Chem. A, 113, 599–606, https://doi.org/10.1021/jp807764d, 2009.
Mijling, B., van der A, R. J., and Zhang, Q.: Regional nitrogen oxides emission trends in East Asia observed from space, Atmos. Chem. Phys., 13, 12003–12012, https://doi.org/10.5194/acp-13-12003-2013, 2013.
Ng, N. L., Brown, S. S., Archibald, A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H., Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L., Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D., Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H., Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol, Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017.
Perring, A. E., Wisthaler, A., Graus, M., Wooldridge, P. J., Lockwood, A. L., Mielke, L. H., Shepson, P. B., Hansel, A., and Cohen, R. C.: A product study of the isoprene + NO3 reaction, Atmos. Chem. Phys., 9, 4945–4956, https://doi.org/10.5194/acp-9-4945-2009, 2009.
Perring, A. E., Bertram, T. H., Farmer, D. K., Wooldridge, P. J., Dibb, J., Blake, N. J., Blake, D. R., Singh, H. B., Fuelberg, H., Diskin, G., Sachse, G., and Cohen, R. C.: The production and persistence of ΣRONO2 in the Mexico City plume, Atmos. Chem. Phys., 10, 7215–7229, https://doi.org/10.5194/acp-10-7215-2010, 2010.
Perring, A. E., Pusede, S. E., and Cohen, R. C.: An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol, Chem. Rev., 113, 5848–5870, https://doi.org/10.1021/cr300520x, 2013.
Richter, A., Burrows, J. P., Nub, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
Rindelaub, J. D., Mcavey, K. M., and Shepson, P. B.: The photochemical production of organic nitrates from α-pinene and loss via acid-dependent particle phase hydrolysis, Atmos. Environ., 100, 193–201, https://doi.org/10.1016/j.atmosenv.2014.11.010, 2015.
Roberts, J. M.: The atmospheric chemistry of organic nitrates. Atmos. Environ., 24, 243–287, https://doi.org/10.1016/0960-1686(90)90108-Y, 1990.
Rollins, A. W., Kiendler-Scharr, A., Fry, J. L., Brauers, T., Brown, S. S., Dorn, H.-P., Dubé, W. P., Fuchs, H., Mensah, A., Mentel, T. F., Rohrer, F., Tillmann, R., Wegener, R., Wooldridge, P. J., and Cohen, R. C.: Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields, Atmos. Chem. Phys., 9, 6685–6703, https://doi.org/10.5194/acp-9-6685-2009, 2009.
Rollins, A. W., Browne, E. C., Min, K. E., Pusede, S. E., Wooldridge, P. J., Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M.: Evidence for NOx Control over Nighttime SOA Formation, Science, 337, 1210–1212, https://doi.org/10.1126/science.1221520, 2012.
Rollins, A. W., Pusede, S., Wooldridge, P., Min, K.-E., Gentner, D. R., Goldstein, A. H., Liu, S., Day, D. A., Russell, L. M., and Rubitschun, C. L.: Gas/particle partitioning of total alkyl nitrates observed with TD-LIF in Bakersfield, J. Geophys. Res.-Atmos., 118, 6651–6662, https://doi.org/10.1002/jgrd.50522, 2013.
Shen, H. R., Zhao, D. F., Pullinen, L., Kang, S., Vereecken, L., Fuchs, L., Acir, I. H., Tillmann, R., Rohrer, f., Wildt, J.: Highly Oxygenated Organic Nitrates Formed from NO3 Radical-Initiated Oxidation of β-Pinene, Environ. Sci. Technol., 55, 15658–15671, https://doi.org/10.1021/acs.est.1c03978, 2021.
Shepson, P. B.: Organic nitrates, Volatile Org. Compd. Atmos., 269–291, https://doi.org/10.1002/9780470988657.ch7, 2007.
Simpson, I. J., Wang, T., Guo, H., Kwok, Y. H., Flocke, F., Atlas, E., Meinardi, S., Rowland, F. S., and Blake, D. R.: Long-term atmospheric measurements of C1–C5 alkyl nitrates in the Pearl River Delta region of southeast China, Atmos. Environ., 40, 1619–1632, https://doi.org/10.1016/j.atmosenv.2005.10.062, 2006.
Spittler, M., Barnes, I., Bejan, I., Brockmann, K. J., Benter, T., and Wirtz, K.: Reactions of NO3 radicals with limonene and α-pinene: Product and SOA formation, Atmos. Environ., 40, 116–127, https://doi.org/10.1016/j.atmosenv.2005.09.093, 2006.
Su, J., Zhao, P., and Dong, Q.: Chemical compositions and liquid water content of size-resolved aerosol in Beijing, Aerosol Air Qual. Res., 18, 680–692, https://doi.org/10.4209/aaqr.2017.03.0122, 2018.
Sun, J., Li, Z., Xue, L., Wang, T., Wang, X., Gao, J., Nie, W., Simpson, I. J., Gao, R., and Blake, D. R.: Summertime C1–C5 alkyl nitrates over Beijing, northern China: Spatial distribution, regional transport, and formation mechanisms, Atmos. Res., 204, 102–109, https://doi.org/10.1016/j.atmosres.2018.01.014, 2018.
Sun, Y. L., Zhang, Q., Schwab, J. J., Yang, T., Ng, N. L., and Demerjian, K. L.: Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements, Atmos. Chem. Phys., 12, 8537–8551, https://doi.org/10.5194/acp-12-8537-2012, 2012.
Vasquez, K. T., Crounse, J. D., Schulze, B. C., Bates, K. H., Wennberg, P. O.: Rapid hydrolysis of tertiary isoprene nitrate efficiently removes NOx from the atmosphere, P. Natl. Acad. Sci. USA, 117, 33011–33016, https://doi.org/10.1073/pnas.2017442117, 2020.
Wagner, P. and Schäfer, K.: Influence of mixing layer height on air pollutant concentrations in an urban street canyon, Urban Clim., 22, 64–79, https://doi.org/10.1016/j.uclim.2015.11.001, 2017.
Wang, M., Shao, M., Chen, W., Lu, S., Wang, C., Huang, D., Yuan, B., Zeng, L., and Zhao, Y.: Measurements of C1–C4 alkyl nitrates and their relationships with carbonyl compounds and O3 in Chinese cities, Atmos. Environ., 81, 389-398, https://doi.org/10.1016/j.atmosenv.2013.08.065, 2013.
Wang, S., Feng, X., Zeng, X., Ma, Y., and Shang, K.: A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China, Atmos. Environ., 43, 2823–2828, https://doi.org/10.1016/j.atmosenv.2009.02.021, 2009.
Wei, W., L,i Y., Wang, Y., Cheng, S., and Wang, L.: Characteristics of VOCs during haze and non-haze days in Beijing, China: Concentration, chemical degradation and regional transport impact, Atmos. Environ., 194, 134–145, https://doi.org/10.1016/j.atmosenv.2018.09.037, 2018.
Wick, C. D, Siepmann, J., Klotz, W. L, and Schure, M. R.: Temperature effects on the retention of n-alkanes and arenes in helium-squalane gas-liquid chromatography: experiment and molecular simulation, J. Chromatogr. A, 957, 181–190, https://doi.org/10.1016/S0021-9673(02)00171-1, 2002.
Wisthaler, A., Apel, E. C., Bossmeyer, J., Hansel, A., Junkermann, W., Koppmann, R., Meier, R., Müller, K., Solomon, S. J., Steinbrecher, R., Tillmann, R., and Brauers, T.: Technical Note: Intercomparison of formaldehyde measurements at the atmosphere simulation chamber SAPHIR, Atmos. Chem. Phys., 8, 2189–2200, https://doi.org/10.5194/acp-8-2189-2008, 2008.
Wu, R., Vereecken, L., Tsiligiannis, E., Kang, S., Albrecht, S. R., Hantschke, L., Zhao, D., Novelli, A., Fuchs, H., Tillmann, R., Hohaus, T., Carlsson, P. T. M., Shenolikar, J., Bernard, F., Crowley, J. N., Fry, J. L., Brownwood, B., Thornton, J. A., Brown, S. S., Kiendler-Scharr, A., Wahner, A., Hallquist, M., and Mentel, T. F.: Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical, Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, 2021.
Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates, Atmos. Chem. Phys., 15, 7307–7336, https://doi.org/10.5194/acp-15-7307-2015, 2015.
Yang, X. H., Luo, F. X., Li, J. Q., Chen, D. Y., E, Y., Lin, W. L., and Jun, J.: Alkyl and aromatic nitrates in atmospheric particles determined by gas chromatography tandem mass spectrometry, J. Am. Soc. Mass. Spectrom., 30, 2762–2770, https://doi.org/10.1007/s13361-019-02347-8, 2019.
Yang, J., Lei, G., Liu, C., Wu, Y., Hu, K., Zhu, J., Bao, J., Lin, W., and Jin, J.: Characteristics of particulate-bound n-alkanes indicating sources of PM2.5 in Beijing, China, Atmos. Chem. Phys., 23, 3015–3029, https://doi.org/10.5194/acp-23-3015-2023, 2023.
Yee, L. D., Craven, J. S., Loza, C. L., Schilling, K. A., Ng, N. L., Canagaratna, M. R., Ziemann, P. J., Flagan, R. C., and Seinfeld, J. H.: Secondary Organic Aerosol Formation from Low-NOx Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition, J. Phys. Chem. A, 116, 6211–6230, https://doi.org/10.1021/jp211531h, 2012.
Yeh, G. K. and Ziemann, P. J.: Identification and yields of 1,4-hydroxynitrates formed from the reactions of C8–C16 n-alkanes with OH radicals in the presence of NOx, J. Phys. Chem. A, 118, 8797–8806, https://doi.org/10.1021/jp505870d, 2014.
Yu, K., Zhu, Q., Du, K., and Huang, X.-F.: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China, Atmos. Chem. Phys., 19, 5235–5249, https://doi.org/10.5194/acp-19-5235-2019, 2019.
Zhai, T., Lu, K., Wang, H., Lou, S., Chen, X., Hu, R., and Zhang, Y.: Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019, Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, 2023.
Zhen, S. S., Luo, M., Shao, Y., Xu, D. D., and Ma, L. L.: Application of Stable Isotope Techniques in Tracing the Sources of Atmospheric NOX and Nitrate, Processes, 10, 2549, https://doi.org/10.3390/pr10122549, 2022.
Zhu, T., Shang, J., and Zhao, D. F.: The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze, Sci. China Chem., 40, 1731–1740, https://doi.org/10.1360/zb2010-40-12-1731, 2010.
Short summary
The atmospheric pollution and formation mechanisms of particulate-bound alkyl nitrate in Beijing were studied. C9–C16 long-chain n-alkyl nitrates negatively correlated with O3 but positively correlated with PM2.5 and NO2, so they may not be produced during gas-phase homogeneous reactions in the photochemical process but form through reactions between alkanes and nitrates on PM surfaces. Particulate-bound n-alkyl nitrates strongly affect both haze pollution and atmospheric visibility.
The atmospheric pollution and formation mechanisms of particulate-bound alkyl nitrate in Beijing...
Altmetrics
Final-revised paper
Preprint