Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10707-2024
https://doi.org/10.5194/acp-24-10707-2024
Research article
 | 
25 Sep 2024
Research article |  | 25 Sep 2024

Increasing aerosol direct effect despite declining global emissions in MPI-ESM1.2

Antoine Hermant, Linnea Huusko, and Thorsten Mauritsen

Related authors

Can we reliably reconstruct the mid-Pliocene Warm Period with sparse data and uncertain models?
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, Erin McClymont, and Sze Ling Ho
Clim. Past, 20, 1989–1999, https://doi.org/10.5194/cp-20-1989-2024,https://doi.org/10.5194/cp-20-1989-2024, 2024
Short summary
Observation-inferred resilience loss of the Amazon rainforest possibly due to internal climate variability
Raphael Grodofzig, Martin Renoult, and Thorsten Mauritsen
Earth Syst. Dynam., 15, 913–927, https://doi.org/10.5194/esd-15-913-2024,https://doi.org/10.5194/esd-15-913-2024, 2024
Short summary
Constraining net long term climate feedback from satellite observed internal variability possible by mid 2030s
Alejandro Uribe, Frida Bender, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1559,https://doi.org/10.5194/egusphere-2024-1559, 2024
Short summary
Sampling the diurnal and annual cycles of the Earth’s energy imbalance with constellations of satellite-borne radiometers
Thomas Hocking, Thorsten Mauritsen, and Linda Megner
EGUsphere, https://doi.org/10.5194/egusphere-2024-356,https://doi.org/10.5194/egusphere-2024-356, 2024
Short summary
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-618,https://doi.org/10.5194/egusphere-2024-618, 2024
Short summary

Related subject area

Subject: Climate and Earth System | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Unraveling the discrepancies between Eulerian and Lagrangian moisture tracking models in monsoon- and westerly-dominated basins of the Tibetan Plateau
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
Atmos. Chem. Phys., 24, 10741–10758, https://doi.org/10.5194/acp-24-10741-2024,https://doi.org/10.5194/acp-24-10741-2024, 2024
Short summary
Multi-scale variability of southeastern Australian wind resources
Claire L. Vincent and Andrew J. Dowdy
Atmos. Chem. Phys., 24, 10209–10223, https://doi.org/10.5194/acp-24-10209-2024,https://doi.org/10.5194/acp-24-10209-2024, 2024
Short summary
Parameterizations for global thundercloud corona discharge distributions
Sergio Soler, Francisco J. Gordillo-Vázquez, Francisco J. Pérez-Invernón, Patrick Jöckel, Torsten Neubert, Olivier Chanrion, Victor Reglero, and Nikolai Østgaard
Atmos. Chem. Phys., 24, 10225–10243, https://doi.org/10.5194/acp-24-10225-2024,https://doi.org/10.5194/acp-24-10225-2024, 2024
Short summary
The importance of an informed choice of CO2-equivalence metrics for contrail avoidance
Audran Borella, Olivier Boucher, Keith P. Shine, Marc Stettler, Katsumasa Tanaka, Roger Teoh, and Nicolas Bellouin
Atmos. Chem. Phys., 24, 9401–9417, https://doi.org/10.5194/acp-24-9401-2024,https://doi.org/10.5194/acp-24-9401-2024, 2024
Short summary
Relative humidity over ice as a key variable for Northern Hemisphere midlatitude tropopause inversion layers
Daniel Köhler, Philipp Reutter, and Peter Spichtinger
Atmos. Chem. Phys., 24, 10055–10072, https://doi.org/10.5194/acp-24-10055-2024,https://doi.org/10.5194/acp-24-10055-2024, 2024
Short summary

Cited articles

Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D. T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S. E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding Global Aerosol Radiative Forcing of Climate Change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660, 2020. a, b
Block, K. and Mauritsen, T.: Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2, J. Adv. Model. Earth Sy., 5, 676–691, https://doi.org/10.1002/jame.20041, 2013. a
Booth, B. B. B., Harris, G. R., Jones, A., Wilcox, L., Hawcroft, M., and Carslaw, K. S.: Comments on “Rethinking the Lower Bound on Aerosol Radiative Forcing”, J. Climate, 31, 9407–9412, https://doi.org/10.1175/JCLI-D-17-0369.1, 2018. a
Colman, R. A. and McAvaney, B. J.: A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiments, J. Geophys. Res.-Atmos., 102, 19383–19402, https://doi.org/10.1029/97jd00206, 1997. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Download
Short summary
Aerosol particles, from natural and human sources, have a cooling effect on the climate, partially offsetting global warming. They do this through direct (sunlight reflection) and indirect (cloud property alteration) mechanisms. Using a global climate model, we found that, despite declining emissions, the direct effect of human aerosols has increased while the indirect effect has decreased, which is attributed to the shift in emissions from North America and Europe to Southeast Asia.
Altmetrics
Final-revised paper
Preprint