Articles | Volume 23, issue 14
https://doi.org/10.5194/acp-23-8187-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-8187-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Shikuan Jin
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Yingying Ma
CORRESPONDING AUTHOR
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Collaborative Innovation Center for Geospatial Technology, Wuhan
430079, China
Zhongwei Huang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Jianping Huang
Key Laboratory for Semi-Arid Climate Change of the Ministry of
Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou
730000, China
Wei Gong
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Collaborative Innovation Center for Geospatial Technology, Wuhan
430079, China
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Boming Liu
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Weiyan Wang
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Ruonan Fan
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Hui Li
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Related authors
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021, https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Short summary
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter of less than 2.5 μm (PM2.5). However, the traditional linear model cannot consider the influence of multiple meteorological variables sufficiently, which then causes low inversion accuracy. In this study, the machine learning algorithms which can input multiple features are used to solve this constraint.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Wanqin Zhong, Xin Ma, Yingxu Wu, Chenglong Li, Tianqi Shi, Wei Gong, and Di Qi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-473, https://doi.org/10.5194/essd-2025-473, 2025
Preprint under review for ESSD
Short summary
Short summary
This work addresses a critical observational gap in the Southern Ocean—one of the most important regions for carbon uptake—by integrating comprehensive Argo float observations with historical ship-based measurements. Our findings demonstrate the feasibility of using machine learning models to integrate observations, and support in-depth analyses of carbon transport and storage mechanisms. This can foster broader utilization of Argo floats data in ocean carbon research.
Hongxiang Yu, Michael Lehning, Guang Li, Benjamin Walter, Jianping Huang, and Ning Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2458, https://doi.org/10.5194/egusphere-2024-2458, 2024
Short summary
Short summary
Cornices are overhanging snow accumulations that form on mountain crests. Previous studies focused on how cornices collapse, little is known about why they form in the first place, specifically how snow particles adhere together to form the front end of the cornice. This study looked at the movement of snow particles around a developing cornice to understand how they gather, the speed and angle at which the snow particles hit the cornice surface, and how this affects the shape of the cornice.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Guangyao Dai, Songhua Wu, Wenrui Long, Jiqiao Liu, Yuan Xie, Kangwen Sun, Fanqian Meng, Xiaoquan Song, Zhongwei Huang, and Weibiao Chen
Atmos. Meas. Tech., 17, 1879–1890, https://doi.org/10.5194/amt-17-1879-2024, https://doi.org/10.5194/amt-17-1879-2024, 2024
Short summary
Short summary
An overview is given of the main algorithms applied to derive the aerosol and cloud optical property product of the Aerosol and Carbon Detection Lidar (ACDL), which is capable of globally profiling aerosol and cloud optical properties with high accuracy. The paper demonstrates the observational capabilities of ACDL for aerosol and cloud vertical structure and global distribution through two optical property product measurement cases and global aerosol optical depth profile observations.
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech., 17, 1403–1417, https://doi.org/10.5194/amt-17-1403-2024, https://doi.org/10.5194/amt-17-1403-2024, 2024
Short summary
Short summary
The achieved results revealed that the ACDL observations were in good agreement with the ground-based lidar measurements during dust events. The heights of cloud top and bottom from these two measurements were well matched and comparable. This study proves that the ACDL provides reliable observations of aerosol and cloud in the presence of various climatic conditions, which helps to further evaluate the impacts of aerosol on climate and the environment, as well as on the ecosystem in the future.
Honglin Pan, Jianping Huang, Jiming Li, Zhongwei Huang, Minzhong Wang, Ali Mamtimin, Wen Huo, Fan Yang, Tian Zhou, and Kanike Raghavendra Kumar
Earth Syst. Sci. Data, 16, 1185–1207, https://doi.org/10.5194/essd-16-1185-2024, https://doi.org/10.5194/essd-16-1185-2024, 2024
Short summary
Short summary
We applied several correction procedures and rigorously checked for data quality constraints during the long observation period spanning almost 14 years (2007–2020). Nevertheless, some uncertainties remain, mainly due to technical constraints and limited documentation of the measurements. Even though not completely accurate, this strategy is expected to at least reduce the inaccuracy of the computed characteristic value of aerosol optical parameters.
Yinbao Jin, Yiming Liu, Xiao Lu, Xiaoyang Chen, Ao Shen, Haofan Wang, Yinping Cui, Yifei Xu, Siting Li, Jian Liu, Ming Zhang, Yingying Ma, and Qi Fan
Atmos. Chem. Phys., 24, 367–395, https://doi.org/10.5194/acp-24-367-2024, https://doi.org/10.5194/acp-24-367-2024, 2024
Short summary
Short summary
This study aims to address these issues by evaluating eight independent biomass burning (BB) emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) using the WRF-Chem model and analyzing their impact on aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in peninsular Southeast Asia (PSEA) that occurred in March 2019.
Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong
Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, https://doi.org/10.5194/acp-23-3181-2023, 2023
Short summary
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Yuxin Zhao, Jiming Li, Lijie Zhang, Cong Deng, Yarong Li, Bida Jian, and Jianping Huang
Atmos. Chem. Phys., 23, 743–769, https://doi.org/10.5194/acp-23-743-2023, https://doi.org/10.5194/acp-23-743-2023, 2023
Short summary
Short summary
Diurnal variations of clouds play an important role in the radiative budget and precipitation. Based on satellite observations, reanalysis, and CMIP6 outputs, the diurnal variations in total cloud cover and cloud vertical distribution over the Tibetan Plateau are explored. The diurnal cycle of cirrus is a key focus and found to have different characteristics from those found in the tropics. The relationship between the diurnal cycle of cirrus and meteorological factors is also discussed.
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022, https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Short summary
CH4 works as the second-most important greenhouse gas, its reported emission inventories being far less than CO2. In this study, we developed a self-adjusted model to estimate the CH4 emission rate from strong point sources by the UAV-based AirCore system. This model would reduce the uncertainty in CH4 emission rate quantification accrued by errors in measurements of wind and concentration. Actual measurements on Pniówek coal demonstrate the high accuracy and stability of our developed model.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Haowei Zhang, Boming Liu, Xin Ma, Ge Han, Qinglin Yang, Yichi Zhang, Tianqi Shi, Jianye Yuan, Wanqi Zhong, Yanran Peng, Jingjing Xu, and Wei Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-215, https://doi.org/10.5194/essd-2022-215, 2022
Preprint withdrawn
Short summary
Short summary
Obtaining highly accurate and high-resolution spatiotemporal maps of carbon dioxide concentration distributions is crucial for promoting the study of the carbon cycle, and carbon emissions assessed by top-down theory. The official discrete satellite data provided by Gosat-2, OCO-2, and OCO-3 have data voids and relatively low efficiency. Here, we present carbon dioxide cover dataset, an innovative methodology to obtain XCO2 maps of high spatiotemporal resolution by using satellite data.
X. Xia, Z. Zhu, T. Zhang, G. Wei, and Y. Ji
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 545–550, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-545-2022, 2022
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26, https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary
Short summary
Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is the comparison of wind speed on a large scale between the Aeolus, ERA5 and RS , shedding important light on the data application of Aeolus wind products.
Yingying Ma, Yang Zhu, Boming Liu, Hui Li, Shikuan Jin, Yiqun Zhang, Ruonan Fan, and Wei Gong
Atmos. Chem. Phys., 21, 17003–17016, https://doi.org/10.5194/acp-21-17003-2021, https://doi.org/10.5194/acp-21-17003-2021, 2021
Short summary
Short summary
The vertical distribution of the aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter of less than 2.5 μm (PM2.5). However, the traditional linear model cannot consider the influence of multiple meteorological variables sufficiently, which then causes low inversion accuracy. In this study, the machine learning algorithms which can input multiple features are used to solve this constraint.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Hui Li, Boming Liu, Xin Ma, Shikuan Jin, Yingying Ma, Yuefeng Zhao, and Wei Gong
Atmos. Meas. Tech., 14, 5977–5986, https://doi.org/10.5194/amt-14-5977-2021, https://doi.org/10.5194/amt-14-5977-2021, 2021
Short summary
Short summary
Radiosonde (RS) is widely used to detect the vertical structures of the planetary boundary layer (PBL), and numerous methods have been proposed for retrieving PBL height (PBLH) from RS data. However, an algorithm that is suitable under all atmospheric conditions does not exist. This study evaluates the performance of four common PBLH algorithms under different thermodynamic stability conditions based on RS data.
Xin Lu, Feiyue Mao, Daniel Rosenfeld, Yannian Zhu, Zengxin Pan, and Wei Gong
Atmos. Chem. Phys., 21, 11979–12003, https://doi.org/10.5194/acp-21-11979-2021, https://doi.org/10.5194/acp-21-11979-2021, 2021
Short summary
Short summary
In this paper, a novel method for retrieving cloud base height and geometric thickness is developed and applied to produce a global climatology of boundary layer clouds with a high accuracy. The retrieval is based on the 333 m resolution low-level cloud distribution as obtained from the CALIPSO lidar data. The main part of the study describes the variability of cloud vertical geometrical properties in space, season, and time of the day. Resultant new insights are presented.
Bida Jian, Jiming Li, Guoyin Wang, Yuxin Zhao, Yarong Li, Jing Wang, Min Zhang, and Jianping Huang
Atmos. Chem. Phys., 21, 9809–9828, https://doi.org/10.5194/acp-21-9809-2021, https://doi.org/10.5194/acp-21-9809-2021, 2021
Short summary
Short summary
We evaluate the performance of the AMIP6 model in simulating cloud albedo over marine subtropical regions and the impacts of different aerosol types and meteorological factors on the cloud albedo based on multiple satellite datasets and reanalysis data. The results show that AMIP6 demonstrates moderate improvement over AMIP5 in simulating the monthly variation in cloud albedo, and changes in different aerosol types and meteorological factors can explain ~65 % of the changes in the cloud albedo.
Xiaoyu Hu, Jinming Ge, Jiajing Du, Qinghao Li, Jianping Huang, and Qiang Fu
Atmos. Meas. Tech., 14, 1743–1759, https://doi.org/10.5194/amt-14-1743-2021, https://doi.org/10.5194/amt-14-1743-2021, 2021
Short summary
Short summary
Cloud radars are powerful instruments that can probe detailed cloud structures. However, radar echoes in the lower atmosphere are always contaminated by clutter. We proposed a multi-dimensional probability distribution function that can effectively discriminate low-level clouds from clutter by considering their different features in several variables. We applied this method to the radar observations at the SACOL site and found the results have good agreement with lidar detection.
Jianping Guo, Boming Liu, Wei Gong, Lijuan Shi, Yong Zhang, Yingying Ma, Jian Zhang, Tianmeng Chen, Kaixu Bai, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 2945–2958, https://doi.org/10.5194/acp-21-2945-2021, https://doi.org/10.5194/acp-21-2945-2021, 2021
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China have thus far not been evaluated by in situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future research and applications.
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-41, https://doi.org/10.5194/acp-2021-41, 2021
Revised manuscript not accepted
Short summary
Short summary
Vertical wind profiles are crucial to a wide range of atmospheric disciplines. Aeolus is the first satellite mission to directly observe wind profile information on a global scale. However, Aeolus wind products over China were thus far not evaluated by in-situ comparison. This work is expected to let the public and science community better know the Aeolus wind products and to encourage use of these valuable data in future researches and applications.
Lianfa Lei, Zhenhui Wang, Jiang Qin, Lei Zhu, Rui Chen, Jianping Lu, and Yingying Ma
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-283, https://doi.org/10.5194/amt-2020-283, 2020
Revised manuscript not accepted
Short summary
Short summary
This paper proposes a new method of Multichannel Microwave Radiometer 3-D antenna pattern measurement by observing the sun. The antenna pattern derived from the solar observation was compared with the result of the far-field measurement with a point source in the microwave anechoic chamber at 30 GHz, the maximum error of the beamwidth is less than 0.1°, which showed that this pattern matched well to the pattern measurement using a point source in the microwave anechoic chamber.
Cited articles
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M.,
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in
sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys.
Res.-Atmos., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005.
Alexandersson, H. and Moberg, A.: Homogenization of Swedish Temperature
Data. Part i: Homogeneity Test for Linear Trends, Int. J.
Climatol., 17, 25–34, https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J, 1997.
Ali, M. A., Bilal, M., Wang, Y., Qiu, Z., Nichol, J., Mhawish, A., de Leeuw,
G., Zhang, Y., Shahid, S., Almazroui, M., Islam, M., Rahman, M., Mondal, S.,
Tiwari, P., and Khedher, K.: Spatiotemporal changes in aerosols over
Bangladesh using 18 years of MODIS and reanalysis data, J.
Environ. Manage., 315, 115097, https://doi.org/10.1016/j.jenvman.2022.115097, 2022.
Anderson, R. L.: Distribution of the Serial Correlation Coefficient, The
Ann. Mathem. Stat., 13, 1–13, https://doi.org/10.1214/aoms/1177731638,
1942.
Ångström, A.: The Parameter of Atmospheric Turbidity, Tellus, 16, 64–75,
https://doi.org/10.3402/tellusa.v16i1.8885, 1964.
Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing, J. Roy.
Stat. Soc. B, 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995.
Bi, J. R., Huang, J. P., Hu, Z. Y., Holben, B. N., and Guo, Z. Q.:
Investigating the aerosol optical and radiative characteristics of heavy
haze episodes in Beijing during January of 2013, J. Geophys. Res.-Atmos.,
119, 9884–9900, https://doi.org/10.1002/2014jd021757, 2014.
Boer, G. J.: Changes in Interannual Variability and Decadal Potential
Predictability under Global Warming, J. Climate, 22, 3098–3109,
https://doi.org/10.1175/2008jcli2835.1, 2009.
Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation
and Case Studies, J. Climate, 30, 6851–6872,
https://doi.org/10.1175/jcli-d-16-0613.1, 2017.
Che, H., Xia, X., Zhu, J., Li, Z., Dubovik, O., Holben, B., Goloub, P., Chen, H., Estelles, V., Cuevas-Agulló, E., Blarel, L., Wang, H., Zhao, H., Zhang, X., Wang, Y., Sun, J., Tao, R., Zhang, X., and Shi, G.: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements, Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, 2014.
Che, H. Z., Zhang, X. Y., Chen, H. B., Damiri, B., Goloub, P., Li, Z. Q.,
Zhang, X. C., Wei, Y., Zhou, H. G., Dong, F., Li, D. P., and Zhou, T. M.:
Instrument calibration and aerosol optical depth validation of the China
Aerosol Remote Sensing Network, J. Geophys. Res.-Atmos., 114, 12,
https://doi.org/10.1029/2008jd011030, 2009.
Chen, C., Dubovik, O., Fuertes, D., Litvinov, P., Lapyonok, T., Lopatin, A., Ducos, F., Derimian, Y., Herman, M., Tanré, D., Remer, L. A., Lyapustin, A., Sayer, A. M., Levy, R. C., Hsu, N. C., Descloitres, J., Li, L., Torres, B., Karol, Y., Herrera, M., Herreras, M., Aspetsberger, M., Wanzenboeck, M., Bindreiter, L., Marth, D., Hangler, A., and Federspiel, C.: Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring, Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, 2020.
Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P. A., and Vuilleumier, L.: Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope, Atmos. Meas. Tech., 13, 6945–6964, https://doi.org/10.5194/amt-13-6945-2020, 2020.
Costa, M. J., Sohn, B. J., Levizzani, V., and Silva, A. M.: Radiative
forcing of Asian dust determined from the synergized GOME and GMS Satellite
data – A case study, J. Meteorol. Soc. JPN, 84,
85–95, https://doi.org/10.2151/jmsj.84.85, 2006.
Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E.,
Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A.
W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B.,
and Verstraete, M. M.: Multi-angle Imaging SpectroRadiometer (MISR) –
Instrument description and experiment overview, IEEE T.
Geosci. Remote, 36, 1072–1087, https://doi.org/10.1109/36.700992, 1998.
Ding, K., Huang, X., Ding, A., Wang, M., Su, H., Kerminen, V. M., Petaja,
T., Tan, Z., Wang, Z., Zhou, D., Sun, J., Liao, H., Wang, H., Carslaw, K.,
Wood, R., Zuidema, P., Rosenfeld, D., Kulmala, M., Fu, C., Poschl, U.,
Cheng, Y., and Andreae, M. O.: Aerosol-boundary-layer-monsoon interactions
amplify semi-direct effect of biomass smoke on low cloud formation in
Southeast Asia, Nat. Commun., 12, 6416, https://doi.org/10.1038/s41467-021-26728-4,
2021.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of
aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 20673–20696, https://doi.org/10.1029/2000JD900282,
2000.
EarthData: Earth Data Search, NASA [data set], https://search.earthdata.nasa.gov/ (last access: 3 November 2022), 2023.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J.
Geophys. Res.-Atmos., 104, 31333–31349, https://doi.org/10.1029/1999jd900923,
1999.
Eck, T. F., Holben, B. N., Dubovik, O., Smirnov, A., Goloub, P., Chen, H.
B., Chatenet, B., Gomes, L., Zhang, X. Y., Tsay, S. C., Ji, Q., Giles, D.,
and Slutsker, I.: Columnar aerosol optical properties at AERONET sites in
central eastern Asia and aerosol transport to the tropical mid-Pacific, J.
Geophys. Res.-Atmos., 110, 18, https://doi.org/10.1029/2004jd005274, 2005.
Eck, T. F., Holben, B. N., Sinyuk, A., Pinker, R. T., Goloub, P., Chen, H.,
Chatenet, B., Li, Z., Singh, R. P., Tripathi, S. N., Reid, J. S., Giles, D.
M., Dubovik, O., O'Neill, N. T., Smirnov, A., Wang, P., and Xia, X.:
Climatological aspects of the optical properties of fine/coarse mode aerosol
mixtures, J. Geophys. Res.-Atmos., 115, D19205, https://doi.org/10.1029/2010jd014002, 2010.
Fan, R., Ma, Y., Jin, S., Gong, W., Liu, B., Wang, W., Li, H., and Zhang,
Y.: Validation, analysis, and comparison of MISR V23 aerosol optical depth
products with MODIS and AERONET observations, Sci. Total
Environ., 856, 159117, https://doi.org/10.1016/j.scitotenv.2022.159117, 2023.
Garay, M. J., Witek, M. L., Kahn, R. A., Seidel, F. C., Limbacher, J. A., Bull, M. A., Diner, D. J., Hansen, E. G., Kalashnikova, O. V., Lee, H., Nastan, A. M., and Yu, Y.: Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593–628, https://doi.org/10.5194/amt-13-593-2020, 2020.
GEBCO Bathymetric Compilation Group 2023: Published Data Library, GEBCO_2023 Grid [data set], https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2023.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J.
Climate, 30, 5419–5454, https://doi.org/10.1175/jcli-d-16-0758.1, 2017.
Giglio, L., Schroeder, W., and Justice, C. O.: The collection 6 MODIS active
fire detection algorithm and fire products, Remote Sens. Environ.,
178, 31–41, https://doi.org/10.1016/j.rse.2016.02.054, 2016.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
GMAO (Global Modeling and Assimilation Office): MERRA-2 tavgM_2d_aer_Nx: 2d, Monthly mean, Time-averaged, Single-Level, Assimilation, Aerosol Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/FH9A0MLJPC7N, 2015.
Gu, L., Chen, J., Xu, C. Y., Kim, J. S., Chen, H., Xia, J., and Zhang, L.:
The contribution of internal climate variability to climate change impacts
on droughts, Sci. Total Environ., 684, 229–246,
https://doi.org/10.1016/j.scitotenv.2019.05.345, 2019.
Gui, K., Che, H., Zheng, Y., Wang, Y., Zhang, L., Zhao, H., Li, L., Zhong,
J., Yao, W., and Zhang, X.: Seasonal variability and trends in global
type-segregated aerosol optical depth as revealed by MISR satellite
observations, Sci. Total Environ., 787, 147543,
https://doi.org/10.1016/j.scitotenv.2021.147543, 2021.
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta. Part I: Observational analyses, J.
Geophys. Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015jd023257,
2016.
Gupta, G., Venkat Ratnam, M., Madhavan, B. L., and Narayanamurthy, C. S.:
Long-term trends in Aerosol Optical Depth obtained across the globe using
multi-satellite measurements, Atmos. Environ., 273, 118953,
https://doi.org/10.1016/j.atmosenv.2022.118953, 2022.
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Munchak, L. A.: A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm, Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, 2016.
Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T. R., Kriaučiūnienė, J., Kundzewicz, Z. W., Lang, M., Llasat, M. C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R. A. P., Plavcová, L., Rogger, M., Salinas, J. L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G.: Understanding flood regime changes in Europe: a state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, 2014.
Han, Y., Wang, T., Tang, J., Wang, C., Jian, B., Huang, Z., and Huang, J.:
New insights into the Asian dust cycle derived from CALIPSO lidar
measurements, Remote Sens. Environ., 272, 112906, https://doi.org/10.1016/j.rse.2022.112906,
2022.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ.,
66, 1–16, https://doi.org/10.1016/s0034-4257(98)00031-5, 1998.
Holben, B. N., Tanre, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan,
N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y.
J., Castle, J. V., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore,
R., Karneli, A., O'Neill, N. T., Pietras, C., Pinker, R. T., Voss, K., and
Zibordi, G.: An emerging ground-based aerosol climatology: Aerosol optical
depth from AERONET, J. Geophys. Res.-Atmos., 106, 12067–12097,
https://doi.org/10.1029/2001jd900014, 2001.
Horwell, C. J. and Baxter, P. J.: The respiratory health hazards of volcanic
ash: a review for volcanic risk mitigation, B. Volcanol., 69,
1–24, https://doi.org/10.1007/s00445-006-0052-y, 2006.
Hsu, N. C., Lee, J., Sayer, A. M., Kim, W., Bettenhausen, C., and Tsay, S.
C.: VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long-Term
Aerosol Data Records, J. Geophys. Res.-Atmos., 124,
4026–4053, https://doi.org/10.1029/2018jd029688, 2019.
Huang, C., Li, J., Sun, W., Chen, Q., Mao, Q.-J., and Yuan, Y.: Long-Term
Variation Assessment of Aerosol Load and Dominant Types over Asia for Air
Quality Studies Using Multi-Sources Aerosol Datasets, https://doi.org/10.3390/rs13163116,
2021.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate
effects of dust aerosols over East Asian arid and semiarid regions, J.
Geophys. Res.-Atmos., 119, 11398–11416, https://doi.org/10.1002/2014jd021796, 2014a.
Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., and Canonaco, F.: High
secondary aerosol contribution to particulate pollution during haze events
in China, Nature, 514, 218, https://doi.org/10.1038/nature13774, 2014b.
Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.:
Amplified transboundary transport of haze by aerosol–boundary layer
interaction in China, Nat. Geosci., 13, 428–434, https://doi.org/10.1038/s41561-020-0583-4,
2020.
Husar, R. B., Tratt, D. M., Schichtel, B. A., Falke, S. R., Li, F., Jaffe,
D., Gasso, S., Gill, T., Laulainen, N. S., Lu, F., Reheis, M. C., Chun, Y.,
Westphal, D., Holben, B. N., Gueymard, C., McKendry, I., Kuring, N.,
Feldman, G. C., McClain, C., Frouin, R. J., Merrill, J., DuBois, D.,
Vignola, F., Murayama, T., Nickovic, S., Wilson, W. E., Sassen, K.,
Sugimoto, N., and Malm, W. C.: Asian dust events of April 1998, J. Geophys.
Res.-Atmos., 106, 18317–18330, https://doi.org/10.1029/2000jd900788, 2001.
Jethva, H., Torres, O., Field, R. D., Lyapustin, A., Gautam, R., and
Kayetha, V.: Connecting Crop Productivity, Residue Fires, and Air Quality
over Northern India, Sci. Rep., 9, 16594,
https://doi.org/10.1038/s41598-019-52799-x, 2019.
Jin, S., Zhang, M., Ma, Y., Gong, W., Chen, C., Yang, L., Hu, X., Liu, B.,
Chen, N., Du, B., and Shi, Y.: Adapting the Dark Target Algorithm to
Advanced MERSI Sensor on the FengYun-3-D Satellite: Retrieval and Validation
of Aerosol Optical Depth Over Land, IEEE T. Geosci.
Remote, 59, 8781–8797, https://doi.org/10.1109/TGRS.2020.3021021, 2021.
Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A.,
and Holben, B.: Multiangle Imaging Spectroradiometer (MISR) global aerosol
optical depth validation based on 2 years of coincident Aerosol Robotic
Network (AERONET) observations, J. Geophys. Res.-Atmos., 110, D10S04, https://doi.org/10.1029/2004JD004706, 2005.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich, Y.: The
effect of smoke, dust, and pollution aerosol on shallow cloud development
over the Atlantic Ocean, P. Natl. Acad. Sci. USA, 102, 11207–11212,
https://doi.org/10.1073/pnas.0505191102, 2005.
Kendall, M. G.: Rank Correlation Methods, 4th Edition, Charles Griffin, London, 1975.
King, M. D., Kaufman, Y. J., Menzel, W. P., and Tanre, D.: REMOTE-SENSING OF
CLOUD, AEROSOL, AND WATER-VAPOR PROPERTIES FROM THE MODERATE RESOLUTION
IMAGING SPECTROMETER (MODIS), IEEE T. Geosci. Remote, 30, 2–27, https://doi.org/10.1109/36.124212, 1992.
Kulkarni, A. and Von Storch, H.: Monte Carlo Experiments on the Effect of
Serial Correlation on the Mann–Kendall Test of Trend, Meteorol.
Z., 4, 82–85, https://doi.org/10.1127/metz/4/1992/82, 1995.
Kumar, M., Parmar, K. S., Kumar, D. B., Mhawish, A., Broday, D. M., Mall, R.
K., and Banerjee, T.: Long-term aerosol climatology over Indo-Gangetic
Plain: Trend, prediction and potential source fields, Atmos.
Environ., 180, 37–50, https://doi.org/10.1016/j.atmosenv.2018.02.027, 2018.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Lenoble, J., Remer, L., and Tanre, D.: Aerosol Remote Sensing,
Springer-Verlag Berlin Heidelberg, XXXVIII, 390 pp.,
https://doi.org/10.1007/978-3-642-17725-5, 2013.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Levy, R., Hsu, C., et al.: MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MOD04_L2.061, 2015.
Li, Z. Q., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G.,
Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang,
Y., Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X.,
Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J.,
Zhai, P. M., Sugimoto, N., Babu, S. S., and Brasseur, G. P.: Aerosol and
monsoon climate interactions over Asia, Rev. Geophys., 54, 866–929,
https://doi.org/10.1002/2015rg000500, 2016.
Limbacher, J. A., Kahn, R. A., and Lee, J.: The new MISR research aerosol retrieval algorithm: a multi-angle, multi-spectral, bounded-variable least squares retrieval of aerosol particle properties over both land and water, Atmos. Meas. Tech., 15, 6865–6887, https://doi.org/10.5194/amt-15-6865-2022, 2022.
Liu, B., Ma, X., Guo, J., Li, H., Jin, S., Ma, Y., and Gong, W.: Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment, Atmos. Chem. Phys., 23, 3181–3193, https://doi.org/10.5194/acp-23-3181-2023, 2023.
Liu, X. G., Li, J., Qu, Y., Han, T., Hou, L., Gu, J., Chen, C., Yang, Y., Liu, X., Yang, T., Zhang, Y., Tian, H., and Hu, M.: Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13, 4501–4514, https://doi.org/10.5194/acp-13-4501-2013, 2013.
Livezey, R. E. and Chen, W. Y.: Statistical Field Significance and its
Determination by Monte Carlo Techniques, Mon. Weather Rev., 111, 46–59,
https://doi.org/10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2, 1983.
Luo, Y. X., Zheng, X. B., Zhao, T. L., and Chen, J.: A climatology of
aerosol optical depth over China from recent 10 years of MODIS remote
sensing data, Int. J. Climatol., 34, 863–870,
https://doi.org/10.1002/joc.3728, 2014.
Ma, Y. and Gong, W.: Evaluating the Performance of SVM in Dust Aerosol
Discrimination and Testing its Ability in an Extended Area, IEEE J.
Select. Top. Appl. Earth Observ. Remote Sens., 5,
1849–1858, https://doi.org/10.1109/JSTARS.2012.2206572, 2012.
Ma, Y., Gong, W., and Mao, F.: Transfer learning used to analyze the dynamic
evolution of the dust aerosol, J. Quantit. Spectrosc.
Ra. Transf., 153, 119–130, https://doi.org/10.1016/j.jqsrt.2014.09.025, 2015.
Mallet, M., Dubovik, O., Nabat, P., Dulac, F., Kahn, R., Sciare, J., Paronis, D., and Léon, J. F.: Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations, Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, 2013.
Mallet, M., Roger, J. C., Despiau, S., Dubovik, O., and Putaud, J. P.:
Microphysical and optical properties of aerosol particles in urban zone
during ESCOMPTE, Atmo. Res., 69, 73–97, https://doi.org/10.1016/j.atmosres.2003.07.001, 2003.
Mann, H. B.: NONPARAMETRIC TESTS AGAINST TREND, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
Mao, X. Q., Zhou, J., and Corsetti, G.: How Well Have China's Recent
Five-Year Plans Been Implemented for Energy Conservation and Air Pollution
Control?, Environ. Sci. Technol., 48, 10036–10044,
https://doi.org/10.1021/es501729d, 2014.
Masuoka, E., Fleig, A., Wolfe, R. E., and Patt, F.: Key characteristics of
MODIS data products, IEEE T. Geosci. Remote, 36,
1313–1323, https://doi.org/10.1109/36.701081, 1998.
Mhawish, A., Sorek-Hamer, M., Chatfield, R., Banerjee, T., Bilal, M., Kumar,
M., Sarangi, C., Franklin, M., Chau, K., Garay, M., and Kalashnikova, O.:
Aerosol characteristics from earth observation systems: A comprehensive
investigation over South Asia (2000–2019), Remote Sens. Environ.,
259, 112410, https://doi.org/10.1016/j.rse.2021.112410, 2021.
NASA: Aeronet, NASA [data set], https://aeronet.gsfc.nasa.gov/new_web/download_all_v3_aod.html (last access: 3 November 2022), 2023a.
NASA: FIRM, NASA [data set], https://firms.modaps.eosdis.nasa.gov/ (last access: 11 July 2023), 2023b.
NASA/LARC/SD/ASDC: MISR Level 2 Aerosol parameters V003, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/TERRA/MISR/MIL2ASAE_L2.003-23, 1999.
Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T.,
Higurashi, A., Takamura, T., Aoki, K., Sohn, B. J., Kim, S. W., Tsuruta, H.,
Sugimoto, N., Shimizu, A., Tanimoto, H., Sawa, Y., Lin, N. H., Lee, C. T.,
Goto, D., and Schutgens, N.: Overview of the Atmospheric Brown Cloud East
Asian Regional Experiment 2005 and a study of the aerosol direct radiative
forcing in east Asia, J. Geophys. Res.-Atmos., 112, 23,
https://doi.org/10.1029/2007jd009009, 2007.
Ou, Y., Chen, C., Ying, Z., Li, K., Shi, Z., Tsung, J., Xu, H., Peng, Z.,
Xie, Y., and Luo, J.: Evaluation of MERRA-2 Aerosol Optical and Component
Properties over China Using SONET and PARASOL/GRASP Data, Remote Sens.,
14, 821, https://doi.org/10.3390/rs14040821, 2022.
Paliwal, U., Sharma, M., and Burkhart, J. F.: Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis, Atmos. Chem. Phys., 16, 12457–12476, https://doi.org/10.5194/acp-16-12457-2016, 2016.
Pettitt, A.: A Non-Parametric Approach to the Change-Point Problem, Journal
of the Royal Statistical Society. Series C, Appl. Stat., 28, 126–135,
https://doi.org/10.2307/2346729, 1979.
Popp, T., De Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klüser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei,
L., North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva,
L., Stebel, K., Stein Zweers, D., Thomas, G., Tilstra, L. G., Vandenbussche,
S., Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European Satellite
Observations (Aerosol_cci), Remote Sens., 8, 421, https://doi.org/10.3390/rs8050421, 2016.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due
to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/jcli-d-16-0609.1, 2017.
Reddington, C., Yoshioka, M., Balasubramanian, R., Ridley, D., Toh, Y. Y.,
Arnold, S., and Spracklen, D.: Contribution of vegetation and peat fires to
particulate air pollution in Southeast Asia, Environ. Res. Lett.,
9, 094006, https://doi.org/10.1088/1748-9326/9/9/094006, 2014.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., and Kleidman, R. G.: The
MODIS Aerosol Algorithm, Products, and Validation, J.
Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Rose, A. N., McKee, J. J., Urban, M. L., Bright, E. A., and Sims, K. M.:
LandScan 2018 (2018), Oak Ridge National Laboratory [dataset], https://doi.org/10.48690/1524213, 2019.
Rosenfeld, D., Zhu, Y. N., Wang, M. H., Zheng, Y. T., Goren, T., and Yu, S.
C.: Aerosol-driven droplet concentrations dominate coverage and water of
oceanic low-level clouds, Science, 363, eaav0566, https://doi.org/10.1126/science.aav0566,
2019.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or drought: How do aerosols
affect precipitation?, Science, 321, 1309–1313, https://doi.org/10.1126/science.1160606, 2008.
Satheesh, S. K. and Srinivasan, J.: Enhanced aerosol loading over Arabian
Sea during the pre-monsoon season: Natural or anthropogenic?, Geophys.
Res. Lett., 29, 21-21–21-24, https://doi.org/10.1029/2002GL015687, 2002.
Sayer, A. M. and Knobelspiesse, K. D.: How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth, Atmos. Chem. Phys., 19, 15023–15048, https://doi.org/10.5194/acp-19-15023-2019, 2019.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M. J.: Validation and
uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data,
J. Geophys. Res.-Atmos., 118, 7864–7872,
https://doi.org/10.1002/jgrd.50600, 2013.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and
Jeong, M. J.: MODIS Collection 6 aerosol products: Comparison between Aqua's
e-Deep Blue, Dark Target, and ”merged” data sets, and usage recommendations,
J. Geophys. Res.-Atmos., 119, 13965–13989, https://doi.org/10.1002/2014jd022453, 2014.
Sen, P.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389,
https://doi.org/10.1080/01621459.1968.10480934, 1968.
Shi, Y., Zhang, M., Ma, Y., Gong, W., Chen, S., Jin, S., and Liu, B.: A
novel simplified method for surface albedo together with a look-up table to
get an 18-year assessment of surface aerosol direct radiative effect in
central and East China, Atmos. Environ., 117858, https://doi.org/10.1016/j.atmosenv.2020.117858, 2020.
Singh, N., Mhawish, A., Deboudt, K., Singh, R. S., and Banerjee, T.: Organic
aerosols over Indo-Gangetic Plain: Sources, distributions and climatic
implications, Atmos. Environ., 157, 59–74, https://doi.org/10.1016/j.atmosenv.2017.03.008, 2017.
Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, M., and Lyapustin, A.: The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, 2020.
Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., and Slutsker, I.:
Cloud-screening and quality control algorithms for the AERONET database,
Remote Sens. Environ., 73, 337–349, 2000.
IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp., 2007.
Sulis, M., Paniconi, C., Rivard, C., Harvey, R., and Chaumont, D.:
Assessment of climate change impacts at the catchment scale with a detailed
hydrological model of surface-subsurface interactions and comparison with a
land surface model, Water Resour. Res., 47, W01513, https://doi.org/10.1029/2010wr009167,
2011.
Tao, M., Wang, J., Li, R., Chen, L., Xu, X., Wang, L., Tao, J., Wang, Z.,
and Xiang, J.: Characterization of Aerosol Type Over East Asia by 4.4 km
MISR Product: First Insight and General Performance, J. Geophys.
Res.-Atmos., 125, D031909, https://doi.org/10.1029/2019jd031909, 2020.
Theil, H.: A Rank-Invariant Method of Linear and Polynomial Regression
Analysis, Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen,
Series A – Mathematical Sciences, 53, 386–392,
https://doi.org/10.1007/978-94-011-2546-8_20, 1950.
Tie, X. X., Wu, D., and Brasseur, G.: Lung cancer mortality and exposure to
atmospheric aerosol particles in Guangzhou, China, Atmos. Environ.,
43, 2375–2377, https://doi.org/10.1016/j.atmosenv.2009.01.036, 2009.
Unkaševiæ, M., Tošiæ, I., and Vujoviæ, D.: Variability
and probability of annual and extreme precipitation over Serbia and
Montenegro, Theor. Appl. Climatol., 79, 103–109,
https://doi.org/10.1007/s00704-004-0060-9, 2004.
Vernier, J. P., Thomason, L. W., Pommereau, J. P., Bourassa, A., Pelon, J.,
Garnier, A., Hauchecorne, A., Blanot, L., Trepte, C., Degenstein, D., and
Vargas, F.: Major influence of tropical volcanic eruptions on the
stratospheric aerosol layer during the last decade, Geophys. Res.
Lett., 38, L12807, https://doi.org/10.1029/2011GL047563, 2011.
Von Storch, H.: Misuses of statistical analysis in climate research,
Analysis of Climate Variability: Applications of Statistical Techniques,
11–26, https://doi.org/10.1007/978-3-662-03744-7_2, 1999.
Wang, T., Tang, J., Sun, M., Liu, X., Huang, Y., Huang, J., Han, Y., Cheng,
Y., Huang, Z., and Li, J.: Identifying a transport mechanism of dust
aerosols over South Asia to the Tibetan Plateau: A case study, Sci.
Total Environ., 758, 143714, https://doi.org/10.1016/j.scitotenv.2020.143714, 2021.
Wang, W., Chen, Y., Becker, S., and Liu, B.: Variance Correction
Prewhitening Method for Trend Detection in Autocorrelated Data, J.
Hydrol. Eng., 20, 04015033, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001234,
2015.
Wijngaard, J., Tank, A., and Können, G.: Homogeneity of 20th Century
European Daily Temperature and Precipitation Series, Int. J.
Climatol., 23, 679–692, https://doi.org/10.1002/joc.906, 2003.
Wilks, D. S.: On “Field Significance” and the False Discovery Rate,
J. Appl. Meteorol. Climatol., 45, 1181–1189, https://doi.org/10.1175/JAM2404.1, 2006.
Wilks, D. S.: “The Stippling Shows Statistically Significant Grid Points”:
How Research Results are Routinely Overstated and Overinterpreted, and What
to Do about It, B. Am. Meteorol. Soc., 97, 2263–2273, https://doi.org/10.1175/BAMS-D-15-00267.1, 2016.
Xie, G. Q., Wang, M., Pan, J., and Zhu, Y.: Spatio-temporal variations and
trends of MODIS C6.1 Dark Target and Deep Blue merged aerosol optical depth
over China during 2000–2017, Atmos. Environ., 214, 116846,
https://doi.org/10.1016/j.atmosenv.2019.116846, 2019.
Xu, X., Yang, X., Zhu, B., Tang, Z., Wu, H., and Xie, L.: Characteristics of
MERRA-2 black carbon variation in east China during 2000–2016, Atmos.
Environ., 222, 117140, https://doi.org/10.1016/j.atmosenv.2019.117140, 2020.
Yue, S. and Hashino, M.: LONG TERM TRENDS OF ANNUAL AND MONTHLY
PRECIPITATION IN JAPAN1, JAWRA J. Am. Water Resour.
Assoc., 39, 587–596, https://doi.org/10.1111/j.1752-1688.2003.tb03677.x, 2003.
Yue, S., Pilon, P., Phinney, B., and Cavadias, G.: The influence of
autocorrelation on the ability to detect trend in hydrological series,
Hydrol. Process., 16, 1807–1829, https://doi.org/10.1002/hyp.1095, 2002.
Zhang, M., Ma, Y., Wang, L., Gong, W., Hu, B., and Shi, Y.: Spatial-temporal
characteristics of aerosol loading over the Yangtze River Basin during
2001–2015, Int. J. Climatol., 38, 2138–2152,
https://doi.org/10.1002/joc.5324, 2018.
Zhang, M., Jin, S., Ma, Y., Fan, R., Wang, L., Gong, W., and Liu, B.: Haze
events at different levels in winters: A comprehensive study of
meteorological factors, Aerosol characteristics and direct radiative forcing
in megacities of north and central China, Atmos. Environ., 245,
118056, https://doi.org/10.1016/j.atmosenv.2020.118056, 2021.
Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T.,
Zheng, B., Lu, Z., and Streets, D. G.: Transboundary health impacts of
transported global air pollution and international trade, Nature, 543,
705–709, https://doi.org/10.1038/nature21712, 2017.
Zhao, X. J., Zhao, P. S., Xu, J., Meng,, W., Pu, W. W., Dong, F., He, D., and Shi, Q. F.: Analysis of a winter regional haze event and its formation mechanism in the North China Plain, Atmos. Chem. Phys., 13, 5685–5696, https://doi.org/10.5194/acp-13-5685-2013, 2013.
Zhu, A., Ramanathan, V., Li, F., and Kim, D.: Dust plumes over the Pacific,
Indian, and Atlantic Oceans: Climatology and radiative impact, J.
Geophys. Res., 112, D16208, https://doi.org/10.1029/2007JD008427, 2007.
Short summary
To better understand the Asian aerosol environment, we studied distributions and trends of aerosol with different sizes and types. Over the past 2 decades, dust, sulfate, and sea salt aerosol decreased by 5.51 %, 3.07 %, and 9.80 %, whereas organic carbon and black carbon aerosol increased by 17.09 % and 6.23 %, respectively. The increase in carbonaceous aerosols was a feature of Asia. An exception is found in East Asia, where the carbonaceous aerosols reduced, owing largely to China's efforts.
To better understand the Asian aerosol environment, we studied distributions and trends of...
Altmetrics
Final-revised paper
Preprint