Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-5551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5551-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Statistical analysis of observations of polar stratospheric clouds with a lidar in Kiruna, northern Sweden
Peter Voelger
CORRESPONDING AUTHOR
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Peter Dalin
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Related authors
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023, https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
Short summary
We compared 2 years of wind measurements by the Aeolus satellite with winds from two wind-profiler radars in Arctic Sweden and coastal Antarctica. Biases are similar in magnitude to results from other locations. They are smaller than in earlier studies due to more comparison points and improved criteria for data rejection. On the other hand, the standard deviation is somewhat higher because of degradation of the Aeolus lidar.
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
Short summary
Wind measurements from two radars (ESRAD in Arctic Sweden and MARA at the Indian Antarctic station Maitri) are compared with lidar winds from the ESA satellite Aeolus, for July–December 2019. The aim is to check if Aeolus data processing is adequate for the sunlit conditions of polar summer. Agreement is generally good with bias in Aeolus winds < 1 m/s in most circumstances. The exception is a large bias (7 m/s) when the satellite has crossed a sunlit Antarctic ice cap before passing MARA.
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021, https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary
Short summary
We validate horizontal wind measurements at altitudes of 0.5–14 km made with atmospheric radars: ESRAD located near Kiruna in the Swedish Arctic and MARA at the Indian research station Maitri in Antarctica, by comparison with radiosondes, the regional model HARMONIE-AROME and the ECMWF ERA5 reanalysis. Good agreement was found in general, and radar bias and uncertainty were estimated. These radars are planned to be used for validation of winds measured by lidar by the ESA satellite Aeolus.
Veronika Wolf, Thomas Kuhn, Mathias Milz, Peter Voelger, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 18, 17371–17386, https://doi.org/10.5194/acp-18-17371-2018, https://doi.org/10.5194/acp-18-17371-2018, 2018
Short summary
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
Sheila Kirkwood, Evgenia Belova, Peter Voelger, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 16, 4215–4227, https://doi.org/10.5194/amt-16-4215-2023, https://doi.org/10.5194/amt-16-4215-2023, 2023
Short summary
Short summary
We compared 2 years of wind measurements by the Aeolus satellite with winds from two wind-profiler radars in Arctic Sweden and coastal Antarctica. Biases are similar in magnitude to results from other locations. They are smaller than in earlier studies due to more comparison points and improved criteria for data rejection. On the other hand, the standard deviation is somewhat higher because of degradation of the Aeolus lidar.
Evgenia Belova, Sheila Kirkwood, Peter Voelger, Sourav Chatterjee, Karathazhiyath Satheesan, Susanna Hagelin, Magnus Lindskog, and Heiner Körnich
Atmos. Meas. Tech., 14, 5415–5428, https://doi.org/10.5194/amt-14-5415-2021, https://doi.org/10.5194/amt-14-5415-2021, 2021
Short summary
Short summary
Wind measurements from two radars (ESRAD in Arctic Sweden and MARA at the Indian Antarctic station Maitri) are compared with lidar winds from the ESA satellite Aeolus, for July–December 2019. The aim is to check if Aeolus data processing is adequate for the sunlit conditions of polar summer. Agreement is generally good with bias in Aeolus winds < 1 m/s in most circumstances. The exception is a large bias (7 m/s) when the satellite has crossed a sunlit Antarctic ice cap before passing MARA.
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021, https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary
Short summary
We validate horizontal wind measurements at altitudes of 0.5–14 km made with atmospheric radars: ESRAD located near Kiruna in the Swedish Arctic and MARA at the Indian research station Maitri in Antarctica, by comparison with radiosondes, the regional model HARMONIE-AROME and the ECMWF ERA5 reanalysis. Good agreement was found in general, and radar bias and uncertainty were estimated. These radars are planned to be used for validation of winds measured by lidar by the ESA satellite Aeolus.
Veronika Wolf, Thomas Kuhn, Mathias Milz, Peter Voelger, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 18, 17371–17386, https://doi.org/10.5194/acp-18-17371-2018, https://doi.org/10.5194/acp-18-17371-2018, 2018
Short summary
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
A. Réchou, S. Kirkwood, J. Arnault, and P. Dalin
Atmos. Chem. Phys., 14, 6785–6799, https://doi.org/10.5194/acp-14-6785-2014, https://doi.org/10.5194/acp-14-6785-2014, 2014
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Radiative effect of thin cirrus clouds in the extratropical lowermost stratosphere and tropopause region
Distribution of cross-tropopause convection within the Asian monsoon region from May through October 2017
Measurement report: Plume heights of the April 2021 La Soufrière eruptions from GOES-17 side views and GOES-16–MODIS stereo views
A global view on stratospheric ice clouds: assessment of processes related to their occurrence based on satellite observations
Empirical evidence for deep convection being a major source of stratospheric ice clouds over North America
On the best locations for ground-based polar stratospheric cloud (PSC) observations
Influence of gravity wave temperature anomalies and their vertical gradients on cirrus clouds in the tropical tropopause layer – a satellite-based view
Revisiting global satellite observations of stratospheric cirrus clouds
The diurnal cycle of the clouds extending above the tropical tropopause observed by spaceborne lidar
Satellite observations of cirrus clouds in the Northern Hemisphere lowermost stratosphere
Detection of particle layers in backscatter profiles: application to Antarctic lidar measurements
The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective
A climatological perspective of deep convection penetrating the TTL during the Indian summer monsoon from the AVHRR and MODIS instruments
CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination
Reinhold Spang, Rolf Müller, and Alexandru Rap
Atmos. Chem. Phys., 24, 1213–1230, https://doi.org/10.5194/acp-24-1213-2024, https://doi.org/10.5194/acp-24-1213-2024, 2024
Short summary
Short summary
Cirrus clouds play an important role in the radiation budget of the Earth. Despite recent progress in their observation, the radiative impact of ultra-thin cirrus clouds (UTC) in the tropopause region and in the lowermost stratosphere remains poorly constrained. Sensitivity model simulations with different ice parameters provide an uncertainty range for the radiative effect of UTCs. There is a need for better observed UTCs to enable the simulation of their potentially large effect on climate.
Corey E. Clapp, Jessica B. Smith, Kristopher M. Bedka, and James G. Anderson
Atmos. Chem. Phys., 23, 3279–3298, https://doi.org/10.5194/acp-23-3279-2023, https://doi.org/10.5194/acp-23-3279-2023, 2023
Short summary
Short summary
Convection in the Asian monsoon provides an important pathway for the transport of boundary layer and tropospheric air, and potentially pollution and chemically active species, into the stratosphere. We analyzed the distribution of the fastest and deepest convection with geostationary satellite detections for the months of May through October of 2017. We find significant differences in the geographic and monthly distributions of cross-tropopause convection across the Asian monsoon region.
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022, https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
Short summary
We estimate plume heights for the April 2021 La Soufrière daytime eruptions using GOES-17 near-limb side views and GOES-16–MODIS stereo views. These geometric heights are then compared with brightness-temperature-based radiometric height estimates to characterize the biases of the latter. We also show that the side view method can be applied to infrared imagery and thus nighttime eruptions, albeit with larger uncertainty.
Ling Zou, Sabine Griessbach, Lars Hoffmann, and Reinhold Spang
Atmos. Chem. Phys., 22, 6677–6702, https://doi.org/10.5194/acp-22-6677-2022, https://doi.org/10.5194/acp-22-6677-2022, 2022
Short summary
Short summary
Ice clouds in the stratosphere (SICs) greatly affect the water vapor balance and radiation budget in the upper troposphere and lower stratosphere (UTLS). We quantified the global SICs and analyzed their relationships with tropopause temperature, double tropopauses, UTLS clouds, gravity waves, and stratospheric aerosols. The correlations between SICs and all abovementioned processes indicate that the occurrence of and variability in SICs are spatiotemporally dependent on different processes.
Ling Zou, Lars Hoffmann, Sabine Griessbach, Reinhold Spang, and Lunche Wang
Atmos. Chem. Phys., 21, 10457–10475, https://doi.org/10.5194/acp-21-10457-2021, https://doi.org/10.5194/acp-21-10457-2021, 2021
Short summary
Short summary
Ice clouds in the lowermost stratosphere (SICs) have important impacts on the radiation budget and climate change. We quantified the occurrence of SICs over North America and analysed its relations with convective systems and gravity waves to investigate potential formation mechanisms of SICs. Deep convection is proved to be the primary factor linked to the occurrence of SICs over North America.
Matthias Tesche, Peggy Achtert, and Michael C. Pitts
Atmos. Chem. Phys., 21, 505–516, https://doi.org/10.5194/acp-21-505-2021, https://doi.org/10.5194/acp-21-505-2021, 2021
Short summary
Short summary
We combine spaceborne lidar observations of clouds in the troposphere and stratosphere to assess the outcome of ground-based polar stratospheric cloud (PSC) observations that are often performed at the mercy of tropospheric clouds. We find that the outcome of ground-based lidar measurements of PSCs depends on the location of the measurement. We also provide recommendations regarding the most suitable sites in the Arctic and Antarctic.
Kai-Wei Chang and Tristan L'Ecuyer
Atmos. Chem. Phys., 20, 12499–12514, https://doi.org/10.5194/acp-20-12499-2020, https://doi.org/10.5194/acp-20-12499-2020, 2020
Short summary
Short summary
High-altitude clouds in the tropics that reside in the transition layer between the troposphere and stratosphere are important as they influence the amount of water vapor going into the stratosphere. Waves in the atmosphere can influence the temperature and form these high-altitude cirrus clouds. We use satellite observations to explore the connection between atmospheric waves and clouds and show that cirrus clouds occurrence and properties are closely correlated with waves.
Ling Zou, Sabine Griessbach, Lars Hoffmann, Bing Gong, and Lunche Wang
Atmos. Chem. Phys., 20, 9939–9959, https://doi.org/10.5194/acp-20-9939-2020, https://doi.org/10.5194/acp-20-9939-2020, 2020
Short summary
Short summary
Cirrus clouds appearing in the upper troposphere and lower stratosphere have important impacts on the radiation budget and climate change. We revisited global stratospheric cirrus clouds with CALIPSO and for the first time with MIPAS satellite observations. Stratospheric cirrus clouds related to deep convection are frequently detected in the tropics. At middle latitudes, MIPAS detects more than twice as many stratospheric cirrus clouds due to higher detection sensitivity.
Thibaut Dauhut, Vincent Noel, and Iris-Amata Dion
Atmos. Chem. Phys., 20, 3921–3929, https://doi.org/10.5194/acp-20-3921-2020, https://doi.org/10.5194/acp-20-3921-2020, 2020
Short summary
Short summary
We document for the first time the diurnal cycle of the clouds in the tropical stratosphere, using the measurements from the lidar on board the International Space Station. The stratospheric clouds are concentrated over the convective centers. Their cloud fraction is minimal and limited to the vicinity of the tropopause during daytime. It presents two maxima: one in the early night and one shortly after midnight, when clouds also extend deeper in the stratosphere.
R. Spang, G. Günther, M. Riese, L. Hoffmann, R. Müller, and S. Griessbach
Atmos. Chem. Phys., 15, 927–950, https://doi.org/10.5194/acp-15-927-2015, https://doi.org/10.5194/acp-15-927-2015, 2015
Short summary
Short summary
Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS) region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.
J. Gazeaux, S. Bekki, P. Naveau, P. Keckhut, J. Jumelet, J. Parades, and C. David
Atmos. Chem. Phys., 12, 3205–3217, https://doi.org/10.5194/acp-12-3205-2012, https://doi.org/10.5194/acp-12-3205-2012, 2012
M. C. Pitts, L. R. Poole, A. Dörnbrack, and L. W. Thomason
Atmos. Chem. Phys., 11, 2161–2177, https://doi.org/10.5194/acp-11-2161-2011, https://doi.org/10.5194/acp-11-2161-2011, 2011
A. Devasthale and S. Fueglistaler
Atmos. Chem. Phys., 10, 4573–4582, https://doi.org/10.5194/acp-10-4573-2010, https://doi.org/10.5194/acp-10-4573-2010, 2010
M. C. Pitts, L. R. Poole, and L. W. Thomason
Atmos. Chem. Phys., 9, 7577–7589, https://doi.org/10.5194/acp-9-7577-2009, https://doi.org/10.5194/acp-9-7577-2009, 2009
Cited articles
Adriani, A., Massoli, P., Donfrancesco, G. D., Cairo, F., Moriconi, M. L., and
Snels, M.: Climatology of polar stratospheric clouds based on lidar
observations from 1993 to 2001 over McMurdo Station, Antarctica, J.
Geophys. Res., 109, D24211, https://doi.org/10.1029/2004JD004800,
2004. a, b, c
Alexander, A. P., Klekociuk, A. R., Pitts, M. C., and McDonald, A. J.: The
effect of orographic gravity waves on Antarctic polar stratospheric cloud
occurence and composition, J. Geophys. Res., 116, D06109,
https://doi.org/10.1029/2010JD015184, 2011. a
Alexander, S. P., Klekociuk, A. R., McDonald, A. J., and Pitts, M. C.:
Quantifying the role of orographic gravity waves on polar stratospheric cloud
occurrence in the Antarctic and the Arctic, J. Geophys. Res., 118,
11493–11507, https://doi.org/10.1002/2013JD020122, 2013. a, b, c, d
Biele, J., Tsias, A., Luo, B. P., Carslaw, K. S., Neuber, R., Beyerle, G., and
Peter, T.: Nonequilibrium coexistence of solid and liquid particles in
Arctic stratospheric clouds, J. Geophys. Res., 106, 22991–23007,
https://doi.org/10.1029/2001JD900188, 2001. a, b
Browell, E. V., Butler, C. F., Ismail, S., Robinette, P. A., Carter, A. F.,
Higdon, N. S., Toon, O. B., Schoeberl, M. R., and Tuck, A. F.: Airborne lidar
obsevations in the wintertime arctic stratosphere: polar stratospheric
clouds, Geophys. Res. Lett., 17, 385–388, https://doi.org/10.1029/GL017i004p00385,
1990. a, b
Carslaw, K. S., Clegg, S. L., and Brimblecombe, P.: A Thermodynamic Model of
the System HCl-HNO3-H2SO4-H2O, Including Solubilities of HBr, from <200
to 328 K, J. Phys. Chem., 99, 11557–11574, https://doi.org/10.1021/j100029a039,
1995. a
Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A.,
Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., and Peter, T.:
Particle microphysics and chemistry in remotely observed mountain polar
stratospheric clouds, J. Geophys. Res., 103, 5785–5796,
https://doi.org/10.1029/97JD03626, 1998a. a
Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A.,
Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Reimer, E., and
Peter, T.: Increased stratospheric ozone depletion due to mountain-induced
atmospheric waves, Nature, 391, 675–678, https://doi.org/10.1038/35589,
1998b. a, b
Carslaw, K. S., Peter, T., Bacmeister, J. T., and Eckermann, S. D.: Widespread
solid particle formation by mountain waves in the Arctic stratosphere, J.
Geophys. Res., 104, 1827–1836, https://doi.org/10.1029/1998JD100033, 1999. a
Dörnbrack, A., Leutbecher, M., Volkert, H., and Wirth, M.: Mesoscale
forecasts of stratospheric mountain waves, Meteorol. Appl., 5, 117–126,
https://doi.org/10.1017/S1350482798000802, 1997. a
Dörnbrack, A., Leutbecher, M., Reichardt, J., Behrendt, A., Müller,
K.-P., and Baumgarten, G.: Relevance of mountain wave cooling for the
formation of polar stratospheric clouds over Scandinavia: Mesoscale
dynamics and observations for January 1997, J. Geophys. Res., 106,
1569–1581, https://doi.org/10.1029/2000JD900194, 2001. a, b, c
Dörnbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A., Schmid, H.,
Browell, E. V., and Mahoney, M. J.: Evidence for inertia gravity waves
forming polar stratospheric clouds over Scandinavia, J. Geophys. Res., 107,
SOL30, https://doi.org/10.1029/2001JD000452, 2002. a, b, c, d
Dörnbrack, A., Pitts, M. C., Poole, L. R., Orsolini, Y. J., Nishii, K., and
Nakamura, H.: The 2009–2010 Arctic stratospheric winter – general
evolution, mountain waves and predictability of an operational weather
forecast model, Atm. Chem. Phys., 12, 3659–3675,
https://doi.org/10.5194/acp-12-3659-2012, 2012. a
Eckermann, S. D., Hoffmann, L., Höpfner, M., Wu, D. L., and Alexander,
M. J.: Antarctic NAT PSC belt of June 2003: Observational validation
of the mountain wave seeding hypothesis, Geophys. Res. Lett., 36, L02807,
https://doi.org/10.1029/2008GL036629, 2009. a, b
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fueglistaler, S., Buss, S., Luo, B. P., Wernli, H., Flentje, H., Hostetler, C. A., Poole, L. R., Carslaw, K. S., and Peter, Th.: Detailed modeling of mountain wave PSCs, Atmos. Chem. Phys., 3, 697–712, https://doi.org/10.5194/acp-3-697-2003, 2003. a
Graham, R. M., Hudson, S. R., and Maturilli, M.: Improved performance of ERA5
in Arctic gateway relative to four global atmospheric reanalyses, Geophys.
Res. Lett., 46, 6138–6147, https://doi.org/10.1029/2019GL082781, 2019. a, b
Hanson, D. and Mauersberger, K.: Laboratory studies of the nitric acid
trihydrate: Implications for the south polar stratosphere, Geophys. Res.
Lett., 15, 855–858, https://doi.org/10.1029/GL015i008p00855, 1988. a, b
Hersbach, H., de Rosnay, P., Bell, B., Schepers, D., Simmons, A., Soci, C.,
Abdalla, S., Alonso-Balmaseda, M., Balsamo, G., Bechtold, P., Berrisford, P.,
Bidlot, J.-R., de Boisséson, E., Bonavita, M., Browne, P., Buizza, R.,
Dahlgren, P., Dee, D., Dragani, R., Diamantakis, M., Flemming, J., Forbes,
R., Forbes, R., Geer, A., Haiden, T., Hólm, E., Haimberger, L., Hogan,
R., Horányi, A., Janiskova, M., Laloyaux, P., Lopez, P., Munoz-Sabater,
J., Peubey, C., Radu, R., Richardson, D., Thépaut, J.-N., Vitart, F.,
Yang, X., Zsótér, E., and Zuo, H.: Operational global reanalysis:
progress, future directions and synergies with NWP, Tech. Rep. 27, ECMWF,
https://doi.org/10.21957/tkic6g3wm, 2018. a, b
Hersbach, H., Bell, B., Berrisford, P.,Hirahara, S., Horányi, A.,
Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold,
P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,
P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm,
E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti,
G., de Rosnay, P., Rozum, I., Vamborg, C., Villaume, S., and
Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor.
Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on pressure levels from 1940 to present, Copernicus Climate
Change Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.bd0915c6, 2023. a
Hitchman, M. H., Buker, M. L., Tripoli, G. J., Browell, E. V., Grant, W. B.,
McGee, T. J., and Burris, J. F.: Nonorographic generation of Arctic polar
stratospheric clouds during December 1999, J. Geophys. Res., 108, 8325,
https://doi.org/10.1029/2001JD001034, 2003. a
Hoffmann, L., Spang, R., Orr, A., Alexander, M. J., Holt, L. A., and Stein, O.: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation, Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, 2017. a, b
Hoyle, C. R., Engel, I., Luo, B. P., Pitts, M. C., Poole, L. R., Grooß, J.-U., and Peter, T.: Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT), Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, 2013. a
Khosrawi, F., Kirner, O., Sinnhuber, B.-M., Johansson, S., Höpfner, M., Santee, M. L., Froidevaux, L., Ungermann, J., Ruhnke, R., Woiwode, W., Oelhaf, H., and Braesicke, P.: Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter, Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, 2017. a
Kirner, O., Müller, R., Ruhnke, R., and Fischer, H.: Contribution of liquid, NAT and ice particles to chlorine activation and ozone depletion in Antarctic winter and spring, Atmos. Chem. Phys., 15, 2019–2030, https://doi.org/10.5194/acp-15-2019-2015, 2015. a
Kohma, M. and Sato, K.: The effects of atmospheric waves on the amounts of polar stratospheric clouds, Atmos. Chem. Phys., 11, 11535–11552, https://doi.org/10.5194/acp-11-11535-2011, 2011. a, b
Lawrence, Z. D. and Manney, G. L.: Characterizing stratospheric polar vortex
variability with computer vision technique, J. Geophys. Res., 123,
1510–1535, https://doi.org/10.1002/2017JD027556, 2018. a
Lowe, D. and MacKenzie, A. R.: Polar straospheric cloud microphysics and
chemistry, J. Atmos. Sol.-Terr. Phy., 70, 13–40,
https://doi.org/10.1016/j.jastp.2007.09.011, 2008. a
Lowe, D., MacKenzie, A. R., Schlager, H., Voigt, C., Dörnbrack, A., Mahoney, M. J., and Cairo, F.: Liquid particle composition and heterogeneous reactions in a mountain wave Polar Stratospheric Cloud, Atmos. Chem. Phys., 6, 3611–3623, https://doi.org/10.5194/acp-6-3611-2006, 2006. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016. a
Massoli, P., Maturilli, M., and Neuber, R.: Climatology of Arctic polar
stratospheric clouds as measured by lidar in Ny-Ålesund,
Spitsbergen (79∘ N, 12∘ E, J. Geophys. Res., 111,
D09206, https://doi.org/10.1029/2005JD005840, 2006. a, b, c
Matthias, V., Dörnbrack, A., and Stober, G.: The extraordinarily strong and
cold polar vortex in the early northern winter 2015/2016, Geophys. Res.
Lett., 43, 12287–12294, https://doi.org/10.1002/2016GL071676, 2016. a
Mattis, I., Tesche, M., Grein, M., Freudenthaler, V., and Müller, D.:
Systematic error of lidar profiles caused by a polarization-dependent
receiver transmission: quantification and error correction scheme, Appl.
Optics, 48, 2742–2751, https://doi.org/10.1364/AO.48.002742, 2009. a
Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J.-U., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J., and Cairo, F.: Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex, Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, 2014. a
Murphy, D. M. and Gary, B. L.: Mesoscale temperature fluctuations and polar
stratospheric clouds, J. Atmos. Sci., 52, 1753–1760,
https://doi.org/10.1175/1520-0469(1995)052<1753:MTFAPS>2.0.CO;2, 1995. a
Pitts, M. C., Poole, L. R., and Thomason, L. W.: CALIPSO polar stratospheric cloud observations: second-generation detection algorithm and composition discrimination, Atmos. Chem. Phys., 9, 7577–7589, https://doi.org/10.5194/acp-9-7577-2009, 2009. a
Pitts, M. C., Poole, L. R., Dörnbrack, A., and Thomason, L. W.: The 2009–2010 Arctic polar stratospheric cloud season: a CALIPSO perspective, Atmos. Chem. Phys., 11, 2161–2177, https://doi.org/10.5194/acp-11-2161-2011, 2011 a
Pitts, M. C., Poole, L. R., Lambert, A., and Thomason, L. W.: An assessment of CALIOP polar stratospheric cloud composition classification, Atmos. Chem. Phys., 13, 2975–2988, https://doi.org/10.5194/acp-13-2975-2013, 2013. a
Poole, L. R. and Pitts, M. C.: Polar straospheric cloud climatology based on
Stratospheric Aerosol Measurement II observations from 1978 to 1989,
J. Geophys. Res., 99, 13083–13089, https://doi.org/10.1029/94JD00411, 1994. a
Rao, T. N., Arvelius, J., and Kirkwood, S.: Climatology of tropopause folds
over a European Arctic station (Esrange), J. Geophys. Res., 113,
D00B03, https://doi.org/10.1029/2007JD009638, 2008. a
Riviere, E., Huret, N., G.-Taupin, F., Renard, J.-B., Pirre, M., Eckermann,
S. D., Larsen, N., Deshler, T., and Camy-Peyret, L. L. S. P. C.: Role of
lee waves in the formation of solid polar stratospheric clouds: Case
studies from February 1997, J. Geophys. Res., 105, 6845–6853,
https://doi.org/10.1029/1999JD900908, 2000. a
Santacesaria, V., McKenzie, A. R., and Stefanutti, L.: A climatological study
of polar stratospheric clouds (1989–1997) from LIDAR measurements over
Dumont d'Urville (Antarctica), Tellus B, 53, 306–321,
https://doi.org/10.1034/j.1600-0889.2001.01155.x, 2001. a
Shibata, T., Sato, K., Kobayashi, H., Yabuki, M., and Shiobara, M.: Antarctic
polar stratospheric clouds under temperature perturbation by nonorographic
inertia gravity waves observed by micropulse lidar at Syowa Station, J.
Geophys. Res., 108, 4105, https://doi.org/10.1029/2002JD002713, 2003. a, b
Sivan, C., Rakesh, V., Abhilash, S., and Mohanakumar, K.: Evaluation of global
reanalysis winds and high-resolution regional model outputs with the 205
MHz stratosphere-troposphere wind profiler radar observations, Q. J.
Roy. Meteor. Soc., 147, 2562–2579, https://doi.org/10.1002/qj.4041, 2021. a
Solomon, S.: Stratospheric ozone depletion: a review of concepts and history,
Rev. Geophys., 37, 275–316, https://doi.org/10.1029/1999RG900008, 1999. a
Spang, R., Hoffmann, L., Müller, R., Grooß, J.-U., Tritscher, I., Höpfner, M., Pitts, M., Orr, A., and Riese, M.: A climatology of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations, Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, 2018. a, b
Stein, B., Wedekind, C., Wille, H., Immler, F., Müller, M., Wöste, L.,
del Guasta, M., Morandi, M., Stefanutti, L., Antonelli, A., Agostini, P.,
Rizi, V., Readelli, G., Mitev, V., Matthey, R., Kivi, R., and Kyrö, E.:
Optical classification, existence temperature, and coexistence of different
polar stratospheric cloud types, J. Geophys. Res., 104, 23983–23993,
https://doi.org/10.1029/1999JD900064, 1999. a
Tabazadeh, A. and Toon, O. B.: The presence of metastable
HNO3/H2O solid phases in the
stratosphere inferred from ER 2 data, J. Geophys. Res., 101,
9071–9078, https://doi.org/10.1029/96JD00062, 1996. a
Teitelbaum, H. and Sadourny, R.: The rôle of planetary waves in the
formation of polar stratospheric clouds, Tellus A, 50, 302–312,
https://doi.org/10.3402/tellusa.v50i3.14528, 1998. a
Tencé, F., Jumelet, J., Bouillon, M., Cugnet, D., Bekki, S., Safieddine, S., Keckhut, P., and Sarkissian, A.: 14 years of lidar measurements of polar stratospheric clouds at the French Antarctic station Dumont d'Urville, Atmos. Chem. Phys., 23, 431–451, https://doi.org/10.5194/acp-23-431-2023, 2023.
a
Thomason, L. W., Pitts, M. C., and Winker, D. M.: CALIPSO observations of stratospheric aerosols: a preliminary assessment, Atmos. Chem. Phys., 7, 5283–5290, https://doi.org/10.5194/acp-7-5283-2007, 2007. a
Tritscher, I., Pitts, M. C., Poole, L. R., Alexander, S. P., Cairo, F.,
Chipperfield, M. P., Groß, J.-U., Höpfner, M., Lambert, A., Luo, B.,
Molleker, S., Orr, A., Salawitch, R., Snels, M., Spang, R., Woiwode, W., and
Peter, T.: Polar stratospheric clouds: Satellite observations, processes,
and role in ozone depletion, Rev. Geophys., 59, 1–81,
https://doi.org/10.1029/2020RG000702, 2021. a, b, c
Tsias, A., Wirth, M., Carslaw, K. S., Biele, J., Mehrtens, H., Reichardt, J.,
Wedekind, C., Weiß, V., Renger, W., Neuber, R., von Zahn, U., Stein, B.,
Santacesaria, V., Stefanutti, L., Fierli, F., Bacmeister, J., and Peter, T.:
Aircraft lidar observations of an enhanced type Ia polar stratospheric
clouds during APE-POLECAT, J. Geophys. Res., 104,
23961–23969, https://doi.org/10.1029/1998JD100055, 1999. a, b
Voelger, P. and Dalin, P.: A case study of a quasistationary, very long polar
stratospheric cloud layer edge, J. Meteorol. Soc. Jpn., 99, 497–504,
https://doi.org/10.2151/jmsj.2021-025, 2021. a
Voelger, P. and Nikulin, G.: The new lidar system at the Swedish Institute
of Space Physics in Kiruna: Description and first measurements,
in: Proceedings of the 17th ESA Symposium on European Rocket and
Balloon Programmes and Related Research, Vol. SP-590, 321–326,
ISBN 92-9092-901-4, 2005. a
Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N.,
Deshler, T., Kröger, C., Rosen, J., Adriani, A., Cairo, F., Di
Donfrancesco, G., Viterbini, M., Ovarlez, J., Ovarlez, H., David, C., and
Dörnbrack, A.: Nitric acid trihydrate (NAT) in polar stratospheric
clouds, Science, 290, 1756–1758, https://doi.org/10.1126/science.290.5497.1756, 2000. a
Wohltmann, I., von der Gathen, P., Lehmann, R., Maturilli, M., Deckelmann, H.,
Manney, G. L., Davies, J., Tarasick, D., Jepsen, N., Kivi, R., Lyall, N., and
Rex, M.: Near-complete local reduction of Arctic stratospheric ozone by
severe chemical Loss in Spring 2020, Geophys. Res. Lett., 47,
e2020GL089547, https://doi.org/10.1029/2020GL089547, 2020. a
Short summary
We examined 11 winters of lidar measurements of polar stratospheric clouds (PSCs), performed in Kiruna, northern Sweden. We discriminated cases with and without mountain lee waves present. We found that under mountain-lee-wave conditions PSCs are on average at higher altitudes and are more likely to contain ice. Without such waves present, most PSCs consist of nitric acid.
We examined 11 winters of lidar measurements of polar stratospheric clouds (PSCs), performed in...
Altmetrics
Final-revised paper
Preprint