Articles | Volume 23, issue 9
https://doi.org/10.5194/acp-23-4977-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-4977-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Atmospheric fluorescent bioaerosol concentrations measured during 18 months in a coniferous forest in the south of Sweden
Madeleine Petersson Sjögren
Department of Design Sciences, Lund University, Lund, Sweden
Malin Alsved
Department of Design Sciences, Lund University, Lund, Sweden
Tina Šantl-Temkiv
Department of Biology, Microbiology Section and iCLIMATE Aarhus
University Interdisciplinary Centre for Climate Change, Aarhus University,
Aarhus, Denmark
Thomas Bjerring Kristensen
Department of Physics, Lund University, Lund, Sweden
Force Technology, 2605 Brøndby, Denmark
Jakob Löndahl
CORRESPONDING AUTHOR
Department of Design Sciences, Lund University, Lund, Sweden
Related authors
No articles found.
Jonas K. F. Jakobsson, Deepak B. Waman, Vaughan T. J. Phillips, and Thomas Bjerring Kristensen
Atmos. Chem. Phys., 22, 6717–6748, https://doi.org/10.5194/acp-22-6717-2022, https://doi.org/10.5194/acp-22-6717-2022, 2022
Short summary
Short summary
Long-lived cold-layer clouds at subzero temperatures are observed to be remarkably persistent in their generation of ice particles and snow precipitation. There is uncertainty about why this is so. This motivates the present lab study to observe the long-term ice-nucleating ability of aerosol samples from the real troposphere. Time dependence of their ice nucleation is observed to be weak in lab experiments exposing the samples to isothermal conditions for up to about 10 h.
Kimmo Korhonen, Thomas Bjerring Kristensen, John Falk, Vilhelm B. Malmborg, Axel Eriksson, Louise Gren, Maja Novakovic, Sam Shamun, Panu Karjalainen, Lassi Markkula, Joakim Pagels, Birgitta Svenningsson, Martin Tunér, Mika Komppula, Ari Laaksonen, and Annele Virtanen
Atmos. Chem. Phys., 22, 1615–1631, https://doi.org/10.5194/acp-22-1615-2022, https://doi.org/10.5194/acp-22-1615-2022, 2022
Short summary
Short summary
We investigated the ice-nucleating abilities of particulate emissions from a modern diesel engine using the portable ice-nuclei counter SPIN, a continuous-flow diffusion chamber instrument. Three different fuels were studied without blending, including fossil diesel and two renewable fuels, testing different emission aftertreatment systems and photochemical aging. We found that the diesel emissions were inefficient ice nuclei, and aging had no or little effect on their ice-nucleating abilities.
Thomas Bjerring Kristensen, John Falk, Robert Lindgren, Christina Andersen, Vilhelm B. Malmborg, Axel C. Eriksson, Kimmo Korhonen, Ricardo Luis Carvalho, Christoffer Boman, Joakim Pagels, and Birgitta Svenningsson
Atmos. Chem. Phys., 21, 8023–8044, https://doi.org/10.5194/acp-21-8023-2021, https://doi.org/10.5194/acp-21-8023-2021, 2021
Short summary
Short summary
Residential biomass combustion is a major anthropogenic source of aerosol particles on regional and global scales. Nevertheless, little is known about those aerosol particles' ability to act as cloud condensation nuclei (CCN) and thus influence cloud properties and climate. Our study shows a strong link between the potassium content in the fuel and emissions of CCN for different stove technologies. Previous studies may have underestimated the anthropogenic climate impact of these emissions.
Cited articles
Alsved, M., Bourouiba, L., Duchaine, C., Löndahl, J., Marr, L. C.,
Parker, S. T., Prussin, A. J., and Thomas, R. J.: Natural sources and
experimental generation of bioaerosols: Challenges and perspectives, Aerosol
Sci. Technol., 54, 547–571, https://doi.org/10.1080/02786826.2019.1682509, 2019.
Artaxo, P. and Hansson, H.-C.: Size distribution of biogenic aerosol
particles from the amazon basin, Atmos. Environ., 29, 393–402,
https://doi.org/10.1016/1352-2310(94)00178-N, 1995.
Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G.,
Fall, R., Knight, R., and Fierer, N.: Characterization of airborne microbial
communities at a high-elevation site and their potential to act as
atmospheric ice nuclei, Appl. Environ. Microbiol., 75, 5121–5130,
https://doi.org/10.1128/aem.00447-09, 2009.
Brown, J. K. M. and Hovmøller, M. S.: Aerial Dispersal of Pathogens on
the Global and Continental Scales and Its Impact on Plant Disease, Science,
297, 537–541, https://doi.org/10.1126/science.1072678, 2002.
Burrows, S. M., Elbert, W., Lawrence, M. G., and Pöschl, U.: Bacteria in the global atmosphere – Part 1: Review and synthesis of literature data for different ecosystems, Atmos. Chem. Phys., 9, 9263–9280, https://doi.org/10.5194/acp-9-9263-2009, 2009a.
Burrows, S. M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl, U., and Lawrence, M. G.: Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems, Atmos. Chem. Phys., 9, 9281–9297, https://doi.org/10.5194/acp-9-9281-2009, 2009b.
Despres, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S.,
Buryak, G., Frohlich-Nowoisky, J., Elbert, W., Andreae, M. O., Poschl, U.,
and Jaenicke, R.: Primary biological aerosol particles in the atmosphere: a
review, Tellus B, 64, 15598
https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., and Jaenicke, R.:
The ice nucleating ability of pollen: Part I: Laboratory studies in
deposition and condensation freezing modes, Atmos. Res., 58, 75–87,
https://doi.org/10.1016/S0169-8095(01)00091-6, 2001.
Franze, T., Weller, M. G., Niessner, R., and Pöschl, U.: Protein
nitration by polluted air, Environ. Sci. Technol., 39, 1673–1678,
https://doi.org/10.1021/es0488737, 2005.
Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pöhlker, C., Fröhlich-Nowoisky, J., Schmer, B., Després, V. R., Engling, G., Gallagher, M., Stone, E., Pöschl, U., and Huffman, J. A.: Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and rainy periods in a semi-arid forest, Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, 2016.
Gregory, P. H. and Hirst, J. M.: The Summer Air-Spora at Rothamsted in 1952,
Microbiology, 17, 135–152, https://doi.org/10.1099/00221287-17-1-135, 1957.
Griffin, D. W., Kubilay, N., Koçak, M., Gray, M. A., Borden, T. C., and
Shinn, E. A.: Airborne desert dust and aeromicrobiology over the Turkish
Mediterranean coastline, Atmos. Environ., 41, 4050–4062, https://doi.org/10.1016/j.atmosenv.2007.01.023, 2007.
Grinn-Gofron, A. and Bosiacka, B.: Effects of meteorological factors on the
composition of selected fungal spores in the air, Aerobiologia (Bologna),
31, 63–72, https://doi.org/10.1007/s10453-014-9347-1, 2015.
Heald, C. L. and Spracklen, D. V.: Atmospheric budget of primary biological
aerosol particles from fungal spores, Geophys. Res. Lett., 36, L09806,
https://doi.org/10.1029/2009GL037493, 2009.
Healy, D. A., Huffman, J. A., O'Connor, D. J., Pöhlker, C., Pöschl, U., and Sodeau, J. R.: Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques, Atmos. Chem. Phys., 14, 8055–8069, https://doi.org/10.5194/acp-14-8055-2014, 2014.
Heliasz, M. and Biermann, T.: ICOS ATC NRT Meteo growing time series, Hyltemossa (70.0 m), 2022-03-01–2022-08-14, ICOS RI [data set], https://hdl.handle.net/11676/jW7oCGwqLrA4JsrPH5dh78On, 2022a.
Heliasz, M. and Biermann, T.: ICOS ATC Meteo Release, Hyltemossa (70.0 m), 2017-09-26–2022-02-28, ICOS RI [data set], https://hdl.handle.net/11676/L27iDe53nai2M5MSKRaZM6Jo, 2022b.
Hill, S. C., Pinnick, R. G., Nachman, P., Chen, G., Chang, R. K., Mayo, M.
W., and Fernandez, G. L.: Aerosol-fluorescence spectrum analyzer: real-time
measurement of emission spectra of airborne biological particles, Appl. Opt.,
34, 7149–7155, https://doi.org/10.1364/ao.34.007149, 1995.
Hill, T. C. J., DeMott, P. J., Tobo, Y., Fröhlich-Nowoisky, J., Moffett, B. F., Franc, G. D., and Kreidenweis, S. M.: Sources of organic ice nucleating particles in soils, Atmos. Chem. Phys., 16, 7195–7211, https://doi.org/10.5194/acp-16-7195-2016, 2016.
Hirst, J. M. and Stedman, O. J.: DRY LIBERATION OF FUNGUS SPORES BY
RAINDROPS, J. Gen. Microbiol., 33, 335–344, https://doi.org/10.1099/00221287-33-2-335, 1963.
Huffman, J. A., Treutlein, B., and Pöschl, U.: Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe, Atmos. Chem. Phys., 10, 3215–3233, https://doi.org/10.5194/acp-10-3215-2010, 2010.
Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S., Artaxo, P., Martin, S. T., Andreae, M. O., and Pöschl, U.: Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08, Atmos. Chem. Phys., 12, 11997–12019, https://doi.org/10.5194/acp-12-11997-2012, 2012.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B., Crouzy, B., Tummon,
F., Shoshanim, O., Damit, B., Schneider, J., Sivaprakasam, V., Zawadowicz,
M. A., Crawford, I., Gallagher, M., Topping, D., Doughty, D. C., Hill, S.
C., and Pan, Y. L.: Real-time sensing of bioaerosols: Review and current
perspectives, Aerosol Sci. Tech., 54, 465–495, https://doi.org/10.1080/02786826.2019.1664724, 2019.
Iida, K., Sakurai, H., Saito, K., and Ehara, K.: Inkjet aerosol generator as
monodisperse particle number standard, Aerosol Sci. Tech., 48, 789–802, 2014.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on
atmospheric bioaerosol concentrations–a review, Sci. Total Environ., 326,
151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021, 2004.
Kim, K.-H., Kabir, E., and Jahan, S. A.: Airborne bioaerosols and their
impact on human health, J. Environ. Sci. (China), 67, 23–35,
https://doi.org/10.1016/j.jes.2017.08.027, 2018.
Kim, S., Park, H., Gruszewski, H. A., Schmale, D. G., and Jung, S.:
Vortex-induced dispersal of a plant pathogen by raindrop impact, P. Natl. Acad. Sci. USA, 116, 4917–4922,
https://doi.org/10.1073/pnas.1820318116, 2019.
Lacey, J. and Dutkiewicz, J.: Bioaerosols and occupational lung disease,
J. Aerosol Sci., 25, 1371–1404, https://doi.org/10.1016/0021-8502(94)90215-1, 1994.
Li, X., Huang, S., and Sun, Z.: Technology and equipment development in
laser-induced fluorescence-based remote and field detection of biological
aerosols, Journal of Biosafety and Biosecurity, 1, 113–122, https://doi.org/10.1016/j.jobb.2019.08.005, 2019.
Lieberherr, G., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Gysel-Beer, M., Konzelmann, T., Manzano, J., Mihajlovic, A., Moallemi, A., O'Connor, D., Sikoparija, B., Sauvageat, E., Tummon, F., and Vasilatou, K.: Assessment of real-time bioaerosol particle counters using reference chamber experiments, Atmos. Meas. Tech., 14, 7693–7706, https://doi.org/10.5194/amt-14-7693-2021, 2021.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
L. U. Centre for Environmental and Climate Research (CEC): Meteorological – NRT data, https://www.icos-cp.eu/observations/carbon-portal,
last access: 24 April 2023.
Madelin, T. M.: Fungal aerosols: A review, J. Aerosol Sci., 25,
1405–1412, https://doi.org/10.1016/0021-8502(94)90216-X, 1994.
Moore, R. A., Hanlon, R., Powers, C., Schmale, D. G., and Christner, B. C.:
Scavenging of Sub-Micron to Micron-Sized Microbial Aerosols during Simulated
Rainfall, Atmosphere, 11, 80, https://doi.org/10.3390/atmos11010080, 2020.
Norros, V., Rannik, Ü., Hussein, T., Petäjä, T., Vesala, T., and
Ovaskainen, O.: Do small spores disperse further than large spores?,
Ecology, 95, 1612–1621, 2014.
Oliveira, M., Ribeiro, H., Delgado, J. L., and Abreu, I.: The effects of
meteorological factors on airborne fungal spore concentration in two areas
differing in urbanisation level, Int. J. Biometeorol.,
53, 61–73, https://doi.org/10.1007/s00484-008-0191-2, 2009.
Petersson Sjögren, M., Alsved, M., Šantl-Temkiv, T., Bjerring
Kristensen, T., and Löndahl, J.: Petersson Sjögren et al 2023
Biotrak Data Hyltemossa, Zenodo [data set],
https://doi.org/10.5281/zenodo.7801591, 2023.
Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L.,
Heymsfield, A. J., Twohy, C. H., Prenni, A. J., and Prather, K. A.: In situ
detection of biological particles in cloud ice-crystals, Nat. Geosci.,
2, 398–401, https://doi.org/10.1038/ngeo521, 2009.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S.
T., Artaxo, P., Garland, R. M., Wollny, A. G., and Pöschl, U.: Relative
roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon
basin, Nat. Geosci., 2, 402, https://doi.org/10.1038/ngeo517, 2009a.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S.
T., Artaxo, P., Garland, R. M., Wollny, A. G., and Pöschl, U.: Relative
roles of biogenic emissions and Saharan dust as ice nuclei in the Amazon
basin, Nat. Geosci., 2, 402–405, https://doi.org/10.1038/ngeo517, 2009b.
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman,
J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J.
L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D.,
Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R.,
Artaxo, P., and Andreae, M. O.: Rainforest aerosols as biogenic nuclei of
clouds and precipitation in the Amazon, Science, 329, 1513–1516,
https://doi.org/10.1126/science.1191056, 2010.
Saari, S., Reponen, T., and Keskinen, J.: Performance of Two
Fluorescence-Based Real-Time Bioaerosol Detectors: BioScout vs. UVAPS,
Aerosol Sci. Tech., 48, 371–378, https://doi.org/10.1080/02786826.2013.877579, 2014.
Saari, S., Niemi, J., Rönkkö, T.,
Kuuluvainen, H., Järvinen, A., Pirjola, L., Aurela, M.,
Hillamo, R., and Keskinen, J.: Seasonal and Diurnal Variations of
Fluorescent Bioaerosol Concentration and Size Distribution in the Urban
Environment, Aerosol Air Qual. Res., 15, 572–581,
https://doi.org/10.4209/aaqr.2014.10.0258, 2015.
Šantl-Temkiv, T., Sikoparija, B., Maki, T., Carotenuto, F., Amato, P.,
Yao, M., Morris, C. E., Schnell, R., Jaenicke, R., Pöhlker, C., DeMott,
P. J., Hill, T. C. J., and Huffman, J. A.: Bioaerosol field measurements:
Challenges and perspectives in outdoor studies, Aerosol Sci. Tech., 54,
520–546, https://doi.org/10.1080/02786826.2019.1676395, 2020.
Šaulienė, I., Šukienė, L., Daunys, G., Valiulis, G., Vaitkevičius, L., Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B., Crouzy, B., and Sofiev, M.: Automatic pollen recognition with the Rapid-E particle counter: the first-level procedure, experience and next steps, Atmos. Meas. Tech., 12, 3435–3452, https://doi.org/10.5194/amt-12-3435-2019, 2019.
Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy, B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou, K.: Real-time pollen monitoring using digital holography, Atmos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-13-1539-2020, 2020.
Schiele, J., Rabe, F., Schmitt, M., Glaser, M., Häring, F., Brunner, J.
O., Bauer, B., Schuller, B., Traidl-Hoffmann, C., and Damialis, A.:
Automated classification of airborne pollen using neural networks, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society, Annual International Conference, 2019, 4474–4478, https://doi.org/10.1109/EMBC.2019.8856910, 2019.
Schumacher, C. J., Pöhlker, C., Aalto, P., Hiltunen, V., Petäjä, T., Kulmala, M., Pöschl, U., and Huffman, J. A.: Seasonal cycles of fluorescent biological aerosol particles in boreal and semi-arid forests of Finland and Colorado, Atmos. Chem. Phys., 13, 11987–12001, https://doi.org/10.5194/acp-13-11987-2013, 2013.
Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., and Glovsky, M.
M.: Birch pollen rupture and the release of aerosols of respirable
allergens, Clin. Exp. Allergy, 34, 1591–1596,
https://doi.org/10.1111/j.1365-2222.2004.02078.x, 2004.
Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study, Atmos. Chem. Phys., 13, 225–243, https://doi.org/10.5194/acp-13-225-2013, 2013.
Valsan, A. E., Ravikrishna, R., Biju, C. V., Pöhlker, C., Després, V. R., Huffman, J. A., Pöschl, U., and Gunthe, S. S.: Fluorescent biological aerosol particle measurements at a tropical high-altitude site in southern India during the southwest monsoon season, Atmos. Chem. Phys., 16, 9805–9830, https://doi.org/10.5194/acp-16-9805-2016, 2016.
Womack, A. M., Artaxo, P. E., Ishida, F. Y., Mueller, R. C., Saleska, S. R., Wiedemann, K. T., Bohannan, B. J. M., and Green, J. L.: Characterization of active and total fungal communities in the atmosphere over the Amazon rainforest, Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, 2015.
Yu, X., Wang, Z., Zhang, M., Kuhn, U., Xie, Z., Cheng, Y., Pöschl, U., and Su, H.: Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River Delta of China: potential impacts of combustion-related aerosol particles, Atmos. Chem. Phys., 16, 11337–11348, https://doi.org/10.5194/acp-16-11337-2016, 2016.
Short summary
Biological aerosol particles (bioaerosols) affect human health by spreading diseases and may be important agents for atmospheric processes, but their abundance and size distributions are largely unknown. We measured bioaerosols for 18 months in the south of Sweden to investigate bioaerosol temporal variations and their couplings to meteorology. Our results showed that the bioaerosols emissions were coupled to meteorological parameters and depended strongly on the season.
Biological aerosol particles (bioaerosols) affect human health by spreading diseases and may be...
Altmetrics
Final-revised paper
Preprint