Articles | Volume 23, issue 17
https://doi.org/10.5194/acp-23-10191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-10191-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The atmospheric fate of 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH): spatial patterns, seasonal variability, and deposition to Canadian coastal regions
Jenny Oh
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Chubashini Shunthirasingham
Environment and Climate Change Canada, Downsview, 4905 Dufferin St, North York, Ontario, M3H 5T4, Canada
Ying Duan Lei
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Faqiang Zhan
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Yuening Li
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Abigaëlle Dalpé Castilloux
Institut des Sciences de la Mer de Rimouski, Université du Quebec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Amina Ben Chaaben
Institut des Sciences de la Mer de Rimouski, Université du Quebec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Institut des Sciences de la Mer de Rimouski, Université du Quebec à Rimouski, 300 allée des Ursulines, Rimouski, Québec, G5L 3A1, Canada
Kelsey Lee
School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
Frank A. P. C. Gobas
School of Resource and Environmental Management, Simon Fraser University, 8888 University Dr, Burnaby, British Columbia, V5A 1S6, Canada
Sabine Eckhardt
Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
Nick Alexandrou
Environment and Climate Change Canada, Downsview, 4905 Dufferin St, North York, Ontario, M3H 5T4, Canada
Hayley Hung
Environment and Climate Change Canada, Downsview, 4905 Dufferin St, North York, Ontario, M3H 5T4, Canada
Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
Related authors
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Sara Herrero-Anta, Sabine Eckhardt, Nikolaos Evangeliou, Stefania Gilardoni, Sandra Graßl, Dominic Heslin-Rees, Stelios Kazadzis, Natalia Kouremeti, Radovan Krejci, David Mateos, Mauro Mazzola, Christoph Ritter, Roberto Román, Kerstin Stebel, and Tymon Zielinski
EGUsphere, https://doi.org/10.5194/egusphere-2025-3423, https://doi.org/10.5194/egusphere-2025-3423, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
In summer 2019, unusually high aerosol levels were measured in the Arctic, linked to wildfires, volcanic eruptions, and anthropogenic pollution. Using various instruments and models, we traced their origins and found good agreement between methods. The particles were mostly non-absorbing, but still we found a reduction of the solar radiation reaching the surface. This study shows that combining different measurements improves our understanding of how distant events affect the Arctic climate.
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
Atmos. Chem. Phys., 25, 7719–7739, https://doi.org/10.5194/acp-25-7719-2025, https://doi.org/10.5194/acp-25-7719-2025, 2025
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution at this high Arctic station, with a persistent smoke layer extending over the whole troposphere in summer.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Nikolaos Evangeliou, Ondřej Tichý, Marit Svendby Otervik, Sabine Eckhardt, Yves Balkanski, and Didier A. Hauglustaine
Aerosol Research, 3, 155–174, https://doi.org/10.5194/ar-3-155-2025, https://doi.org/10.5194/ar-3-155-2025, 2025
Short summary
Short summary
The COVID-19 lockdown measures in 2020 reduced emissions of various substances, improving air quality. However, PM2.5 stayed unchanged due to NH3 and related chemical transformations. Higher humidity favoured more SO42- production, as did the accumulated NH3. Excess NH3 reacted with HNO3 to make NO3-. In high-NH3 conditions such as those in 2020, a small reduction in NOx levels drove faster oxidation of NO3- and slower deposition of total inorganic NO3-, causing high secondary PM2.5.
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025, https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Short summary
Past atmospheric NH3 pollution in south-eastern Europe was reconstructed by analysing ammonium in an ice core drilled at the Mount Elbrus (Caucasus, Russia). The observed 3.5-fold increase in ice concentrations between 1750 and 1990 CE is in good agreement with estimated past dominant ammonia emissions from agriculture, mainly from south European Russia and Türkiye. In contrast to present-day conditions, the ammonium level observed in 1750 CE indicates significant natural emissions at that time.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Karl Espen Yttri, Are Bäcklund, Franz Conen, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Anne Kasper-Giebl, Avram Gold, Hans Gundersen, Cathrine Lund Myhre, Stephen Matthew Platt, David Simpson, Jason D. Surratt, Sönke Szidat, Martin Rauber, Kjetil Tørseth, Martin Album Ytre-Eide, Zhenfa Zhang, and Wenche Aas
Atmos. Chem. Phys., 24, 2731–2758, https://doi.org/10.5194/acp-24-2731-2024, https://doi.org/10.5194/acp-24-2731-2024, 2024
Short summary
Short summary
We discuss carbonaceous aerosol (CA) observed at the high Arctic Zeppelin Observatory (2017 to 2020). We find that organic aerosol is a significant fraction of the Arctic aerosol, though less than sea salt aerosol and mineral dust, as well as non-sea-salt sulfate, originating mainly from anthropogenic sources in winter and from natural sources in summer, emphasizing the importance of wildfires for biogenic secondary organic aerosol and primary biological aerosol particles observed in the Arctic.
Yuening Li, Faqiang Zhan, Yushan Su, Ying Duan Lei, Chubashini Shunthirasingham, Zilin Zhou, Jonathan P. D. Abbatt, Hayley Hung, and Frank Wania
Atmos. Meas. Tech., 17, 715–729, https://doi.org/10.5194/amt-17-715-2024, https://doi.org/10.5194/amt-17-715-2024, 2024
Short summary
Short summary
A simple device for sampling gases from the atmosphere without the help of pumps was calibrated for an important group of hazardous air pollutants called polycyclic aromatic compounds (PACs). While the sampler appeared to perform well when used for relatively short periods of up to several months, some PACs were lost from the sampler during longer deployments. Sampling rates that can be used to quantitatively interpret the quantities of PACs taken up in the device have been derived.
Ondřej Tichý, Sabine Eckhardt, Yves Balkanski, Didier Hauglustaine, and Nikolaos Evangeliou
Atmos. Chem. Phys., 23, 15235–15252, https://doi.org/10.5194/acp-23-15235-2023, https://doi.org/10.5194/acp-23-15235-2023, 2023
Short summary
Short summary
We show declining trends in NH3 emissions over Europe for 2013–2020 using advanced dispersion and inverse modelling and satellite measurements from CrIS. Emissions decreased by −26% since 2013, showing that the abatement strategies adopted by the European Union have been very efficient. Ammonia emissions are low in winter and peak in summer due to temperature-dependent soil volatilization. The largest decreases were observed in central and western Europe in countries with high emissions.
Anja Eichler, Michel Legrand, Theo M. Jenk, Susanne Preunkert, Camilla Andersson, Sabine Eckhardt, Magnuz Engardt, Andreas Plach, and Margit Schwikowski
The Cryosphere, 17, 2119–2137, https://doi.org/10.5194/tc-17-2119-2023, https://doi.org/10.5194/tc-17-2119-2023, 2023
Short summary
Short summary
We investigate how a 250-year history of the emission of air pollutants (major inorganic aerosol constituents, black carbon, and trace species) is preserved in ice cores from four sites in the European Alps. The observed uniform timing in species-dependent longer-term concentration changes reveals that the different ice-core records provide a consistent, spatially representative signal of the pollution history from western European countries.
Cynthia H. Whaley, Rashed Mahmood, Knut von Salzen, Barbara Winter, Sabine Eckhardt, Stephen Arnold, Stephen Beagley, Silvia Becagli, Rong-You Chien, Jesper Christensen, Sujay Manish Damani, Xinyi Dong, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Gregory Faluvegi, Mark Flanner, Joshua S. Fu, Michael Gauss, Fabio Giardi, Wanmin Gong, Jens Liengaard Hjorth, Lin Huang, Ulas Im, Yugo Kanaya, Srinath Krishnan, Zbigniew Klimont, Thomas Kühn, Joakim Langner, Kathy S. Law, Louis Marelle, Andreas Massling, Dirk Olivié, Tatsuo Onishi, Naga Oshima, Yiran Peng, David A. Plummer, Olga Popovicheva, Luca Pozzoli, Jean-Christophe Raut, Maria Sand, Laura N. Saunders, Julia Schmale, Sangeeta Sharma, Ragnhild Bieltvedt Skeie, Henrik Skov, Fumikazu Taketani, Manu A. Thomas, Rita Traversi, Kostas Tsigaridis, Svetlana Tsyro, Steven Turnock, Vito Vitale, Kaley A. Walker, Minqi Wang, Duncan Watson-Parris, and Tahya Weiss-Gibbons
Atmos. Chem. Phys., 22, 5775–5828, https://doi.org/10.5194/acp-22-5775-2022, https://doi.org/10.5194/acp-22-5775-2022, 2022
Short summary
Short summary
Air pollutants, like ozone and soot, play a role in both global warming and air quality. Atmospheric models are often used to provide information to policy makers about current and future conditions under different emissions scenarios. In order to have confidence in those simulations, in this study we compare simulated air pollution from 18 state-of-the-art atmospheric models to measured air pollution in order to assess how well the models perform.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Stephen M. Platt, Øystein Hov, Torunn Berg, Knut Breivik, Sabine Eckhardt, Konstantinos Eleftheriadis, Nikolaos Evangeliou, Markus Fiebig, Rebecca Fisher, Georg Hansen, Hans-Christen Hansson, Jost Heintzenberg, Ove Hermansen, Dominic Heslin-Rees, Kim Holmén, Stephen Hudson, Roland Kallenborn, Radovan Krejci, Terje Krognes, Steinar Larssen, David Lowry, Cathrine Lund Myhre, Chris Lunder, Euan Nisbet, Pernilla B. Nizzetto, Ki-Tae Park, Christina A. Pedersen, Katrine Aspmo Pfaffhuber, Thomas Röckmann, Norbert Schmidbauer, Sverre Solberg, Andreas Stohl, Johan Ström, Tove Svendby, Peter Tunved, Kjersti Tørnkvist, Carina van der Veen, Stergios Vratolis, Young Jun Yoon, Karl Espen Yttri, Paul Zieger, Wenche Aas, and Kjetil Tørseth
Atmos. Chem. Phys., 22, 3321–3369, https://doi.org/10.5194/acp-22-3321-2022, https://doi.org/10.5194/acp-22-3321-2022, 2022
Short summary
Short summary
Here we detail the history of the Zeppelin Observatory, a unique global background site and one of only a few in the high Arctic. We present long-term time series of up to 30 years of atmospheric components and atmospheric transport phenomena. Many of these time series are important to our understanding of Arctic and global atmospheric composition change. Finally, we discuss the future of the Zeppelin Observatory and emerging areas of future research on the Arctic atmosphere.
Jessica L. McCarty, Juha Aalto, Ville-Veikko Paunu, Steve R. Arnold, Sabine Eckhardt, Zbigniew Klimont, Justin J. Fain, Nikolaos Evangeliou, Ari Venäläinen, Nadezhda M. Tchebakova, Elena I. Parfenova, Kaarle Kupiainen, Amber J. Soja, Lin Huang, and Simon Wilson
Biogeosciences, 18, 5053–5083, https://doi.org/10.5194/bg-18-5053-2021, https://doi.org/10.5194/bg-18-5053-2021, 2021
Short summary
Short summary
Fires, including extreme fire seasons, and fire emissions are more common in the Arctic. A review and synthesis of current scientific literature find climate change and human activity in the north are fuelling an emerging Arctic fire regime, causing more black carbon and methane emissions within the Arctic. Uncertainties persist in characterizing future fire landscapes, and thus emissions, as well as policy-relevant challenges in understanding, monitoring, and managing Arctic fire regimes.
Attilio Naccarato, Antonella Tassone, Maria Martino, Sacha Moretti, Antonella Macagnano, Emiliano Zampetti, Paolo Papa, Joshua Avossa, Nicola Pirrone, Michelle Nerentorp, John Munthe, Ingvar Wängberg, Geoff W. Stupple, Carl P. J. Mitchell, Adam R. Martin, Alexandra Steffen, Diana Babi, Eric M. Prestbo, Francesca Sprovieri, and Frank Wania
Atmos. Meas. Tech., 14, 3657–3672, https://doi.org/10.5194/amt-14-3657-2021, https://doi.org/10.5194/amt-14-3657-2021, 2021
Short summary
Short summary
Mercury monitoring in support of the Minamata Convention requires effective and reliable analytical tools. Passive sampling is a promising approach for creating a sustainable long-term network for atmospheric mercury with improved spatial resolution and global coverage. In this study the analytical performance of three passive air samplers (CNR-PAS, IVL-PAS, and MerPAS) was assessed over extended deployment periods and the accuracy of concentrations was judged by comparison with active sampling.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Nikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Anne Cozic, Martin Van Damme, Pierre-François Coheur, Lieven Clarisse, Mark W. Shephard, Karen E. Cady-Pereira, and Didier Hauglustaine
Atmos. Chem. Phys., 21, 4431–4451, https://doi.org/10.5194/acp-21-4431-2021, https://doi.org/10.5194/acp-21-4431-2021, 2021
Short summary
Short summary
Ammonia, a substance that has played a key role in sustaining life, has been increasing in the atmosphere, affecting climate and humans. Understanding the reasons for this increase is important for the beneficial use of ammonia. The evolution of satellite products gives us the opportunity to calculate ammonia emissions easier. We calculated global ammonia emissions over the last 10 years, incorporated them into a chemistry model and recorded notable improvement in reproducing observations.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Cited articles
Alaee, M., Arias, P., Sjödin, A., and Bergman, Å.: An overview of
commercially used brominated flame retardants, their applications, their use
patterns in different countries/regions and possible modes of release,
Environ. Int., 29, 683–689, https://doi.org/10.1016/S0160-4120(03)00121-1, 2003.
Arsenault, G., Lough, A., Marvin, C., McAlees, A., McCrindle, R., MacInnis,
G., Pleskach, K., Potter, D., Riddell, N., Sverko, E., Tittlemier, S., and
Tomy, G.: Structure characterization and thermal stabilities of the isomers
of the brominated flame retardant
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane, Chemosphere, 72, 1163–1170,
https://doi.org/10.1016/j.chemosphere.2008.03.044, 2008.
Asnake, S., Pradhan, A., Banjop-Kharlyngdoh, J., Modig, C., and Olsson,
P.-E.: 1,2-dibromo-4-(1,2 dibromoethyl) cyclohexane (TBECH)–mediated
steroid hormone receptor activation and gene regulation in chicken LMH
cells, Environ. Toxicol. Chem., 33, 891–899, https://doi.org/10.1002/etc.2509, 2014.
Baskaran, S., Lei, Y. D., and Wania, F.: Reliable Prediction of the
Octanol–Air Partition Ratio, Environ. Toxicol. Chem., 40, 3166–3180,
https://doi.org/10.1002/etc.5201, 2021.
Betts, K.: New flame retardants detected in indoor and outdoor environments,
Environ. Sci. Technol., 42, 6778–6778, https://doi.org/10.1021/es802145r, 2008.
Bohlin, P., Audy, O., Škrdlíková, L., Kukučka, P.,
Přibylová, P., Prokeš, R., Vojta, Š., and Klánová,
J.: Outdoor passive air monitoring of semi volatile organic compounds
(SVOCs): a critical evaluation of performance and limitations of
polyurethane foam (PUF) disks, Environ. Sci.-Proc. Imp., 16, 433–444,
https://doi.org/10.1039/C3EM00644A, 2014.
Booij, K. and Smedes, F.: An Improved Method for Estimating in Situ Sampling
Rates of Nonpolar Passive Samplers, Environ. Sci. Technol., 44, 6789–6794,
https://doi.org/10.1021/es101321v, 2010.
Carlsson, P., Vrana, B., Sobotka, J., Borgå, K., Bohlin Nizzetto, P.,
and Varpe, Ø.: New brominated flame retardants and dechlorane plus in the
Arctic: Local sources and bioaccumulation potential in marine benthos,
Chemosphere, 211, 1193–1202, https://doi.org/10.1016/j.chemosphere.2018.07.158, 2018.
Cequier, E., Ionas, A. C., Covaci, A., Marcé, R. M., Becher, G., and
Thomsen, C.: Occurrence of a Broad Range of Legacy and Emerging Flame
Retardants in Indoor Environments in Norway, Environ. Sci. Technol., 48,
6827–6835, https://doi.org/10.1021/es500516u, 2014.
Christensen, J. R., MacDuffee, M., Macdonald, R. W., Whiticar, M., and Ross,
P. S.: Persistent Organic Pollutants in British Columbia Grizzly Bears:
Consequence of Divergent Diets, Environ. Sci. Technol., 39, 6952–6960,
https://doi.org/10.1021/es050749f, 2005.
Curran, I. H. A., Liston, V., Nunnikhoven, A., Caldwell, D., Scuby, M. J.
S., Pantazopoulos, P., Rawn, D. F. K., Coady, L., Armstrong, C., Lefebvre,
D. E., and Bondy, G. S.: Toxicologic effects of 28-day dietary exposure to
the flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (TBECH) in
F344 rats, Toxicology, 377, 1–13, https://doi.org/10.1016/j.tox.2016.12.001, 2017.
de Wit, C. A., Alaee, M., and Muir, D. C. G.: Levels and trends of
brominated flame retardants in the Arctic, Chemosphere, 64, 209–233,
https://doi.org/10.1016/j.chemosphere.2005.12.029, 2006.
Drage, D. S., Newton, S., de Wit, C. A., and Harrad, S.: Concentrations of
legacy and emerging flame retardants in air and soil on a transect in the UK
West Midlands, Chemosphere, 148, 195–203, https://doi.org/10.1016/j.chemosphere.2016.01.034, 2016.
ECCC: Information received in response to the 2017 Inventory Update
(chemicals and polymers), ECCC [data set], https://open.canada.ca/data/en/dataset/ec43e97c-4487-442e-ab2b-2b9eaf77ee28 (last access: 26 April 2023),
2017.
ECCC: Detailed categorization results of the Domestic Substances List, ECCC
[data set], https://open.canada.ca/data/en/dataset/1d946396-cf9a-4fa1-8942-4541063bfba4 (last access: 26 April 2023),
2019.
ECCC: Federal Whales Initiative – Freshwater and sediment data (Pacific
Region), ECCC [data set], https://open.canada.ca/data/en/dataset/04f5b200-bab1-4ecf-bd1a-0cd2f55cb34d (last access: 14 January 2023),
2022.
Gemmill, B., Pleskach, K., Peters, L., Palace, V., Wautier, K., Park, B.,
Darling, C., Rosenberg, B., McCrindle, R., and Tomy, G. T.: Toxicokinetics
of tetrabromoethylcyclohexane (TBECH) in juvenile brown trout (Salmo trutta)
and effects on plasma sex hormones, Aquat. Toxicol., 101, 309–317,
https://doi.org/10.1016/j.aquatox.2010.11.003, 2011.
Geng, B., Tan, Y., Zhu, L., and Chen, F.: Stable polypropylene (PP) resin to
be bonded with glass fiber, patent no.
CN107815021A, https://worldwide.espacenet.com/patent/search/family/061609775/publication/CN107815021A?q=CN107815021A (last access: 8 September 2023), 2018.
Genisoglu, M., Sofuoglu, A., Kurt-Karakus, P. B., Birgul, A., and Sofuoglu,
S. C.: Brominated flame retardants in a computer technical service: Indoor
air gas phase, submicron (PM1) and coarse (PM10) particles, associated
inhalation exposure, and settled dust, Chemosphere, 231, 216–224, https://doi.org/10.1016/j.chemosphere.2019.05.077, 2019.
Gentes, M.-L., Letcher, R. J., Caron-Beaudoin, É., and Verreault, J.:
Novel Flame Retardants in Urban-Feeding Ring-Billed Gulls from the St.
Lawrence River, Canada, Environ. Sci. Technol., 46, 9735–9744, https://doi.org/10.1021/es302099f, 2012.
Hoff, J. T., Mackay, D., Gillham, R., and Shiu, W. Y.: Partitioning of
organic chemicals at the air-water interface in environmental systems,
Environ. Sci. Technol., 27, 2174–2180, https://doi.org/10.1021/es00047a026, 1993.
Hong, W.-J., Jia, H., Ding, Y., Li, W.-L., and Li, Y.-F.: Polychlorinated
biphenyls (PCBs) and halogenated flame retardants (HFRs) in multi-matrices
from an electronic waste (e-waste) recycling site in Northern China, J.
Mater. Cycles Waste Manage., 20, 80–90, https://doi.org/10.1007/s10163-016-0550-8, 2018.
Ke, H. and Lv, X.: Material for high-glow wire wall switch panel, patent no.
CN111607161A, https://worldwide.espacenet.com/patent/search/family/072198230/publication/CN111607161A?q=CN111607161A (last access: 8 September 2023), 2020.
Khalaf, H., Larsson, A., Berg, H., McCrindle, R., Arsenault, G., and Olsson,
P.-E.: Diastereomers of the Brominated Flame Retardant 1,2-Dibromo-4-(1,2
dibromoethyl)cyclohexane Induce Androgen Receptor Activation in the HepG2
Hepatocellular Carcinoma Cell Line and the LNCaP Prostate Cancer Cell Line,
Environ. Health Persp., 117, 1853–1859, https://doi.org/10.1289/ehp.0901065, 2009.
Kutarna, S., Du, X., Diamond, M. L., Blum, A., and Peng, H.: Widespread
presence of chlorinated paraffins in consumer products, Environ. Sci.-Proc. Imp., 25, 893–900, https://doi.org/10.1039/D2EM00494A, 2023.
Larsson, A., Eriksson, L. A., Andersson, P. L., Ivarson, P., and Olsson,
P.-E.: Identification of the Brominated Flame Retardant
1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane as an Androgen Agonist, J. Med.
Chem., 49, 7366–7372, https://doi.org/10.1021/jm060713d, 2006.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of
organic chemicals?, Atmos. Environ., 38, 3557–3571, https://doi.org/10.1016/j.atmosenv.2004.03.039, 2004.
Li, Y., Zhan, F., Lei, Y. D., Shunthirasingham, C., Hung, H., and Wania, F.:
Field Calibration and PAS-SIM Model Evaluation of the XAD-Based Passive Air
Sampler for Semi-Volatile Organic Compounds, Environ. Sci. Technol., 57,
9224–9233, https://doi.org/10.1021/acs.est.3c00809, 2023.
Ma, W.-L., Li, W.-L., Zhang, Z.-F., Liu, L.-Y., Song, W.-W., Huo, C.-Y.,
Yuan, Y.-X., and Li, Y.-F.: Occurrence and source apportionment of
atmospheric halogenated flame retardants in Lhasa City in the Tibetan
Plateau, China, Sci. Total Environ., 607–608, 1109–1116, https://doi.org/10.1016/j.scitotenv.2017.07.112, 2017.
Marteinson, S. C., Bird, D. M., Letcher, R. J., Sullivan, K. M., Ritchie, I.
J., and Fernie, K. J.: Dietary exposure to technical hexabromocyclododecane
(HBCD) alters courtship, incubation and parental behaviors in American
kestrels (Falco sparverius), Chemosphere, 89, 1077–1083, https://doi.org/10.1016/j.chemosphere.2012.05.073, 2012a.
Marteinson, S. C., Letcher, R. J., Graham, L., Kimmins, S., Tomy, G.,
Palace, V. P., Ritchie, I. J., Gauthier, L. T., Bird, D. M., and Fernie, K.
J.: The Flame Retardant β-1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane: Fate, Fertility, and
Reproductive Success in American Kestrels (Falco sparverius), Environ. Sci.
Technol., 46, 8440–8447, https://doi.org/10.1021/es301032a,
2012b.
Marteinson, S. C., Bodnaryk, A., Fry, M., Riddell, N., Letcher, R. J.,
Marvin, C., Tomy, G. T., and Fernie, K. J.: A review of
1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane in the environment and
assessment of its persistence, bioaccumulation and toxicity, Environ. Res.,
195, 110497, https://doi.org/10.1016/j.envres.2020.110497,
2021.
Melymuk, L., Bohlin-Nizzetto, P., Kukučka, P., Vojta, Š., Kalina,
J., Čupr, P., and Klánová, J.: Seasonality and indoor/outdoor
relationships of flame retardants and PCBs in residential air, Environ.
Pollut., 218, 392–401, https://doi.org/10.1016/j.envpol.2016.07.018, 2016.
NASA: Earth Science Data Systems, NASA [data set], https://www.earthdata.nasa.gov/ (last access: 26 April 2023), 2015.
Newton, S., Sellström, U., and de Wit, C. A.: Emerging Flame Retardants,
PBDEs, and HBCDDs in Indoor and Outdoor Media in Stockholm, Sweden, Environ.
Sci. Technol., 49, 2912–2920, https://doi.org/10.1021/es505946e, 2015.
Newton, S., Sellström, U., Harrad, S., Yu, G., and de Wit, C. A.:
Comparisons of indoor active and passive air sampling methods for emerging
and legacy halogenated flame retardants in Beijing, China offices, Emerging
Contam., 2, 80–88, https://doi.org/10.1016/j.emcon.2016.02.001,
2016.
Noël, M., Dangerfield, N., Hourston, R. A. S., Belzer, W., Shaw, P.,
Yunker, M. B., and Ross, P. S.: Do trans-Pacific air masses deliver PBDEs to
coastal British Columbia, Canada?, Environ. Pollut., 157, 3404–3412,
https://doi.org/10.1016/j.envpol.2009.06.025, 2009.
Palm, A., Cousins, I. T., Mackay, D., Tysklind, M., Metcalfe, C., and Alaee,
M.: Assessing the environmental fate of chemicals of emerging concern: a
case study of the polybrominated diphenyl ethers, Environ. Pollut., 117,
195–213, https://doi.org/10.1016/S0269-7491(01)00276-7, 2002.
Park, B. J., Palace, V., Wautier, K., Gemmill, B., and Tomy, G.: Thyroid
Axis Disruption in Juvenile Brown Trout (Salmo trutta) Exposed to the Flame
Retardant β-Tetrabromoethylcyclohexane (β-TBECH) via the Diet,
Environ. Sci. Technol., 45, 7923–7927, https://doi.org/10.1021/es201530m, 2011.
Pasecnaja, E., Perkons, I., Bartkevics, V., and Zacs, D.: Legacy and
alternative brominated, chlorinated, and organophosphorus flame retardants
in indoor dust – levels, composition profiles, and human exposure in Latvia,
Environ. Sci. Pollut. R., 28, 25493–25502, https://doi.org/10.1007/s11356-021-12374-2, 2021.
Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A.: The Lagrangian particle dispersion model FLEXPART version 10.4, Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, 2019.
POPRC: SC-4/10− SC-4/18: The new POPs under the Stockholm Convention, Stockholm Convention on Persistent Organic Pollutants, https://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx (last access: 8 September 2023), 2009.
Porter, E., Crump, D., Egloff, C., Chiu, S., and Kennedy, S. W.: Use of an
avian hepatocyte assay and the avian toxchip polymerse chain reaction array
for testing prioritization of 16 organic flame retardants, Environ. Sci.
Technol., 33, 573–582, https://doi.org/10.1002/etc.2469, 2014.
Poster, D. L. and Baker, J. E.: Influence of Submicron Particles on
Hydrophobic Organic Contaminants in Precipitation. 1. Concentrations and
Distributions of Polycyclic Aromatic Hydrocarbons and Polychlorinated
Biphenyls in Rainwater, Environ. Sci. Technol., 30, 341–348, https://doi.org/10.1021/es9406804, 1996.
Ruan, Y., Zhang, X., Qiu, J.-W., Leung, K. M. Y., Lam, J. C. W., and Lam, P.
K. S.: Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame
Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human
Exposure, Environ. Sci. Technol., 52, 8183–8193, https://doi.org/10.1021/acs.est.8b02206, 2018.
Ruan, Y., Zhang, K., Lam, J. C. W., Wu, R., and Lam, P. K. S.:
Stereoisomer-specific occurrence, distribution, and fate of chiral
brominated flame retardants in different wastewater treatment systems in
Hong Kong, J. Hazard. Mater., 374, 211–218, https://doi.org/10.1016/j.jhazmat.2019.04.041, 2019.
Santillo, D., Labounskaia, I., Stringer, R., and Johnston, P.: Report on the
analysis of industrial wastewaters from the Frutarom VCM/PVC plant, near
Haifa, Israel, and adjacent shoreline sediments for organic contaminants,
Greenpeace Research Laboratories, 1–25, https://greenpeace.to/publications/TN_03_97.pdf (last access: 26 April 2023), 1997.
Shoeib, M., Ahrens, L., Jantunen, L., and Harner, T.: Concentrations in air
of organobromine, organochlorine and organophosphate flame retardants in
Toronto, Canada, Atmos. Environ., 99, 140–147, https://doi.org/10.1016/j.atmosenv.2014.09.040, 2014.
Shunthirasingham, C., Alexandrou, N., Brice, K. A., Dryfhout-Clark, H., Su,
K., Shin, C., Park, R., Pajda, A., Noronha, R., and Hung, H.: Temporal
trends of halogenated flame retardants in the atmosphere of the Canadian
Great Lakes Basin (2005–2014), Environ. Sci.-Proc. Imp., 20,
469–479, https://doi.org/10.1039/C7EM00549K, 2018.
Sun, Y., Francois, R., Pawlowicz, R., Maldonado, M. T., Stevens, S. W., and
Soon, M.: Distribution, sources and dispersion of polybrominated diphenyl
ethers in the water column of the Strait of Georgia, British Columbia,
Canada, Sci. Total Environ., 873, 162174, https://doi.org/10.1016/j.scitotenv.2023.162174, 2023.
Tao, F., Abdallah, M. A.-E., and Harrad, S.: Emerging and Legacy Flame
Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by
Emerging Flame Retardants?, Environ. Sci. Technol., 50, 13052–13061,
https://doi.org/10.1021/acs.est.6b02816, 2016.
Tao, F., Abou-Elwafa Abdallah, M., Ashworth, D. C., Douglas, P., Toledano,
M. B., and Harrad, S.: Emerging and legacy flame retardants in UK human milk
and food suggest slow response to restrictions on use of PBDEs and HBCDD,
Environ. Int., 105, 95–104, https://doi.org/10.1016/j.envint.2017.05.010, 2017.
Tomy, G. T., Pleskach, K., Arsenault, G., Potter, D., McCrindle, R., Marvin,
C. H., Sverko, E., and Tittlemier, S.: Identification of the Novel
Cycloaliphatic Brominated Flame Retardant
1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane in Canadian Arctic Beluga
(Delphinapterus leucas), Environ. Sci. Technol., 42, 543–549, https://doi.org/10.1021/es072043m, 2008.
UNECE: UNECE High-level Group for the Modernisation of Official Statistics,
UNECE, https://statswiki.unece.org/display/hlgbas/High-Level+Group+for+the+Modernisation+of+Official+Statistics (last access: 26 April 2023), 2018.
USEPA: How to Access the TSCA Inventory, USEPA [data set], https://www.epa.gov/tsca-inventory/how-access-tsca-inventory (last access: 26 June 2023), 2023.
Wang, N., He, L., Lv, G., and Sun, X.: Potential environmental fate and risk
based on the hydroxyl radical-initiated transformation of atmospheric
1,2-dibromo-4-(1,2dibromoethyl)cyclohexane stereoisomers, J. Hazard. Mater.,
417, 126031, https://doi.org/10.1016/j.jhazmat.2021.126031,
2021.
Wania, F. and Haugen, J. E.: Long term measurements of wet deposition and
precipitation scavenging of hexachlorocyclohexanes in Southern Norway,
Environ. Pollut., 105, 381–386, https://doi.org/10.1016/S0269-7491(99)00038-X, 1999.
Wania, F., Haugen, J.-E., Lei, Y. D., and Mackay, D.: Temperature Dependence
of Atmospheric Concentrations of Semivolatile Organic Compounds, Environ.
Sci. Technol., 32, 1013–1021, https://doi.org/10.1021/es970856c, 1998.
Wania, F., Shen, L., Lei, Y. D., Teixeira, C., and Muir, D. C. G.:
Development and Calibration of a Resin-Based Passive Sampling System for
Monitoring Persistent Organic Pollutants in the Atmosphere, Environ. Sci.
Technol., 37, 1352–1359, https://doi.org/10.1021/es026166c,
2003.
Wilford, B. H., Harner, T., Zhu, J., Shoeib, M., and Jones, K. C.: Passive
Sampling Survey of Polybrominated Diphenyl Ether Flame Retardants in Indoor
and Outdoor Air in Ottawa, Canada: Implications for Sources and Exposure,
Environ. Sci. Technol., 38, 5312–5318, https://doi.org/10.1021/es049260x, 2004.
Wong, F., Kurt-Karakus, P., and Bidleman, T. F.: Fate of Brominated Flame
Retardants and Organochlorine Pesticides in Urban Soil: Volatility and
Degradation, Environ. Sci. Technol., 46, 2668–2674, https://doi.org/10.1021/es203287x, 2012.
Wong, F., de Wit, C. A., and Newton, S. R.: Concentrations and variability
of organophosphate esters, halogenated flame retardants, and polybrominated
diphenyl ethers in indoor and outdoor air in Stockholm, Sweden, Environ.
Pollut., 240, 514–522, https://doi.org/10.1016/j.envpol.2018.04.086, 2018.
Wong, F., Hung, H., Dryfhout-Clark, H., Aas, W., Bohlin-Nizzetto, P.,
Breivik, K., Mastromonaco, M. N., Lundén, E. B., Ólafsdóttir,
K., Sigurðsson, Á., Vorkamp, K., Bossi, R., Skov, H., Hakola, H.,
Barresi, E., Sverko, E., Fellin, P., Li, H., Vlasenko, A., Zapevalov, M.,
Samsonov, D., and Wilson, S.: Time trends of persistent organic pollutants
(POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from
25 years of monitoring, Sci. Total Environ., 775, 145109, https://doi.org/10.1016/j.scitotenv.2021.145109, 2021.
Wong, L. I. L., Reers, A. R., Currier, H. A., Williams, T. D., Cox, M. E.,
Elliott, J. E., and Beischlag, T. V.: The Effects of the Organic
Flame-Retardant 1,2-Dibromo-4-(1,2-dibromoethyl) Cyclohexane (TBECH) on
Androgen Signaling in Human Prostate Cancer Cell Lines, J. Biochem. Mol.
Toxicol., 30, 239–242, https://doi.org/10.1002/jbt.21784, 2016.
Xiao, H., Shen, L., Su, Y., Barresi, E., DeJong, M., Hung, H., Lei, Y.-D.,
Wania, F., Reiner, E. J., Sverko, E., and Kang, S.-C.: Atmospheric
concentrations of halogenated flame retardants at two remote locations: The
Canadian High Arctic and the Tibetan Plateau, Environ. Pollut., 161,
154–161, https://doi.org/10.1016/j.envpol.2011.09.041, 2012.
Yu, Y., Hung, H., Alexandrou, N., Roach, P., and Nordin, K.: Multiyear
Measurements of Flame Retardants and Organochlorine Pesticides in Air in
Canada's Western Sub-Arctic, Environ. Sci. Technol., 49, 8623–8630,
https://doi.org/10.1021/acs.est.5b01996, 2015.
Zacs, D., Perkons, I., Abdulajeva, E., Pasecnaja, E., Bartkiene, E., and
Bartkevics, V.: Polybrominated diphenyl ethers (PBDEs),
hexabromocyclododecanes (HBCDD), dechlorane-related compounds (DRCs), and
emerging brominated flame retardants (EBFRs) in foods: The levels, profiles,
and dietary intake in Latvia, Sci. Total Environ., 752, 141996, https://doi.org/10.1016/j.scitotenv.2020.141996, 2021.
Zhao, J., Wang, P., Wang, C., Fu, M., Li, Y., Yang, R., Fu, J., Hao, Y.,
Matsiko, J., Zhang, Q., and Jiang, G.: Novel brominated flame retardants in
West Antarctic atmosphere (2011–2018): Temporal trends, sources and chiral
signature, Sci. Total Environ., 720, 137557, https://doi.org/10.1016/j.scitotenv.2020.137557, 2020.
Short summary
An emerging brominated flame retardant (BFR) called TBECH (1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane) has never been produced or imported for use in Canada yet is found to be one of the most abundant gaseous BFRs in the Canadian atmosphere. The recorded spatial and temporal variability of TBECH suggest that the release from imported consumer products containing TBECH is the most likely explanation for its environmental occurrence in Canada.
An emerging brominated flame retardant (BFR) called TBECH...
Altmetrics
Final-revised paper
Preprint