Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-3303-2022
https://doi.org/10.5194/acp-22-3303-2022
Research article
 | 
14 Mar 2022
Research article |  | 14 Mar 2022

Quantifying albedo susceptibility biases in shallow clouds

Graham Feingold, Tom Goren, and Takanobu Yamaguchi

Related authors

Aerosol-Cloud Interactions in Marine Low-Clouds in a Warmer Climate
Prasanth Prabhakaran, Timothy A. Myers, Fabian Hoffmann, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2025-2935,https://doi.org/10.5194/egusphere-2025-2935, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Opinion: Inferring Process from Snapshots of Cloud Systems
Graham Feingold, Franziska Glassmeier, Jianhao Zhang, and Fabian Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-1869,https://doi.org/10.5194/egusphere-2025-1869, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Increased Dynamic Efficiency in Mesoscale Organized Trade Wind Cumulus Clouds
Isabel L. McCoy, Sunil Baidar, Paquita Zuidema, Jan Kazil, W. Alan Brewer, Wayne M. Angevine, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2025-520,https://doi.org/10.5194/egusphere-2025-520, 2025
Short summary
On the Processes Determining the Slope of Cloud-Water Adjustments in Non-Precipitating Stratocumulus
Fabian Hoffmann, Yao-Sheng Chen, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-3893,https://doi.org/10.5194/egusphere-2024-3893, 2024
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
How the representation of microphysical processes affects tropical condensate in the global storm-resolving model ICON
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
Atmos. Chem. Phys., 25, 6429–6444, https://doi.org/10.5194/acp-25-6429-2025,https://doi.org/10.5194/acp-25-6429-2025, 2025
Short summary
Magnitude and timescale of liquid water path adjustments to cloud droplet number concentration perturbations for nocturnal non-precipitating marine stratocumulus
Yao-Sheng Chen, Prasanth Prabhakaran, Fabian Hoffmann, Jan Kazil, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 25, 6141–6159, https://doi.org/10.5194/acp-25-6141-2025,https://doi.org/10.5194/acp-25-6141-2025, 2025
Short summary
Cold pools mediate mesoscale adjustments of trade-cumulus fields to changes in cloud droplet number concentration
Pouriya Alinaghi, Fredrik Jansson, Daniel A. Blázquez, and Franziska Glassmeier
Atmos. Chem. Phys., 25, 6121–6139, https://doi.org/10.5194/acp-25-6121-2025,https://doi.org/10.5194/acp-25-6121-2025, 2025
Short summary
Numerical case study of the aerosol–cloud interactions in warm boundary layer clouds over the eastern North Atlantic with an interactive chemistry module
Hsiang-He Lee, Xue Zheng, Shaoyue Qiu, and Yuan Wang
Atmos. Chem. Phys., 25, 6069–6091, https://doi.org/10.5194/acp-25-6069-2025,https://doi.org/10.5194/acp-25-6069-2025, 2025
Short summary
Influence of temperature and humidity on contrail formation regions in the general circulation model EMAC: a spring case study
Patrick Peter, Sigrun Matthes, Christine Frömming, Patrick Jöckel, Luca Bugliaro, Andreas Giez, Martina Krämer, and Volker Grewe
Atmos. Chem. Phys., 25, 5911–5934, https://doi.org/10.5194/acp-25-5911-2025,https://doi.org/10.5194/acp-25-5911-2025, 2025
Short summary
Download
Short summary
The evaluation of radiative forcing associated with aerosol–cloud interactions remains a significant source of uncertainty in future climate projections. Using high-resolution numerical model output, we mimic typical satellite retrieval methodologies to show that data aggregation can introduce significant error (hundreds of percent) in the cloud albedo susceptibility metric. Spatial aggregation errors tend to be countered by temporal aggregation errors.
Share
Altmetrics
Final-revised paper
Preprint