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Abstract. The evaluation of radiative forcing associated with aerosol–cloud interactions remains a significant
source of uncertainty in future climate projections. The problem is confounded by the fact that aerosol particles
influence clouds locally and that averaging to larger spatial and/or temporal scales carries biases that depend on
the heterogeneity and spatial correlation of the interacting fields and the nonlinearity of the responses. Mimicking
commonly applied satellite data analyses for calculation of albedo susceptibility So, we quantify So aggregation
biases using an ensemble of 127 large eddy simulations of marine stratocumulus. We explore the cloud field
properties that control this spatial aggregation bias and quantify the bias for a large range of shallow stratocumu-
lus cloud conditions manifesting a variety of morphologies and ranges of cloud fractions. We show that So spatial
aggregation biases can be on the order of hundreds of percent, depending on the methodology. Key uncertainties
emanate from the typically applied adiabatic drop concentration Nd retrieval, the correlation between aerosol
and cloud fields, and the extent to which averaging reduces the variance in cloud albedo Ac and Nd. So biases
are more often positive than negative and are highly correlated with biases in the liquid water path adjustment.
Temporal aggregation biases are shown to offset spatial aggregation biases. Both spatial and temporal biases
have significant implications for observationally based assessments of aerosol indirect effects and our inferences
of underlying aerosol–cloud–radiation effects.

1 Introduction

Shallow liquid clouds are a poorly quantified component of
the climate system and one of the greatest sources of uncer-
tainty for climate projections (e.g., Bony and Dufresne, 2005;
Bony et al., 2017). The problem is multifaceted and encom-
passes fundamental understanding of how these clouds are
affected by the thermodynamic structure of the atmosphere,
how they might change in a warmer world, how they are in-
fluenced by the atmospheric aerosol, and how all of these
components are represented in climate models. The diffi-
culty in quantifying the radiative effects of shallow clouds
emanates, to a large extent, from the large range of spa-
tiotemporal scales involved: aerosol–cloud interaction pro-

cesses need to be understood and resolved at the scale of
centimeters (e.g., Hoffmann et al., 2019), while cloud fields
and their organization are driven by larger-scale circulations
at scales of hundreds to thousands of kilometers (e.g., Nor-
ris and Klein, 2000). Importantly, aerosol–cloud interactions
acting at scales on the order of 100 m need to be resolved,
(a) because they can lead to fundamental changes in the ra-
diative state of a cloud system by changing the cloud albedo,
cloud fraction, and spatial distribution of condensate (e.g.,
Sharon et al., 2006; Stevens et al., 2005; Wang and Fein-
gold, 2009) and (b) because nonlinearities in aerosol–cloud–
radiation interactions mean that the methodology of averag-
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ing small-scale properties to larger scales might generate bi-
ases in the radiative response.

This paper focuses on the ramifications of small-scale pro-
cesses for cloud albedo susceptibility and cloud liquid water
path adjustments (changes in liquid water path in response
to changes in aerosol concentration) within the context of
how they are treated in satellite-based analyses. Two key
aspects are addressed: the first relates to spatial averaging
from the level of the satellite pixel (order 1 km) to com-
monly used aggregation scales on the order of tens to hun-
dreds of kilometers, and the second relates to temporal ag-
gregation from the individual scene snapshot up to a time-
frame on the order of months. Large-scale analyses often ag-
gregate data both spatially and temporally into data sets that
might cover, e.g., 4◦× 4◦ and 5 years (Chen et al., 2014), or
a range of scales from kilometers to tens of kilometers for
cloud microphysics, liquid water path, and radiation, 1◦×1◦

for aerosol, and 3-month seasonal responses (Lebsock et al.,
2008). While it is impractical not to aggregate to some de-
gree, e.g., to smooth noisy retrievals or extract signals from a
noisy background, the implications for quantifying aerosol–
cloud interactions are still not well understood.

In the following, we will use the terms “aggregation” and
“averaging” synonymously; “aggregation” tends to be used
when speaking more broadly about including data from a
larger range of spatial and temporal scales, whereas “aver-
aging” is used in more of a mathematical sense.

We quantify aerosol–cloud interactions using the albedo
susceptibility metric (Platnick and Twomey, 1994) defined
here as

So =
d lnAc

d lnNd
=

(1−Ac)
3

[
1+

5
2
d lnL
d lnNd

]
, (1)

where Ac is the cloud albedo, Nd is the drop concentration,
and L is the liquid water path. The expression comprises
the cloud brightening or Twomey component (1−Ac)/3
and the adjustment term Lo = d lnL/d lnNd and assumes
no changes in drop distribution width (e.g., Feingold and
Siebert, 2009). The factor of 5/2 suggests a potentially strong
but uncertain contribution from L adjustments; even the sign
of this term varies from positive for precipitating clouds
to negative for non-precipitating clouds (Christensen and
Stephens, 2011; Glassmeier et al., 2021).

Using satellite-based observation systems, e.g., the MOD-
erate Imaging Spectroradiometer (MODIS; Salomonson
et al., 1998), one can derive a drop concentration Nd,a, based
on adiabatic assumptions, from retrieved visible cloud opti-
cal depth τ and cloud-top drop effective radius re:

Nd,a =

√
5

2πk

(
fadcw(T ,P )τ
Qextρwr5

e

)1/2

, (2)

where cw(T ,P ) is related to the condensation rate and is a
known function of cloud-base temperature T and pressure P ,
fad is the adiabatic fraction (assumed in this paper to be 0.8),

Qext is the extinction coefficient (≈ 2 in the visible part of
the spectrum), ρw is the density of liquid water, and k is a
factor that is inversely proportional to the width of the drop
size distribution (assumed to be 0.8). When fad = 1, Nd,a is
the adiabatic drop concentration.

Liquid water path L is derived from MODIS data as

L=
5
9
fadreτ. (3)

Further details of these derivations can be found in Brenguier
et al. (2000) and Grosvenor et al. (2018). Ac can be derived
from τ using a simple two-stream approximation for a plane-
parallel cloud (Bohren, 1987):

Ac =
τ

γ + τ
, (4)

where γ depends on the degree of forward scattering.
Equation (4) also assumes an overhead sun, no absorption,
and a dark underlying surface. We do not consider three-
dimensional radiative transfer.

As an example of how averaging of data can affect the
quantification of derived variables, we note that Eq. (4)
is a concave function, which, following Jensen’s inequal-
ity, means that for an inhomogeneous cloud field, f (τ )>
f (τ ). Thus, calculating τ based on large length-scale-
averaged cloud properties and then calculatingAc = f (τ ) us-
ing Eq. (4) will generate a high bias in Ac that is inherently a
function of the inhomogeneity of the cloud field. Because this
well-known albedo bias (e.g., Cahalan et al., 1994; Oreopou-
los and Davies, 1998) is not the topic of this paper, we will
assume in all calculations that Ac is measured directly by an
instrument like Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) at the desired measurement length scale and
therefore does not suffer from an averaging bias. Instead, we
explore similar biases that affect quantification of So. For ex-
ample, Eq. (2) is a highly nonlinear function of τ and re so
that whether one elects to calculate Nd,a before or after aver-
aging of component variables τ and re will potentially have
a strong effect on So.

McComiskey and Feingold (2012) analyzed large eddy
simulation (LES) output of three cloud fields characterized
by different degrees of inhomogeneity and showed that an
aerosol–cloud interaction metric, d lnτ/d lnNd, increased as
a result of averaging – more so for heterogeneous fields than
for homogeneous fields. To put the topic on firmer footing,
we first establish a theoretical framework for assessing the
biases. We then use a large number of LESs (127) as proxy
data, which we use to simulate satellite retrievals. We apply
typical methodologies used in satellite retrievals, as well as
variants, to assess the provenance of the So bias. Both spatial
and temporal aggregation scales are considered, with a focus
on the former. Because of the limited domain size available
to LES, we concern ourselves with the effects of spatial av-
eraging from scales on the order of 1 to 10 km. The multiple
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snapshots of different scenarios available from the LES out-
put provide the basis for temporal aggregation. We note that
Grandey and Stier (2010) also looked at the effect of aggre-
gation scale on quantification of aerosol indirect effects (the
radiative forcing of aerosol–cloud interactions). Their anal-
ysis addressed much larger scales (1, 4, and 60◦) in climate
models. Here we focus on a model framework that explicitly
resolves aerosol–cloud interactions at the cloud scale.

2 Theory

2.1 Spatial aggregation of variables derived from
nonlinear functions

The two fundamental geophysical variables associated with
aerosol–cloud interactions are N (a generic concentration or
drop or aerosol number concentration, which are well corre-
lated) and L. In the case of homogeneous aerosol and cloud
fields, averaging of data to different scales has no effect on
derived quantities such as Nd, L, Ac, and So, and the order
of calculation of these fields is of no consequence. In reality,
however, cloud fields exhibit different degrees of inhomo-
geneity: condensation of cloud water responds to local up-
drafts and, to some extent, availability of cloud condensation
nuclei. Drop concentration depends on aerosol concentration
– typically a less variable field than cloud water – as well as
local supersaturation driven by updrafts. Under these condi-
tions, the quantification of aerosol–cloud interaction metrics
like So and the influence of averaging could be far more im-
portant.

The theoretical framework for addressing this question is
well known from similar examples in the atmospheric sci-
ences, notably biases in rain formation processes that result
from large-scale averaging of the cloud water and drop con-
centration terms in expressions for autoconversion and accre-
tion (e.g., Lebsock et al., 2013; Zhang et al., 2019). In the in-
terest of completeness, we repeat the key equations here. As-
suming a lognormal probability distribution function (PDF)
of quantity x,

P (x)=
1

√
2πx lnσg,x

exp
[
−
(
x− xg

)
/
(

2ln2σg,x

)]
, (5)

where the lognormal parameters are geometric mean (or me-
dian) xg and geometric standard deviation σg,x . Quantity x
represents Ac or L and N . Using well-known integral prop-
erties of the lognormal function (e.g., Feingold and Levin,
1986), it is easy to show that the bias in a moment xβx asso-
ciated with averaging can be written as

Bx =
xβx

xβx
=

(
D2
x + 1

) β2
x−βx

2
, (6)

with the relative dispersion Dx , the ratio of the standard de-
viation to the mean, defined as

Dx =
(

(x− x)2
)1/2

/x. (7)

If the two interacting fields, e.g., L and N , are assumed to
follow a bivariate lognormal distribution, the bias associated
with the covariance between L and N is

Bcov = exp(r(L,N ) ·βL ·βN · σg,L · σg,N ), (8)

where r(L,N ) is the spatial correlation between L and N .
(Note that we elect to present the theory in terms of L and N
rather than Ac and N because Ac includes compounded de-
pendence on N via τ . Since L and Ac are highly correlated,
this choice does not affect the general framework for discus-
sion.)

The overall bias associated with averaging for two covary-
ing fields is then given by

B = BL ·BN ·Bcov. (9)

The equations allow theoretical calculation of the So biases
associated with two covarying fields L and N , each charac-
terized by its own heterogeneity DL and DN , respectively.

To apply this analysis to biases in So associated with in-
teracting L and N fields, we make a number of assumptions.
In the absence of an analytical form for the L adjustment,
we assume it is negligible. We also assume that Ac depends
linearly on τ , which holds over a large range of τ . So is then
approximated as being proportional to 1− τ (Eq. 1). Note
that because the percent bias in 1−τ is equivalent to the per-
cent bias in τ , we can apply

τ = cL5/6N1/3 (10)

(e.g., Brenguier et al., 2000), where c is a constant that does
not require specification for the purpose of the current anal-
ysis. Then, with βL = 5/6 and βN = 1/3, Eq. (9) can be cal-
culated for given values of DL, DN , and r(L, N ). These are
shown in Fig. 1 in DL; DN space for three values of r(L,
N ). We note that large positive and negative biases can re-
sult from averaging; for negative r(L, N ), biases are positive
and on the order of 20 %–60 %, whereas for positive values
of r(L,N ), biases are negative and on the order of −20 % to
−70 %. When correlation between the fields is zero, biases
are 10 %–20 %. The central role of r(L, N ) is further illumi-
nated by plotting the bias in So as a function of r(L, N ) for
specified DL and DN combinations (Fig. 2).

Note that the assumption of a bivariate lognormal distri-
bution is common when dealing with geophysical fields. An-
other cautionary note is that, given the various assumptions
applied to generate the results in Figs. 1 and 2, they should
be considered illustrative; i.e., they are primarily intended to
highlight key variables that control aggregation bias. When
we embark on our analysis of LES output, we will assume
that τ and re are known exactly, and quantitative comparison
with Figs. 1 and 2 should be avoided.
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Figure 1. Theoretical calculations of the albedo susceptibility bias (%) for a range of relative dispersions in L and N (D(L) and D(N ),
respectively) for three different correlations (r) between L and N . Note the values of large positive and negative biases.

Figure 2. As in Fig. 4 but for the So bias as a function of the spa-
tial correlation between L and N for a range of relative dispersions
in L (D(L)) and fixed D(N ). Of note is that for the conditions
shown the biases are large and range from about −150 % (posi-
tive r , large D(L)) to +70 % (negative r , large D(L)).

2.2 Effects of spatial and temporal averaging on
variance, and correlation between fields

The second framework for assessment of biases derives from
the basic definition of the linear regression fit:

b̂ = rx,y
σy

σx
, (11)

where b̂ is the regression slope and σx is the standard de-
viation of field x. In our case, x is aerosol or drop con-
centration (we will use Nd) and y is the cloud variable (Ac
or L). As shown by McComiskey and Feingold (2012), av-
eraging increases r(x,y) but decreases σx and σy to varying
degrees. Of interest is therefore the extent to which averaging
changes r(x,y) and the ratio σy/σx .

3 Large eddy simulation as a data source

We calculate So biases using output from 127 large eddy sim-
ulations of marine stratocumulus under a range of conditions
from fairly homogeneous overcast to broken open-cellular
structures.

Simulations are generated by the System for Atmospheric
Modeling (SAM; Khairoutdinov and Randall, 2003). Input
conditions are derived from ERA-5 reanalysis in the stratocu-
mulus regime off the coast of California. The model setup is
similar to Feingold et al. (2016) and Glassmeier et al. (2021),
with initial meteorological and aerosol conditions sampled
using the Latin hypercube method. Simulations are nocturnal
and of 12 h duration. The first 5 h of output from each simu-
lation is discarded to avoid cloud scenes that are not fully de-
veloped. The domain size is 48 km× 48 km× 2.5 km with a
500 m damping layer below the model top at 2.5 km. The pro-
file is extended up to 35 km (5 hPa) for radiation calculations.
Grid spacings are dx = dy = 200 m and dz= 10 m. A two-
moment bulk microphysical method that calculates all warm
cloud processes (including supersaturation and activation) is
applied (Feingold et al., 1998). The simulations differ from
Glassmeier et al. (2021) in one key respect, namely, that sur-
face fluxes are calculated interactively. Resultant cloud fields
exhibit varying degrees of heterogeneity, including closed-,
open-, and transitions from closed- to open-cellular convec-
tion.

The LES output provides microphysical fields of drop
number concentration and liquid water content as three-
dimensional prognostic variables under the assumption of a
bimodal lognormal distribution of cloud drops and raindrops
with fixed distribution width (σg = 1.2 for both). However,
to mimic satellite retrievals, we work with the derived model
variables τ and cloud-top re to calculate Nd and L based
on Eqs. (2) and (3). Both cloud water and rainwater con-
tribute to τ and re. Cloud top is calculated based on a liq-
uid water mixing ratio threshold (0.01 g kg−1). Because these
clouds are strongly capped, the first grid point exceeding this
value (when working from above and downward towards the
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cloud top) almost always exceeds the threshold significantly,
providing a maximum or near-maximum re in each model
column. Ac is calculated based on the modeled value of τ
(Eq. 4), is then averaged, and therefore does not suffer from
averaging bias. So is calculated directly for each scene based
on the definition (So = d lnAc/d lnNd) using least squares
regression to the natural logarithms of Ac and Nd.

3.1 Spatial aggregation

3.1.1 Level-2 analysis

The standard averaging method follows the MODIS level-
2 (L2) methodology in the sense that calculations are per-
formed at high resolution prior to averaging. In the current
work, Eqs. (2) and (3) are calculated based on the native
200 m model mesh (n= 1) and then averaged to n× n tiles.
Results will be shown for n= 30 vs. n= 4, i.e., 6 km× 6 km
boxes vs. 800 m× 800 m boxes. These choices result from a
desire for a reasonable number of regression points (n= 30)
and for some small amount of smoothing (n= 4) to reduce
the noise in Nd retrievals (Eq. 2). The choice of n= 4 also
brings us close to the typical 1 km length scale used for anal-
ysis of L2 MODIS data. (We did not use n= 5, i.e., 1 km,
because the number of points in the domain is even, and
our desire is to maximize our coverage and simplify analy-
sis.) Note that L2 methodology removes the biases associated
with nonlinear functions applied to averaged data discussed
in Sect. 2.1 (Jensen’s inequality) since Nd is calculated using
Eq. (2) at the 200 m level and then averaged up. The same is
true for Ac, which as previously noted is calculated based on
Eq. (4).

Biases are defined as

(X−X)/X, (12)

where X represents So calculated at n= 4 and X repre-
sents So at n= 30. Correlations r(L,Nd) refer to calcula-
tions for n= 4 unless otherwise stated. Nd in the L2 analysis
represents cloudy-column averaged drop concentration, i.e.,
Nd =Nd,a based on Eq. (2).

The Nd retrieval (Eq. 2) is very sensitive to thin clouds,
particularly when re but also τ are small. As is common
in MODIS data analyses, calculations are only applied to
thicker clouds, in our case to re > 3 µm and τ > 3.

3.1.2 Variants

Two variants of the calculations will be presented.

1. Mimic MODIS level-3 (L3) analysis. Here satellite-
based retrievals are based on aggregated data. In other
words, Eqs. (2) and (3) for Nd and L, respectively, are
applied to data averaged to n= 4 and n= 30. By do-
ing so the averaging biases associated with Jensen’s in-
equality are introduced. The biases are expected to de-
rive from a mix of influences: low for Nd (a convex

function in re dominates a concave function in τ ; Eq. 2)
and negligible for L (Eq. 3). The effect of smoothing
associated with level-3 aggregation is thus likely to be
highly dependent on cloud field heterogeneity.

2. Mimic MODIS L2 analysis but eliminate uncertainties
in the (sub)adiabatic retrieval ofNd by assuming a “per-
fect”Nd, which is taken directly from the LES. Because
the LES Nd is a three-dimensional variable, we use in-
cloud, column average values. This methodology will
be referred to as L2N . Note that L is still calculated as
per Eq. (3). The goal here is to understand the extent to
which the retrieval of Nd drives the regression biases.

3.2 Temporal aggregation

To address temporal aggregation, we consider the same in-
dividual LES snapshots described above but calculate So in
two ways: (i) So regression fits to individual cloud scenes are
simply averaged up over all cloud scenes, and (ii) LES out-
put is temporally aggregated to a large data set from which
So is calculated via regression. The first approach preserves
the individual cloud scene susceptibilities, while the second
aggregates many different cloud fields before performing the
regression. The biases are calculated based on Eq. (12), with
the overbar indicating the second approach (ii). The method-
ology is followed (separately) for both n= 4 and n= 30 spa-
tial averaging and for L2, L3, and L2N .

4 Results

4.1 Spatial aggregation

4.1.1 Effect of spatial aggregation on So and correlation

Figure 3 presents results for the three approaches (L2, L3,
and L2N ). We start with the figures showing So vs. So
to avoid ambiguity in the sign of the bias associated with
Eq. (12). (According to Eq. 12, conditions under which So is
more negative than So also manifest as positive biases.) The
solid line is the 1 : 1 line.

Points are colored by cloud fraction fc (defined at the na-
tive 200 m grid spacing) since it also serves as a good proxy
for cloud field heterogeneity. (The correlation between fc
and D(L) is 0.86.) For L2, we note that both So and So are
almost always positive and that low-fc states do not suffer
from worse biases than high-fc states. By contrast, high fc is
often associated with the largest biases. The reasons for this
will become apparent in the subsequent analysis.

Responses for the L3 analysis are distinctly different in a
number of ways: first, both So and So are almost always neg-
ative, and low-fc cloud scenes often have lower biases than
high-fc scenes. This is because L3 averaging has a stronger
smoothing effect on broken cloud fields and therefore some-
what unexpectedly reduces the averaging bias for broken
cloud fields compared to solid cloud fields. Nevertheless, the
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Figure 3. So aggregated to a 6 km scale (So) vs. So aggregated to an 800 m scale (So) for the (a) L2, (b) L3, and (c) L2N methodologies as
described in the text. Solid line is the 1 : 1 line. Dashed lines are drawn at ordinate and abscissa values of zero. Note the general overestimate
in So with increasing aggregation scale in (a) and (c) and the change in sign in So associated with L3 aggregation in (b). Of note is that
high-cloud-fraction/low-heterogeneity conditions are often associated with high biases.

Figure 4. So bias in percent as defined in Eq. (12) as a function of the correlation between liquid water path and drop concentration r(L, Nd)
with points colored by cloud fraction fc for the (a) L2, (b) L3, and (c) L2N methodologies. In (a) and (c) the So bias tends to increase with
decreasing r(L, Nd) and increasing cloud fraction fc, with noted exceptions. Use of the true Nd in (c) restricts the So bias to about 100 %.

non-physical shift in the sign of So associated with the L3
methodology should act as a cautionary note. We present an
explanation for the reversal of sign in Appendix A.

L2N analysis yields strongly positive So and a clearer de-
pendence of the bias on fc. For broken cloud scenes So is
sometimes negative, but biases tend to be scattered and rela-
tively small. These low fc ≈ 0.3 states are dominated by cu-
mulus cells with stronger updrafts that result in coherent Nd.
Since So and So are only calculated in cloudy regions (above
the re and τ thresholds), this coherence in Nd results in a
small bias. Thus the reasons for small susceptibility bias at
low fc differ for L3 and L2N . With increasing fc, biases
tighten around the 1 : 1 line but start to deviate for fc > 0.85
and exhibit increasingly large values.

To quantify the biases, these same analyses are shown as
percent biases in So (Eq. 12) as a function of the correla-
tion between L and Nd (r(L, Nd); Fig. 4), the calculations
of which are consistent with the derivation of variables av-
eraged to n= 4; e.g., L2 and L3 calculations apply r(L, Nd)

based on Eqs. (2) and (3), and L2N calculates r(L, Nd) using
the true Nd and Eq. (3).

L2 biases are almost always positive and can reach val-
ues of many hundreds of percent (Fig. 4). As expected from
Sect. 2.1, r(L, Nd) has a strong influence on the So bias, par-
ticularly for L2, with the bias increasing noticeably with de-
creasing r(L, Nd) in a manner qualitatively similar to Fig. 2.
The high values and high variability in the bias as one ap-
proaches r(L, Nd)≈ 0 are to some extent a consequence
of an uncertain regression fit when the correlation between
the L (or the closely related Ac) and Nd fields is poor.

Of note is that the L3 analysis methodology (aggregate
first and then derive) changes the sign of r(L, Nd) to neg-
ative values, as it did the sign of So (Fig. 3). L3 biases are
more widely dispersed and show no clear trend with r(L,
Nd) or fc. L2N biases tend to be capped at about 100 %, and
values of r(L, Nd) are noticeably more positive than those
in L2. These results reinforce two points, (i) that L3 analysis
generates non-physical results, negative So, and a change in
the sign of r(L,Nd), and (ii) that the use of the (sub)adiabatic
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Figure 5. As in Fig. 4 but with points colored by the ratio of σAc/σNd at 6 km to σAc/σNd at 800 m (the σ ratio). Note the clear dependence
of the So bias on the σ ratio and that the bias ∼ 0 when the σ ratio ∼ 1 (green colors). Exceptions to the latter occur for L2 at low r(L, Nd).

Figure 6. As in Fig. 4 but with points colored by the ratio of correlations r(L, Nd) at 6 km to r(L, Nd) at 800 m (the r ratio). Comparison
with Fig. 5 shows approximately orthogonal dependence of the σ and r ratios on the So bias. In (a) and (b), calculation of the r ratio is
mathematically unstable at r(L, Nd)= 0, as evidenced by saturating colors.

assumption (Eq. 2) as a proxy for Nd incurs a significant in-
crease in the So bias relative to L2N , most noticeably at low
r(L,Nd), where Eq. (2) results in a significantly reduced (but
for the most part positive) correlation.

4.1.2 Effect of spatial aggregation on regression

It is useful to turn to the underlying definitions of regression
analysis (Sect. 2.2) to explore more deeply the influence of
averaging on the So bias. According to Eq. (11), So biases are
related to the ratio of b̂ (6 km) to b̂ (800 m):

b̂/b̂ =
rx,y

rx,y

(
σ y

σ x

)
/

(
σy

σx

)
, (13)

with b̂ denoting 6 km averaging and b̂ denoting 800 m av-
eraging. We therefore consider (i) the ratio σAc/σNd to
σAc/σNd (henceforth the “σ ratio”; Fig. 5) and (ii) the ra-
tio r(Ac,Nd)/r(Ac,Nd) (henceforth the “r ratio”; Fig. 6),
which by Eq. (11) are both determinants of the bias. Note
that, for the r ratio, we use r(Ac, Nd) to adhere more rigor-
ously to the regression analysis definitions. The interpreta-
tion of these ratios is non-trivial. They express the extent to
which σAc/σNd and r(Ac, Nd) are modified by averaging. In

the case of σAc/σNd this amounts to interpreting a “ratio of
ratios”. Later we will delve into this in more detail.

L2 results show a clear dependence of the So bias on the
σ ratio and especially large biases when the σ ratio is high
(Fig. 5a). These also happen to be points exhibiting high fc
(cf. Fig. 4a). Also apparent is that the separation of positive
and negative biases is demarcated at a σ ratio of 1. The re-
sults suggest a strong correlation between the σ ratio and fc.
At high r(L, Nd), the So bias increases systematically with
increasing σ ratio (Fig. 5a), but with decreasing r(L, Nd) the
strong and orthogonal influence of the r ratio becomes more
important (Fig. 6a). Clearly evident in Fig. 6a is the antici-
pated unstable calculation of the r ratio in the vicinity of r(L,
Nd)= 0.

The L3 methodology exhibits an even clearer dependence
of the So bias on the σ ratio, except for cloud fields with r(L,
Nd)≈−0.2 (Fig. 5b), where the high bias is clearly related
to both the σ and r ratios (Fig. 6b). The aforementioned ver-
tically oriented green-colored points have a σ ratio of about 1
and an r ratio of 2.5; i.e., the bias is driven by the r ratio.

For the L2N methodology, here too the σ ratio (Fig. 5c)
provides a clearer indication of the magnitude of the bias
compared to either the r ratio (Fig. 6c) or fc (Fig. 4).
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Figure 7. Effects of aggregation on normalized reduction in σ (Ac) vs. normalized reduction in σ (Nd) to shed light on results in Fig. 5.
Points are colored by fc. (a–c) At high (low) fc averaging tends to more significantly reduce (increase) σ (Nd) relative to σ (Ac). Notable
exceptions occur in (c) for some low-fc conditions. See text for further discussion.

Figure 8. As in Fig. 7 but with points colored by the r ratio. See text for discussion.

Based on Eq. (13), the influence of the σ and r ratios
on So bias is expected. What is more revealing is the influ-
ence of averaging on the components of these ratios. To this
end, Fig. 7 examines the effect of averaging on the reduc-
tion in σAc and σNd . In other words, we ask to what extent
averaging smoothens the Ac field relative to the smoothing
in the Nd field. Accordingly, axes in Fig. 7 are calculated as
normalized reductions in the variables.

L2 analysis shows that at low fc the normalized reduc-
tions in σ (Nd) tend to be smaller than those in σ (Ac) but
that the reverse tends to be true for fc > 0.75 (Fig. 7a);
i.e., at high fc, averaging smoothens the Nd field more than
it smoothens the Ac field. We will show below that these
high-fc scenes, although inherently more homogeneous, of-
ten manifest significant inhomogeneity in Nd as a result of
the Nd retrieval. (See further discussion in Sect. 4.1.4, Ex-
amples.)

The clear exception to the trend of averaging and smooth-
ing Nd more than Ac with increasing fc is the group of
low-fc points that exists in Fig. 4a at r(L,Nd)< 0.2. These
anomalous points appear below the 1 : 1 line in Fig. 7a and
show up as lower r-ratio points (reddish points) in a sea
of higher r-ratio points (brown colors) in Fig. 8a. Another
distinct feature is the group of vertically oriented high-fc

(Fig. 7a) and low r-ratio (Fig. 8a) points for which smoothing
of Nd increasingly exceeds smoothing in Ac as one moves
below the 1 : 1 line. Because these points are characterized
by small values of the r ratio, there appears to be an offset-
ting of σ -ratio and r-ratio effects.

A closer look shows that these points manifest as a neg-
ative So bias (Fig. 9a); in other words, the reduction in the
r ratio dominates the increase in the σ ratio. Although these
negative bias points tend to be more rare, they can be identi-
fied in Fig. 4a at high fc and low r(L, Nd) (< 0.3).

Analysis of L3 shows some similarities to and some differ-
ences from L2. First, there is a much more significant scatter
in points, particularly at lower fc (Fig. 7b); second, as in L2,
averaging-related smoothing of Nd tends to exceed smooth-
ing in Ac at higher fc (Fig. 7b); third, and different from L2,
values of the r ratio of≈ 1 (Fig. 8b, green colors) are associ-
ated with higher So biases (Fig. 9b), which must derive from
the σ ratio.

Finally, L2N reveals a somewhat richer palette of re-
sponses. First the commonalities: (i) the general trend for
smoothing of Nd to exceed smoothing of Ac with increas-
ing fc and increasing r ratio is relatively robust (cf. Fig. 7a–
c). (ii) When the r ratio≈ 1 and smoothing of the fields is
similar (Fig. 8a and c), the So bias is capped at about 100 %
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Figure 9. As in Fig. 7 but with points colored by So bias. Biases exceeding 100 % always occur when averaging-related smoothing has a
stronger effect on Nd than on Ac.

(Fig. 9a and c). In fact it is clear from Fig. 9 that So bi-
ases exceeding 100 % always occur when averaging-related
smoothing has a stronger effect on Nd than on Ac, although
the magnitude and even sign of these biases vary significantly
depending on the methodology. The richness (lack of mono-
tonicity) in responses under these conditions depends on the
relative strength of the r ratio and the extent to which it am-
plifies or counteracts the σ ratio.

We note one interesting difference between L2 and L2N :
for the latter, low-fc points reside in conditions under which
averaging-related smoothing is dominated by more as well
as less significant smoothing of Nd vs. Ac (Fig. 7c). In very
rare cases the low-fc points above but close to the 1 : 1 line
in Fig. 9c cause negative So biases (cf. Fig. 6c). Finally, some
very high positive So biases (up to 500 %) do exist for L2N .
These can be traced to conditions when the r ratio is large
(Fig. 8c), and averaging smoothens Nd more than Ac. In this
case the effects of averaging on the r ratio and the σ ratio
work in unison to amplify the bias.

4.1.3 So bias vs. L adjustment bias

The topic of L adjustments is of great interest given that the
term may both enhance or offset the overall albedo suscep-
tibility (Eq. 1) (e.g., Glassmeier et al., 2021). For example,
a value of Lo = d lnL/d lnNd <−0.4 will change the sign
of So from positive to negative. Numerous recent articles,
based on models and observations, point to Lo being pos-
itive in precipitating conditions, following the familiar Al-
brecht (1989) “cloud lifetime” hypothesis which posits that
aerosol perturbations will suppress collision–coalescence
and decrease precipitation and therefore L losses, while it
is negative in the non-precipitating regime as a result of
enhanced evaporation–entrainment feedbacks (Wang et al.,
2003; Ackerman et al., 2004; Xue et al., 2008; Christensen
and Stephens, 2011; Gryspeerdt et al., 2019). Figure 10
shows the relationship between spatial-averaging-related So
and Lo biases, with points colored by fc. For clarity we show
a subsample of 58 of the total 127 simulations to avoid points

clustering and obscuring points below. These 58 samples rep-
resent Latin hypercube sampling of the full data set and do
not exhibit any bias relative to the full set.

First, we note a strong positive correlation between the two
biases, with Lo biases larger than So biases in L2 and L2N
(Fig. 10a and c). The reverse is true for L3 (Fig. 10b). For L2
and L3, two distinct branches appear: the first is a close rela-
tionship for fc > 0.7, while the second is somewhat less well
defined and associated with lower fc. There is a saturation
in the ratio for fc on the order of 0.3 in L2 (Fig. 10a), while
L3 shows a distinctly stronger So bias at low fc compared to
the approximately linear relationship for high fc (Fig. 10b).
Detailed analysis of this flip in the relative slope for high fc
vs. low fc for L2 and L3 can be traced to relative differences
in the degree of aggregation-related smoothing between Ac
and L (see Appendix B).

The separation of these branches is much less distinct
for L2N (Fig. 10c), but in general Lo biases are larger than
So biases, although to a lesser extent than in L2. The absence
of a clear separation in the branches is a result of the use of
the correct Nd such that cloud heterogeneities affect the bi-
ases to a similar degree. While the strong positive correlation
between So and Lo biases is not surprising given the expected
close relationship between So and Lo, it is clear that, using
the methodologies applied here, satellite-based analyses of
the Lo bias have the potential to be at least as severe as those
associated with So biases.

4.1.4 Examples

While our goal has been to provide a broad assessment of
susceptibility biases in terms of cloud field properties, some
examples are helpful for illustrating the issues. We focus
on L2 and L2N to isolate the effect of the Nd retrieval
for individual cases, chosen randomly based on their visual
physical characteristics but supported by other cases. Fig-
ure 11 presents an LES-generated stratocumulus scene char-
acterized by high fc (= 0.98) and a very realistic closed-
cellular structure (Fig. 11a and c). Drop concentration fields
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Figure 10. So bias vs. the L adjustment bias (d lnL/d lnNd in Eq. 1) for a limited set of model scenes (for clarity). Note a strong positive
correlation between the two biases, as expected from Eq. (1). In (a) and (b), the relative magnitude of these biases depends on fc, although
with an opposite trend. In (a) and (c), the L adjustment bias tends to be larger than the So bias.

Figure 11. High-resolution (n= 1) two-dimensional snapshot of (a) “true” Nd, (b) retrieved Nd (Eq. 2), (c) L, and (d) the relationship
between (b) and (a). Note the different scales between (a) and (b). Although the mean values of Nd in (a) and (b) differ by only−36 %, they
exhibit negative correlation over the scene. The retrieved Nd introduces significant heterogeneity into the field. Use of the true Nd reduces
the absolute value of the So error from −2017 % to +80 %.

for the (sub)adiabatically derived Nd, i.e., Nd,a (Eq. 2) and
the “true” (LES) Nd show the problem very clearly. The
retrieved Nd shows a great deal more fine-scale structure
than the true Nd, and although in the mean the retrieved Nd
is not highly unrealistic (retrieved Nd = 167 cm−3; true
Nd = 227 cm−3 – an error of −26 %), the two fields are
strongly negatively correlated, with a fit slope of Nd (re-

trieved)= 378− 0.9×Nd (true). To quantify this further, we
consider the correlations between L and Nd, applying the
true Nd, r(L, Nd)= 0.78 while using the retrieved Nd, r(L,
Nd)=−0.24. This shift from strong positive r(L,Nd) to neg-
ative r(L, Nd) has implications for the So bias (e.g., Fig. 2):
the L2-derived So bias is −2017 %, whereas the L2N bias
is +80 %. Here the use of the true Nd reduces the So error
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Figure 12. As in Fig. 11 but for an open-cellular case. Note the different scales between (a) and (b). Mean values of Nd in (a) and (b) differ
by −75 %. Use of the true Nd degrades the So bias (285 % for L2 vs. 803 % for L2N ).

very significantly. This example serves to explain why high
So biases can exist in high-fc scenes (e.g., Fig. 4). We em-
phasize that the significant inhomogeneity inNd is a result of
the Nd retrieval rather than an inherent property of the cloud
field and that it is this increase in inhomogeneity and reduc-
tion in r(L, Nd) that drives up the So bias.

The second example (Fig. 12) is a low-fc case (0.23) ex-
hibiting classic open-cellular structure. Here the mean re-
trieved Nd is 21 cm−3 and the true Nd is 12 cm−3 – an er-
ror of +75 %. The best-fit linear regression between the two
yieldsNd (retrieved)= 20+0.075×Nd (true). Examining the
true Nd, we find r(L, Nd)= 0.13, whereas, when using the
retrieved Nd, r(L, Nd)=−0.05. The So biases are 285 %
and 803 % for L2 and L2N , respectively; i.e., the true Nd
degrades the So bias. We have identified two contributing
factors to this unexpected result: (i) in the case of L2N , the
proximity of r(L, Nd) to zero generates an unstable r ratio
and an unstable So bias (Eq. 13); (ii) more generally, unex-
pected results can occur when the base So (n= 4) is small,
which by Eq. (12) will generate unstable bias calculations.
For the current case, So is small because the open cell walls
are already very bright; i.e., 1−Ac in Eq. (1) is small.

Note that the results in Fig. 12 may seem counterintuitive
at first glance since, from a satellite remote sensing perspec-
tive, a negative bias in retrieved Nd is generally expected in

broken cloud scenes due to a positive bias in re and a neg-
ative bias in τ (e.g., Grosvenor et al., 2018). However, the
aforementioned bias is a satellite-based measurement bias.
In our case, we assume that re and τ are correct (taken di-
rectly from the model). We take the opportunity to empha-
size that this work focuses on the effect of averaging cloud
fields characterized by different morphologies and not with
the broken cloud re and τ biases. The latter would need to be
considered with a MODIS instrument simulator for a more
complete assessment.

While examination of case studies proves useful, we argue
that the broader statistical view is essential to understanding
the error landscape that might be encountered in highly vari-
able natural cloud scenes. In this regard, Figs. 3–6, supported
by Figs. 7–9, are essential.

4.2 Temporal aggregation

Although the focus of the work has been on spatial aggre-
gation, we now briefly consider the effects of temporal ag-
gregation, which by Eq. (11) will also affect So. Large-scale
analyses often aggregate data over multiyear timescales (e.g.,
Chen et al., 2014) or 3-month seasonal timescales (Lebsock
et al., 2008), extending the range of conditions and changing
the variance and correlation between the fields. The result is
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Table 1. Temporal averaging values and percent differences. 6So refers to a simple average of the So for individual cloudy scenes. So refers
to the So regression fit to the temporally aggregated data from all cloudy scenes. The percent difference is defined as (So−6So)/6So. n= 4
and n= 30 refer to the 800 m and 6 km spatial averaging scales, respectively.

Temporal averaging values and percent differences

L2 L3 L2N

6So So % 6So So % 6So So %

n= 4 0.564 0.259 −74 −0.652 0.044 −107 1.012 0.301 −70
n= 30 0.966 0.298 −69 −0.959 0.073 −108 1.373 0.296 −78

that the regression fit to a long-term, temporally aggregated
data set will be different from the short timeframe fits, aver-
aged up to include the same data.

Table 1 summarizes the results for the three methodolo-
gies (L2, L3, and L2N ) and for spatial averaging of n= 4
and n= 30. To represent the temporally un-aggregated ap-
proach, first a regression fit to lnAc vs. lnNd is performed to
each scene (the entire domain) to generate a value of So; then
the individual So values are averaged (represented by 6So).
This is done for all scenes that meet the criteria discussed
in Sect. 3. The temporally aggregated approach (So) aggre-
gates all scenes into one large data set before performing the
regression. Because of the large number of individual Ac,
Nd pairs required to calculate So, calculations are limited
to 58 of the 127 simulations, as in Sect. 4.1.3. The biases
are calculated based on Eq. (12). Of immediate note is that
the analysis shows that temporal aggregation results in a re-
duced So on the order of 70 %–110 %, depending on the
methodology applied. For L2 and L2N the average of local-
in-time cloud albedo susceptibility is larger than that calcu-
lated by temporally aggregating many scenes. This bias is
of opposite sign to the typical biases associated with spa-
tial aggregation (e.g., Fig. 4) and not significantly different
in magnitude. This offsetting of errors should be seen as a
cautionary flag when making choices of how to aggregate
data rather than as a fortuitous occurrence, since, as we have
shown above, the biases are highly dependent on cloud field
properties.

In the case of L3, the temporal aggregation of many dif-
ferent scenes results in an increase in albedo susceptibility
and a change in sign from negative to weakly positive. Here
too, the spatial and temporal aggregation has opposite ef-
fects (cf. Fig. 3b). (Note that the percent differences for L3 in
Table 1 are somewhat misleading: because of the change in
sign, increases in So due to temporal averaging still show up
as negative differences because of the normalization by the
negative 6So.)

Finally, given the close relationship between the So and
Lo spatial aggregation biases, we surmise that temporal av-
eraging will have similar effects on Lo to on So.

5 Discussion and summary

Satellite-based measurements are our best means of assess-
ing aerosol–cloud–radiation interactions at the global scale
and providing model constraints for one of the most uncer-
tain forcings of the atmospheric system, namely, aerosol indi-
rect effects. Space-based data draw heavily on polar-orbiting
satellites carrying passive instruments from which we infer
aerosol properties (e.g., aerosol optical depth), cloud proper-
ties (cloud optical depth, cloud-top drop effective radius, liq-
uid water path), and radiative fluxes. Typical approaches to
quantification of aerosol–cloud–radiation interactions aver-
age these inferred properties spatially and temporally to sup-
press the “noisy” retrievals inherent to these measurements.
The goal of this paper has been to address the ramifications
of spatial and temporal aggregation for standard metrics of
indirect effects in the form of cloud albedo susceptibility
So, which is in turn strongly dependent on the liquid water
path adjustment (Lo) (Eq. 1). The question is central to our
ability to quantify aerosol indirect effects and raises funda-
mental questions of nonlinearities in the aerosol–cloud in-
teraction system and natural covariability of the interacting
fields. Early work recognized the effects of aggregation on
cloud albedo (Ac) – the so-called “albedo bias” (e.g., Caha-
lan et al., 1994). The current study has assumed no aggrega-
tion error in Ac (as in the case of a direct CERES-based re-
trieval) but has focused instead on derivatives of the form of
Eq. (1) that include highly nonlinear satellite-based retrievals
of drop concentration (Nd). In addition, we have derived liq-
uid water path L from the product of spectrometer-derived
cloud optical depth and drop effective radius (Eq. 3), as is
typically done for MODIS-based retrievals, and have not ad-
dressed the question of how this derivation might affect the
So bias.

To provide context for the problem, we start with a the-
oretical framework based on spatial distributions of the in-
teracting aerosol and cloud fields, which helps identify key
variables that control the So bias (the variance in the fields
and the correlation between the fields). Then, picking up on
earlier work (McComiskey and Feingold, 2012), which ana-
lyzed three stratocumulus cloud scenes with varying degrees
of cloud field variance, we extend the analysis to 127 simula-
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tions exhibiting a wide variety of stratocumulus cloud scenes.
The LES provides all essential microphysical properties from
which standard retrievals can be performed. The key cloud
field properties are cloud-top drop effective radius re, cloud
optical depth τ (both of which are taken directly from the
LES), and Ac (based on LES τ and Eq. 4). Nd is derived
from Eq. (2) and L from Eq. (3). Within the framework of
standard regression analysis, we quantify the effects of ag-
gregation on the variance in the fields and the correlation be-
tween the fields and the implications for So biases.

The assessment of spatial aggregation biases considers
three methodologies. The first is standard level-2 (L2) satel-
lite methodology, which retrieves cloud properties at high
resolution (order 1 km) and averages them up to a scale on
the order of 100 km. Given the limitations in our LES do-
main size (40 km), we instead compare So based on 800 m
and 6 km scales. This forms the basis of our spatial-scale
averaging. Recognizing that some might choose to use the
more compact aggregated data as a starting point, our sec-
ond approach is level-3 (L3) methodology, which applies
microphysical retrievals to spatially averaged data. Consid-
ering that a key and uncertain variable in the So calculation
is the derived drop concentration (Nd), a third set of calcu-
lations repeats the level-2 analysis but uses the “true” (LES-
calculated) Nd, which we refer to as the L2N methodology.
All consider perfect cloud albedo retrievals based on LES
cloud optical depth (Eq. 4), removing the well-known cloud
albedo averaging bias from the discussion. Furthermore, de-
rived variables re and τ , which are central to the So bias
analysis, have been assumed to be free of measurement error.
Real-world satellite retrieval errors of these variables, espe-
cially in heterogeneous or broken cloud fields, could amplify
or perhaps counter the biases identified here. Therefore, ap-
plying the conclusions directly to satellite studies should be
done with caution.

Key results pertaining to spatial aggregation biases are the
following.

1. So biases are generally positive for all three approaches
and, consistent with theory, tend to increase with de-
creasing correlation between the fields (Fig. 4). For L2,
biases can reach 500 %, whereas they are capped at
about 100 % for L2N . These biases will translate to bi-
ases in aerosol–cloud radiative forcing.

2. The L3 methodology (falsely) creates negative correla-
tions between the cloud fields, resulting in generally un-
predictable So bias behavior (Fig. 4b). Moreover, it gen-
erates negative So values (see Appendix A), exacerbated
by increasing degrees of averaging (Fig. 3b). The posi-
tive So biases for L3 are therefore misleading (Figs. 3b
and 4b).

3. High cloud fraction fc states are equally or even more
prone to So bias than low-fc (high-D(L)) states. This is
in part due to the nature of theNd retrieval, which intro-

duces heterogeneity into the field (see example Fig. 11),
but L2N cases also tend to exhibit this trend. The litera-
ture tends to consider high-fc states to be homogeneous,
but this work shows that this is not necessarily the case
since the Nd retrieval generates unrealistic small-scale
heterogeneity in relatively homogeneous conditions.

4. Using regression theory (Eq. 11), we can interpret bi-
ases in So based on the extent to which averaging
changes (i) the ratio of the correlation rx,y (r ratio) and
(ii) the ratio of σy/σx (σ ratio) at the 6 km vs. 800 m
scales. Figure 5 shows that the So bias is strongly de-
pendent on the σ ratio, particularly for L3 and L2N and
for L2 at high r(L,Nd). The r ratio has a weaker control
over the So biases (Fig. 6).

5. Since the σ ratio is a ratio of ratios, we further expand
our analysis of this term to assess the extent to which av-
eraging changes σAc relative to σNd . We find that, while
averaging can reduce σAc as much as σNd , there is a ten-
dency for larger reductions in σNd (Fig. 7), particularly
for high-fc and low r-ratio L2 cases (Fig. 8) and for
low-fc L2N cases (Fig. 7).

6. So biases exceeding 100 % always occur when
averaging-related smoothing has a stronger effect onNd
than on Ac (Fig. 9), although the magnitude and even
sign of these biases vary significantly depending on the
methodology. The lack of monotonicity in responses un-
der these conditions depends on the relative strength of
the r ratio and the extent to which it amplifies or coun-
teracts the σ ratio. This in turn depends on the cloud
fields themselves in ways that are not always easy to
clarify.

7. As anticipated by Eq. (1), the So bias is a strong function
of the Lo bias (Fig. 10). In the case of L2, the Lo bias is
noticeably smaller than the So bias at low fc, while the
reverse is true for L3 (see Appendix B).

Regarding temporal aggregation, we note that if aerosol–
cloud interaction metrics such as So are based on aggrega-
tion of cloud scenes over an extended period of time, bias
can be expected as a result of extending the range of con-
ditions beyond the natural local fluctuations inherent to co-
varying meteorological and aerosol conditions. To assess the
effects of this temporal aggregation, we consider the differ-
ence between the average of So from individual cloud scenes
and the So that is derived from a best fit to the data from
all those scenes, with the former reflecting the average of
local-in-time So and the latter reflecting the effect of tem-
poral aggregation. Calculations are performed at both 800 m
and 6 km scales (Table 1). Of note is that temporal averaging,
as calculated in this manner, reduces (in percent terms) So at
both averaging scales and for L2, L3, and L2N analysis. The
negative bias is on the order of 70 %–80 % for L2 and L2N .
As noted in Sect. 4.1.1, L3 spatial aggregation methodology
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generates negative So, and temporal aggregation has the ben-
eficial effect of creating small positive and therefore more
realistic So (relative to temporally un-aggregated) values. (In
percentage change terms, however, the bias is negative.)

We emphasize that these offsetting effects of spatial and
temporal So biases are very situationally dependent and re-
quire further investigation. As in the case of the regression
analysis (Eq. 11) performed for spatial aggregation, the per-
tinent question becomes the extent to which temporal aggre-
gation will affect the σ and r ratios. Further work will need
to place this offsetting effect on firmer footing.

Finally, it is of great importance that similar assessments
of So biases be considered in real-world satellite-based data.
This will allow the community to assess the degree of co-
herence between the aforementioned studies and the model-
based results presented here and the implications for quan-
tification of aerosol–cloud radiative forcing.

Appendix A

Sorting or aggregation of data can generate unexpected re-
sponses. A common example of this is the relationship be-
tween “success at basketball” and “height” (Fig. A1). Al-
though the expected positive correlation between these two
variables emerges if one sorts the data by age group, the re-
verse occurs if one aggregates all the data together (“first ag-
gregate, then fit”), simply because older players, while taller,
do not typically perform as well as younger players. This ap-
parent contradiction was noted by Simpson (1951) and is
known as Simpson’s paradox. It has received more atten-
tion during the COVID-19 pandemic as it explains apparent
contradictions between vaccination rates and hospitalizations
when data are not sorted by confounding factors.

Although hard to prove, the commonality for the current
data is that the L2 methodology takes the approach of fit-
ting the un-aggregated data, whereas the L3 methodology
first averages the data and then performs a fit. In our case the
data are not as clearly separated as in the simple example in
Fig. A1, but the L2 methodology has a much higher chance of
retaining the underlying physical relationship between vari-
ables than the L3 methodology. Indeed, L2 produces posi-
tive So, whereas L3 produces a counterintuitive negative So.

Appendix B

We address the flip in the relative slopes of low and high-fc
points for L2 and L3 in Fig. 10. Based on Fig. 7 and Eq. (13),
our intuition is that it is likely a function of the change in
averaging–smoothing in Ac vs. averaging–smoothing in L.
To test this, we repeat Fig. 7 but now also look at smoothing
in L and Nd.

What is apparent is that for L3, there is much more
smoothing in Ac than in L at low fc (the L3 points lie closer
to the 1 : 1 line in Fig. B1b vs. Fig. 7b for low fc). For L2,

Figure A1. Demonstration of Simpson’s paradox (Simpson, 1951)
with the often-quoted relationship between “success at basketball”
(y axis) and “height” (x axis). If data are separated by age, then
the expected positive relationship emerges. If data are first aggre-
gated, i.e., age is not taken into account, then a negative relation-
ship emerges. The analogy to the current work is that aggregat-
ing blue points and red points separately and then fitting (as in the
L3 methodology) may explain negative So values.

more low-fc points tend to lie below the 1 : 1 line in Fig. B1a
vs. Fig. 7a, but because of this migration of points from above
to below the line, it is more difficult to interpret. For L2N the
smoothing in L and Ac looks similar, in line with our intu-
ition (cf. Fig. 10, where one sees less of a bias in the relation-
ship for low- and high-fc points).

To dig deeper, we look more closely at the σ ratios (Eq. 13)
for (i) Ac, Nd (σ ratio Ac, Nd) and (ii) L, Nd (σ ratio (L,
Nd) for the low-fc points. We then fit a linear relation be-
tween points for 0.3< fc < 0.43 (Fig. B2) and fc > 0.85
(not shown) and obtain the following: for 0.3< fc < 0.43,
L2: y = 0.06+0.78x, L3: y =−0.25+1.03x, and L2N: y =
−0.22+ 1.02x, with x the σ ratio for L and Nd and y the σ
ratio for Ac and Nd. For fc > 0.85, L2: y = 0.1+0.90x, L3:
y = 0.04+ 0.94x, and L2N: y = 0.23+ 0.81x.

The high-fc slopes for L2 and L3 are similar (0.90
vs. 0.94, respectively), but there is a more significant dif-
ference in the low-fc slopes (0.78 vs. 1.03 for L2 and L3,
respectively) and in the direction consistent with the differ-
ences between L2 and L3 (Fig. 10a and b). Note the steep-
ening of the low-fc points in L3 and the negative inter-
cept for L3 at low fc (Fig. B2), which is consistent with
Fig. 10b. This points strongly to the differences in degree
of aggregation-related smoothing between Ac and L in these
low-fc scenes being responsible for the flip in the relative
sign of So vs. L adjustment slopes between Fig. 10a (L2) and
Fig. 10b (L3).

We note that these differences in smoothing derive from
the derivations of Ac (Eq. 4) and L (Eq. 3), with Ac a (non-
linear) function of τ only and L a function of the product of τ
and re. Anticipating how the aggregation biases will play out
is not intuitive and requires, in our experience, analyses of
the kind shown here.
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Figure B1. Effects of aggregation on normalized reduction in σ (L) vs. normalized reduction in σ (Nd) to shed light on results in Fig. 10.
Points are colored by fc. In (b), and at low fc, aggregation tends to less significantly reduce σ (L) relative to σ (Ac) (Fig. 7b). (a) L2, (b) L3,
and (c) L2N . See Appendix B for further discussion.

Figure B2. Plots of the σ ratio (Eq. 13) for Ac, Nd (σ ratio – Ac, Nd) vs. L, Nd (σ ratio – L, Nd). The solid lines are best-fit lines to the
low-fc points. The dash-dotted line is the 1 : 1 line. Note that the log scale distorts the solid-line linear relationships. (a) L2, (b) L3, and
(c) L2N . See Appendix B for further discussion.

Code and data availability. Model output is available on request.
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