Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Volatile organic compound fluxes over a winter wheat field by PTR-Qi-TOF-MS and eddy covariance
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Pauline Buysse
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Lais Gonzaga-Gomez
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Florence Lafouge
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Raluca Ciuraru
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Céline Decuq
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Julien Kammer
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
now at: Aix Marseille Univ., CNRS, LCE, Marseille, France
Sandy Bsaibes
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Christophe Boissard
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Université de Paris and Univ. Paris Est Creteil, CNRS, LISA, 75013 Paris, France
Brigitte Durand
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Jean-Christophe Gueudet
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Olivier Fanucci
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Olivier Zurfluh
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
Letizia Abis
UMR ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
now at: Umweltchemie und Luftreinhaltung, Technische Universität Berlin, Straße des 17. Juni 135, Berlin, 10623, Germany
Nora Zannoni
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
now at: Max-Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
François Truong
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Dominique Baisnée
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Roland Sarda-Estève
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Michael Staudt
CEFE, CNRS, EPHE, IRD, Univ Montpellier, Montpellier, France
Valérie Gros
Laboratoire des Sciences du Climat et de l'Environnement, LSCE, UMR
CNRS-CEA-UVSQ, IPSL, 91191 Gif-sur-Yvette, Île-de-France, France
Related authors
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Pauline Buysse, Benjamin Loubet, Raluca Ciuraru, Florence Lafouge, Brigitte Durand, Olivier Zurfluh, Céline Décuq, Olivier Fanucci, Lais Gonzaga Gomez, Jean-Christophe Gueudet, Sandy Bsaibes, Nora Zannoni, and Valérie Gros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2438, https://doi.org/10.5194/egusphere-2023-2438, 2024
Preprint withdrawn
Short summary
Short summary
This research aimed at quantifying biogenic volatile organic compounds (BVOCs) emissions by a rapeseed crop field. Such compounds are precursors of atmospheric pollutants. Our study revealed that methanol, a BVOC that is not very reactive in the atmosphere, is by far the most emitted BVOC, while monoterpenes, being highly reactive, were emitted in larger quantities than expected. Our study therefore points out the potentially more significant contribution of croplands to atmospheric pollution.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Débora Pinheiro-Oliveira, Hella van Asperen, Murielli Garcia Caetano, Michelle Robin, Achim Edtbauer, Nora Zannoni, Joseph Byron, Jonathan Williams, Layon Oreste Demarchi, Maria Teresa Fernandez Piedade, Jochen Schöngart, Florian Wittmann, Sergio Duvoisin-Junior, Carla Batista, Rodrigo Augusto Ferreira de Souza, and Eliane Gomes Alves
EGUsphere, https://doi.org/10.5194/egusphere-2025-2895, https://doi.org/10.5194/egusphere-2025-2895, 2025
Short summary
Short summary
Forests release trace gases that influence air and climate. While plants are the main source, soil and leaf litter can also release significant amounts, especially in tropical forests like the Amazon. We measured these fluxes in different forest types and found soil and litter to be active sources and sinks. This can improves climate models by including realistic forest processes, vital for understanding and protecting the Amazon.
Ludovico Di Antonio, Matthias Beekmann, Guillaume Siour, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Joel F. de Brito, Paola Formenti, Cecile Gaimoz, Olivier Garret, Aline Gratien, Valérie Gros, Martial Haeffelin, Lelia N. Hawkins, Simone Kotthaus, Gael Noyalet, Diana L. Pereira, Jean-Eudes Petit, Eva Drew Pronovost, Véronique Riffault, Chenjie Yu, Gilles Foret, Jean-François Doussin, and Claudia Di Biagio
Atmos. Chem. Phys., 25, 4803–4831, https://doi.org/10.5194/acp-25-4803-2025, https://doi.org/10.5194/acp-25-4803-2025, 2025
Short summary
Short summary
The summer of 2022 has been considered a proxy for future climate scenarios due to its hot and dry conditions. In this paper, we use the measurements from the Atmospheric Chemistry of the Suburban Forest (ACROSS) campaign, conducted in the Paris area in June–July 2022, along with observations from existing networks, to evaluate a 3D chemistry transport model (WRF–CHIMERE) simulation. Results are shown to be satisfactory, allowing us to explain the gas and aerosol variability at the campaign sites.
Mubaraq Olarewaju Abdulwahab, Christophe Flechard, Yannick Fauvel, Christoph Häni, Adrien Jacotot, Anne-Isabelle Graux, Nadège Edouard, Pauline Buysse, Valérie Viaud, and Albrecht Neftel
EGUsphere, https://doi.org/10.5194/egusphere-2025-1605, https://doi.org/10.5194/egusphere-2025-1605, 2025
Short summary
Short summary
Pastures are an important source of ammonia, a major atmospheric pollutant with manifold environmental impacts. Ammonia is emitted from the decomposition of cattle urine in soils during grazing. We used micrometeorological methods to measure emissions over four grazing seasons. The results show the influence of weather and grassland management on emission processes. Emission factors, used to compile regional inventories, are hugely variable and still very uncertain despite decades of research.
Benjamin Loubet, Nicolas P. Saby, Maryam Gebleh, Pauline Buysse, Jean-Philippe Chenu, Céline Ratie, Claudy Jolivet, Carmen Kalalian, Florent Levavasseur, Jose-Luis Munera-Echeverri, Sebastien Lafont, Denis Loustau, Dario Papale, Giacomo Nicolini, Bruna Winck, and Dominique Arrouays
EGUsphere, https://doi.org/10.5194/egusphere-2025-592, https://doi.org/10.5194/egusphere-2025-592, 2025
Short summary
Short summary
Soil is a large pool of carbon storing globally from two to three times more carbon than the atmosphere and vegetation. We compute the soil stock evolution from 2005 to 2019 for a wheat-maize-barley-oilseed-rape crop rotation at a French crop site. The soil carbon stock decreased by around 70 ± 16 g C m-2 yr-1 over the period, leading to a total loss of around 8 % of the initial soil stock. This strong destocking is primarily explained by a decrease in the residue return to the site.
Denis Leppla, Stefanie Hildmann, Nora Zannoni, Leslie Kremper, Bruna Hollanda, Jonathan Williams, Christopher Pöhlker, Stefan Wolff, Marta Sà, Maria Cristina Solci, Ulrich Pöschl, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-141, https://doi.org/10.5194/egusphere-2025-141, 2025
Short summary
Short summary
The chemical composition of organic particles in the Amazon rainforest was investigated to understand how biogenic and human emissions influence the atmosphere in this unique ecosystem. Seasonal patterns were found where wet seasons were dominated by biogenic compounds from natural sources while dry seasons showed increased fire-related pollutants. These findings reveal how emissions, fires and long-range transport affect atmospheric chemistry, with implications for climate models.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Pedro Henrique Herig Coimbra, Benjamin Loubet, Olivier Laurent, Laura Bignotti, Mathis Lozano, and Michel Ramonet
Atmos. Meas. Tech., 17, 6625–6645, https://doi.org/10.5194/amt-17-6625-2024, https://doi.org/10.5194/amt-17-6625-2024, 2024
Short summary
Short summary
This study presents direct flux measurements in tall towers using existing slow-response analysers and adding 3D sonic anemometers. This way, we can significantly improve greenhouse gas monitoring with little extra instrumental effort. Slow-response analysers may be used here as the relevant frequency ranges depend on measuring height. Tall towers offer a large footprint, amplifying spatial coverage. The presented concept is a valuable bridge between atmospheric and ecosystem communities.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Alice Maison, Lya Lugon, Soo-Jin Park, Alexia Baudic, Christopher Cantrell, Florian Couvidat, Barbara D'Anna, Claudia Di Biagio, Aline Gratien, Valérie Gros, Carmen Kalalian, Julien Kammer, Vincent Michoud, Jean-Eudes Petit, Marwa Shahin, Leila Simon, Myrto Valari, Jérémy Vigneron, Andrée Tuzet, and Karine Sartelet
Atmos. Chem. Phys., 24, 6011–6046, https://doi.org/10.5194/acp-24-6011-2024, https://doi.org/10.5194/acp-24-6011-2024, 2024
Short summary
Short summary
This study presents the development of a bottom-up inventory of urban tree biogenic emissions. Emissions are computed for each tree based on their location and characteristics and are integrated in the regional air quality model WRF-CHIMERE. The impact of these biogenic emissions on air quality is quantified for June–July 2022. Over Paris city, urban trees increase the concentrations of particulate organic matter by 4.6 %, of PM2.5 by 0.6 %, and of ozone by 1.0 % on average over 2 months.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Yang Liu, Raluca Ciuraru, Letizia Abis, Crist Amelynck, Pauline Buysse, Alex Guenther, Bernard Heinesch, Florence Lafouge, Florent Levavasseur, Benjamin Loubet, Auriane Voyard, and Raia-Silvia Massad
EGUsphere, https://doi.org/10.5194/egusphere-2024-530, https://doi.org/10.5194/egusphere-2024-530, 2024
Preprint archived
Short summary
Short summary
This paper reviews the emission and emission processes of biogenic volatile organic compounds (BVOCs) from various crops and soil under different management practices, highlighting challenges in modeling the emissions and proposing a conceptual model for estimation. The aim of this paper is to present agricultural BVOC data and related mechanistic processes to enhance model accuracy and reduce uncertainties in estimating BVOC emissions from agriculture.
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Victor Moinard, Antoine Savoie, Catherine Pasquier, Adeline Besnault, Yolaine Goubard-Delaunay, Baptiste Esnault, Marco Carozzi, Polina Voylokov, Sophie Génermont, Benjamin Loubet, Catherine Hénault, Florent Levavasseur, Jean-Marie Paillat, and Sabine Houot
EGUsphere, https://doi.org/10.5194/egusphere-2024-161, https://doi.org/10.5194/egusphere-2024-161, 2024
Preprint archived
Short summary
Short summary
Anaerobic digestion is used for biogas production. The resulting digestates may be associated with different crop performances and N losses compared to undigested animal effluents. We monitored N flows during a three-year field experiment with different fertilizations based on cattle effluents, digestates, or mineral fertilizers. Digestates were effective N fertilizer but required attention to NH3 volatilization. We identified no additional risks of N2O emissions with digestates.
Pauline Buysse, Benjamin Loubet, Raluca Ciuraru, Florence Lafouge, Brigitte Durand, Olivier Zurfluh, Céline Décuq, Olivier Fanucci, Lais Gonzaga Gomez, Jean-Christophe Gueudet, Sandy Bsaibes, Nora Zannoni, and Valérie Gros
EGUsphere, https://doi.org/10.5194/egusphere-2023-2438, https://doi.org/10.5194/egusphere-2023-2438, 2024
Preprint withdrawn
Short summary
Short summary
This research aimed at quantifying biogenic volatile organic compounds (BVOCs) emissions by a rapeseed crop field. Such compounds are precursors of atmospheric pollutants. Our study revealed that methanol, a BVOC that is not very reactive in the atmosphere, is by far the most emitted BVOC, while monoterpenes, being highly reactive, were emitted in larger quantities than expected. Our study therefore points out the potentially more significant contribution of croplands to atmospheric pollution.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Leïla Simon, Valérie Gros, Jean-Eudes Petit, François Truong, Roland Sarda-Estève, Carmen Kalalian, Alexia Baudic, Caroline Marchand, and Olivier Favez
Earth Syst. Sci. Data, 15, 1947–1968, https://doi.org/10.5194/essd-15-1947-2023, https://doi.org/10.5194/essd-15-1947-2023, 2023
Short summary
Short summary
Long-term measurements of volatile organic compounds (VOCs) have been set up to better characterize the atmospheric chemistry at the SIRTA national facility (Paris area, France). Results obtained from the first 2 years (2020–2021) confirm the importance of local sources for short-lived compounds and the role played by meteorology and air mass origins in the long-term analysis of VOCs. They also point to a substantial influence of anthropogenic on the monoterpene loadings.
Valérie Gros, Bernard Bonsang, Roland Sarda-Estève, Anna Nikolopoulos, Katja Metfies, Matthias Wietz, and Ilka Peeken
Biogeosciences, 20, 851–867, https://doi.org/10.5194/bg-20-851-2023, https://doi.org/10.5194/bg-20-851-2023, 2023
Short summary
Short summary
The oceans are both sources and sinks for trace gases important for atmospheric chemistry and marine ecology. Here, we quantified selected trace gases (including the biological metabolites dissolved dimethyl sulfide, methanethiol and isoprene) along a 2500 km transect from the North Atlantic to the Arctic Ocean. In the context of phytoplankton and bacterial communities, our study suggests that methanethiol (rarely measured before) might substantially influence ocean–atmosphere cycling.
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys., 23, 809–820, https://doi.org/10.5194/acp-23-809-2023, https://doi.org/10.5194/acp-23-809-2023, 2023
Short summary
Short summary
Chiral chemodiversity plays a critical role in biochemical processes such as insect and plant communication. Here we report on the measurement of chiral-specified secondary organic aerosol in the Amazon rainforest. The results show that the chiral ratio is mainly determined by large-scale emission processes. Characteristic emissions of chiral aerosol precursors from different forest ecosystems can thus provide large-scale information on different biogenic sources via chiral particle analysis.
Michael Staudt, Juliane Daussy, Joseph Ingabire, and Nafissa Dehimeche
Biogeosciences, 19, 4945–4963, https://doi.org/10.5194/bg-19-4945-2022, https://doi.org/10.5194/bg-19-4945-2022, 2022
Short summary
Short summary
We studied the short- and long-term effects of CO2 as a function of temperature on monoterpene emissions from holm oak. Similarly to isoprene, emissions decreased non-linearly with increasing CO2, with no differences among compounds and chemotypes. The CO2 response was modulated by actual leaf and growth temperature but not by growth CO2. Estimates of annual monoterpene release under double CO2 suggest that CO2 inhibition does not offset the increase in emissions due to expected warming.
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Alexandre Kukui, Michel Chartier, Jinhe Wang, Hui Chen, Sébastien Dusanter, Stéphane Sauvage, Vincent Michoud, Nadine Locoge, Valérie Gros, Thierry Bourrianne, Karine Sellegri, and Jean-Marc Pichon
Atmos. Chem. Phys., 21, 13333–13351, https://doi.org/10.5194/acp-21-13333-2021, https://doi.org/10.5194/acp-21-13333-2021, 2021
Short summary
Short summary
Sulfuric acid, H2SO4, plays a key role in formation of secondary atmospheric aerosol particles. It is generally accepted that the major atmospheric source of H2SO4 is the reaction of OH radicals with SO2. In this study, importance of an additional H2SO4 source via oxidation of SO2 by stabilized Criegee intermediates was estimated based on measurements at a remote site on Cape Corsica. It was found that the oxidation of SO2 by SCI may be an important source of H2SO4, especially during nighttime.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Sara M. Defratyka, Jean-Daniel Paris, Camille Yver-Kwok, Daniel Loeb, James France, Jon Helmore, Nigel Yarrow, Valérie Gros, and Philippe Bousquet
Atmos. Meas. Tech., 14, 5049–5069, https://doi.org/10.5194/amt-14-5049-2021, https://doi.org/10.5194/amt-14-5049-2021, 2021
Short summary
Short summary
We consider the possibility of using the CRDS Picarro G2201-i instrument, originally designed for isotopic CH4 and CO2, for measurements of ethane : methane in near-source conditions. The work involved laboratory tests, a controlled release experiment and mobile measurements. We show the potential of determining ethane : methane with 50 ppb ethane uncertainty. The instrument can correctly estimate the ratio in CH4 enhancements of 1 ppm and more, as can be found at strongly emitting sites.
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021, https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary
Short summary
Tropical forests are globally significant for atmospheric chemistry. However, the mixture of reactive organic gases emitted by these ecosystems is poorly understood. By comprehensive observations at an Amazon forest site, we show that oxygenated species were previously underestimated in their contribution to the tropical-forest reactant mix. Our results show rain and temperature effects and have implications for models and the understanding of ozone and particle formation above tropical forests.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Ashish Kumar, Vinayak Sinha, Muhammed Shabin, Haseeb Hakkim, Bernard Bonsang, and Valerie Gros
Atmos. Chem. Phys., 20, 12133–12152, https://doi.org/10.5194/acp-20-12133-2020, https://doi.org/10.5194/acp-20-12133-2020, 2020
Short summary
Short summary
Source apportionment studies require information on the chemical fingerprints of pollution sources to correctly quantify source contributions to ambient composition. These chemical fingerprints vary from region to region, depending on fuel composition and combustion conditions, and are poorly constrained over developing regions such as South Asia. This work characterises the chemical fingerprints of urban and agricultural sources using 49 non-methane hydrocarbons and their environmental impacts.
Cited articles
Abis, L., Loubet, B., Ciuraru, R., Lafouge, F., Dequiedt, S., Houot, S.,
Maron, P. A., and Bourgeteau-Sadet, S.: Profiles of volatile organic
compound emissions from soils amended with organic waste products, Sci. Total
Environ., 636, 1333–1343, https://doi.org/10.1016/j.scitotenv.2018.04.232, 2018.
Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643–4651, https://doi.org/10.5194/acp-6-4643-2006, 2006.
Ashmore, M. R.: Assessing the future global impacts of ozone on vegetation,
Plant Cell Environ., 28, 949–964, https://doi.org/10.1111/j.1365-3040.2005.01341.x,
2005.
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T.,
Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R.,
Elbers, J., Granier, A., Grunwald, T., Morgenstern, K., Pilegaard, K.,
Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the
annual net carbon and water exchange of forests: The EUROFLUX methodology,
Adv. Ecol. Res., 30, 113–175, 2000.
Avnery, S., Mauzerall, D. L., Liu, J. F., and Horowitz, L. W.: Global crop
yield reductions due to surface ozone exposure: 1. Year 2000 crop production
losses and economic damage, Atmos. Environ., 45, 2284–2296, https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011.
Baasandorj, M., Millet, D. B., Hu, L., Mitroo, D., and Williams, B. J.: Measuring acetic and formic acid by proton-transfer-reaction mass spectrometry: sensitivity, humidity dependence, and quantifying interferences, Atmos. Meas. Tech., 8, 1303–1321, https://doi.org/10.5194/amt-8-1303-2015, 2015.
Bachy, A., Aubinet, M., Schoon, N., Amelynck, C., Bodson, B., Moureaux, C., and Heinesch, B.: Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season, Atmos. Chem. Phys., 16, 5343–5356, https://doi.org/10.5194/acp-16-5343-2016, 2016.
Bachy, A., Aubinet, M., Amelynck, C., Schoon, N., Bodson, B., Moureaux, C.,
Delaplace, P., De Ligne, A., and Heinesch, B.: Methanol exchange dynamics
between a temperate cropland soil and the atmosphere, Atmos.
Environ., 176, 229–239,
https://doi.org/10.1016/j.atmosenv.2017.12.016, 2018.
Bachy, A., Aubinet, M., Amelynck, C., Schoon, N., Bodson, B., Delaplace, P.,
De Ligne, A., Digrado, A., du Jardin, P., Fauconnier, M. L., Mozaffar, A.,
Muller, J. F., and Heinesch, B.: Dynamics and mechanisms of volatile organic
compound exchanges in a winter wheat field, Atmos. Environ., 221, 117105, https://doi.org/10.1016/j.atmosenv.2019.117105, 2020.
Bamberger, I., Hoertnagl, L., Schnitzhofer, R., Graus, M., Ruuskanen, T. M.,
Mueller, M., Dunkl, J., Wohlfahrt, G., and Hansel, A.: BVOC fluxes above
mountain grassland, Biogeosciences, 7, 1413–1424, https://doi.org/10.5194/bg-7-1413-2010,
2010.
Bamberger, I., Hörtnagl, L., Ruuskanen, T. M., Schnitzhofer, R.,
Müller, M., Graus, M., Karl, T., Wohlfahrt, G., and Hansel, A.:
Deposition fluxes of terpenes over grassland, J. Geophys.
Res., 116, D14305, https://doi.org/10.1029/2010jd015457, 2011.
Batten, J. H., Stutte, G. W., and Wheeler, R. M.: Effect of crop development
on biogenic emissions from plant populations grown in closed plant growth
chambers, Phytochemistry, 39, 1351–1357, https://doi.org/10.1016/0031-9422(95)00126-r, 1995.
Berhongaray, G., Verlinden, M. S., Broeckx, L. S., Janssens, I. A., and
Ceulemans, R.: Soil carbon and belowground carbon balance of a
short-rotation coppice: assessments from three different approaches, GCB Bioenergy, 9, 299–313, https://doi.org/10.1111/gcbb.12369, 2017.
Brilli, F., Gioli, B., Fares, S., Terenzio, Z., Zona, D., Gielen, B.,
Loreto, F., Janssens, I. A., and Ceulemans, R.: Rapid leaf development
drives the seasonal pattern of volatile organic compound (VOC) fluxes in a
“coppiced” bioenergy poplar plantation, Plant Cell Environ., 39,
539–555, https://doi.org/10.1111/pce.12638, 2016.
Carozzi, M., Loubet, B., Acutis, M., Rana, G., and Ferrara, R. M.: Inverse
dispersion modelling highlights the efficiency of slurry injection to reduce
ammonia losses by agriculture in the Po Valley (Italy), Agr.
Forest Meteorol., 171, 306–318, https://doi.org/10.1016/j.agrformet.2012.12.012, 2013.
Carrión, O., Pratscher, J., Curson, A. R. J., Williams, B. T., Rostant,
W. G., Murrell, J. C., and Todd, J. D.: Methanethiol-dependent
dimethylsulfide production in soil environments, ISME J., 11,
2379–2390, https://doi.org/10.1038/ismej.2017.105, 2017.
Cojocariu, C., Escher, P., Haberle, K. H., Matyssek, R., Rennenberg, H., and
Kreuzwieser, J.: The effect of ozone on the emission of carbonyls from
leaves of adult Fagus sylvatica, Plant Cell Environ., 28, 603–611,
https://doi.org/10.1111/j.1365-3040.2005.01305.x, 2005.
Copeland, N., Cape, J. N., and Heal, M. R.: Volatile organic compound
emissions from Miscanthus and short rotation coppice willow bioenergy crops,
Atmos. Environ., 60, 327–335, https://doi.org/10.1016/j.atmosenv.2012.06.065, 2012.
Crespo, E., Graus, M., Gilman, J. B., Lerner, B. M., Fall, R., Harren, F. J.
M., and Warneke, C.: Volatile organic compound emissions from elephant grass
and bamboo cultivars used as potential bioethanol crop, Atmos.
Environ., 65, 61–68, https://doi.org/10.1016/j.atmosenv.2012.10.009, 2013.
Custer, T. and Schade, G.: Methanol and acetaldehyde fluxes over ryegrass,
Tellus B, 59, 673–684, https://doi.org/10.1111/j.1600-0889.2007.00294.x, 2007.
Das, M., Kang, D., Aneja, V. P., Lonneman, W., Cook, D. R., and Wesely, M.
L.: Measurements of hydrocarbon air–surface exchange rates over maize,
Atmos. Environ., 37, 2269–2277, https://doi.org/10.1016/s1352-2310(03)00076-1, 2003.
Davison, B., Brunner, A., Ammann, C., Spirig, C., Jocher, M., and Neftel,
A.: Cut-induced VOC emissions from agricultural grasslands, Plant Biol.,
10, 76–85, https://doi.org/10.1055/s-2007-965043, 2008.
De Gouw, J. A., Howard, C. J., Custer, T. G., Baker, B. M., and Fall, R.:
Proton-transfer chemical-ionization mass spectrometry allows real-time
analysis of volatile organic compounds released from cutting and drying of
crops, Environ. Sci. Technol., 34, 2640–2648, https://doi.org/10.1021/es991219k, 2000.
Effmert, U., Kalderas, J., Warnke, R., and Piechulla, B.: Volatile Mediated
Interactions Between Bacteria and Fungi in the Soil, J. Chem.
Ecol., 38, 665–703, https://doi.org/10.1007/s10886-012-0135-5, 2012.
Eller, A. S. D., Sekimoto, K., Gilman, J. B., Kuster, W. C., de Gouw, J. A.,
Monson, R. K., Graus, M., Crespo, E., Warneke, C., and Fall, R.: Volatile
organic compound emissions from switchgrass cultivars used as biofuel crops,
Atmos. Environ., 45, 3333–3337, https://doi.org/10.1016/j.atmosenv.2011.03.042,
2011.
European
Air Quality Directive: DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 21 May 2008
on ambient air quality and cleaner air for Europe, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en (last access: 28 February 2022), 2008.
Fall, R. and Benson, A. A.: Leaf methanol – The simplest natural product from plants, Trends Plant Sci., 1, 296–301, https://doi.org/10.1016/s1360-1385(96)88175-0, 1996.
Fall, R., Albritton, D. L., Fehsenfeld, F. C., Kuster, W. C., and Goldan, P.
D.: Laboratory studies of some environmental variables controlling sulfur
emissions from plants, J. Atmos. Chem., 6, 341–362, https://doi.org/10.1007/BF00051596, 1988.
Fares, S., Oksanen, E., Lannenpaa, M., Julkunen-Tiitto, R., and Loreto, F.:
Volatile emissions and phenolic compound concentrations along a vertical
profile of Populus nigra leaves exposed to realistic ozone concentrations,
Photosynth. Res., 104, 61–74, https://doi.org/10.1007/s11120-010-9549-5, 2010.
Fares, S., Park, J.-H., Gentner, D. R., Weber, R., Ormeño, E., Karlik, J., and Goldstein, A. H.: Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard, Atmos. Chem. Phys., 12, 9865–9880, https://doi.org/10.5194/acp-12-9865-2012, 2012.
Feilberg, A., Bildsoe, P., and Nyord, T.: Application of PTR-MS for
Measuring Odorant Emissions from Soil Application of Manure Slurry, Sensors,
15, 1148–1167, https://doi.org/10.3390/s150101148, 2015.
Filella, I., Wilkinson, M. J., Llusia, J., Hewitt, C. N., and Penuelas, J.:
Volatile organic compounds emissions in Norway spruce (Picea abies) in
response to temperature changes, Physiol. Plantarum, 130, 58–66, https://doi.org/10.1111/j.1399-3054.2007.00881.x, 2007.
Fruekilde, P., Hjorth, J., Jensen, N. R., Kotzias, D., and Larsen, B.:
Ozonolysis at vegetation surfaces: A source of acetone, 4-oxopentanal,
6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere, Atmos. Environ., 32, 1893–1902, https://doi.org/10.1016/S1352-2310(97)00485-8, 1998.
Gabriel, R., Schafer, L., Gerlach, C., Rausch, T., and Kesselmeier, J.:
Factors controlling the emissions of volatile organic acids from leaves of
Quercus ilex L. (Holm oak), Atmos. Environ., 33, 1347–1355, https://doi.org/10.1016/s1352-2310(98)00369-0, 1999.
Gallagher, M. W., Clayborough, R., Beswick, K. M., Hewitt, C. N., Owen, S.,
Moncrieff, J., and Pilegaard, K.: Assessment of a relaxed eddy accumulation
for measurements of fluxes of biogenic volatile organic compounds: study
over arable crops and a mature beech forest, Atmos. Environ., 34,
2887–2899, https://doi.org/10.1016/s1352-2310(00)00066-2, 2000.
Gitelson, I. I., Tikhomirov, A. A., Parshina, O. V., Ushakova, S. A., and
Kalacheva, G. S.: Volatile metabolites of higher plant crops as a
photosynthesizing life support system component under temperature stress at
different light intensities, in: Space Life Sciences: Closed Artificial
Ecosystems and Life Support Systems, edited by: Nelson, M., Pechurkin, N.
S., Dempster, W. F., Somova, L. A., and Shea, M. A., Adv. Space
Res., 7, 1781–1786, https://doi.org/10.1016/s0273-1177(03)00121-2, 2003.
Gonzaga Gomez, L. G., Loubet, B., Lafouge, F., Ciuraru, R., Bsaibes, S., Kammer, J.,
Buysse, P., Durand, B., Gueudet, J.-C., Fanucci, O., Zurfluh, O., Decuq, C.,
Truong, F., Gros, V., and Boissard, C.: Effect of senescence on biogenic
volatile organic compound fluxes in wheat plants, Atmos. Environ.,
266, 118665, https://doi.org/10.1016/j.atmosenv.2021.118665,
2021.
Gonzaga Gomez, L., Loubet, B., Lafouge, F., Ciuraru, R., Buysse, P., Durand,
B., Gueudet, J.-C., Fanucci, O., Fortineau, A., Zurfluh, O., Decuq, C.,
Kammer, J., Duprix, P., Bsaibes, S., Truong, F., Gros, V., and Boissard, C.:
Comparative study of biogenic volatile organic compounds fluxes by wheat,
maize and rapeseed with dynamic chambers over a short period in northern
France, Atmos. Environ., 214, 116855,
https://doi.org/10.1016/j.atmosenv.2019.116855, 2019.
Graus, M., Eller, A., Fall, R., Yuan, B., Qian, Y. L., Westra, P., de Gouw,
J., and Warneke, C.: Comparison of VOC emissions from conventional and
alternative biofuel crops, Abstracts of Papers of the American Chemical
Society, 242, 2013.
Graus, M., Eller, A. S. D., Fall, R., Yuan, B., Qian, Y., Westra, P., de
Gouw, J., and Warneke, C.: Biosphere-atmosphere exchange of volatile organic
compounds over C4 biofuel crops, Atmos. Environ., 66, 161–168, https://doi.org/10.1016/j.atmosenv.2011.12.042, 2013.
Groene, T.: Biogenic Production and Consumption of Dimethylsulfide (Dms) and
Dimethylsulfoniopropionate (Dmsp) in the Marine Epipelagic Zone – a Review,
J. Marine Syst., 6, 191–209, https://doi.org/10.1016/0924-7963(94)00023-5, 1995.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hafner, S. D., Montes, F., Rotz, C. A., and Mitloehner, F.: Ethanol emission
from loose corn silage and exposed silage particles, Atmos. Environ., 44, 4172–4180, https://doi.org/10.1016/j.atmosenv.2010.07.029, 2010.
Hatch, L. E., Yokelson, R. J., Stockwell, C. E., Veres, P. R., Simpson, I. J., Blake, D. R., Orlando, J. J., and Barsanti, K. C.: Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors, Atmos. Chem. Phys., 17, 1471–1489, https://doi.org/10.5194/acp-17-1471-2017, 2017.
Haworth, M., Catola, S., Marino, G., Brunetti, C., Michelozzi, M., Riggi,
E., Avola, G., Cosentino, S. L., Loreto, F., and Centritto, M.: Moderate
Drought Stress Induces Increased Foliar Dimethylsulphoniopropionate (DMSP)
Concentration and Isoprene Emission in Two Contrasting Ecotypes of Arundo
donax, Front. Plant Sci., 8, 1016, https://doi.org/10.3389/fpls.2017.01016, 2017.
Helmig, D., Balsley, B., Davis, K., Kuck, L. R., Jensen, M., Bognar, J.,
Smith, T., Arrieta, R. V., Rodriguez, R., and Birks, J. W.: Vertical
profiling and determination of landscape fluxes of biogenic nonmethane
hydrocarbons within the planetary boundary layer in the Peruvian Amazon,
J. Geophys. Res.-Atmos., 103, 25519–25532, https://doi.org/10.1029/98jd01023, 1998.
Hobbs, P. J., Webb, J., Mottram, T. T., Grant, B., and Misselbrook, T. M.:
Emissions of volatile organic compounds originating from UK livestock
agriculture, J. Sci. Food Agr., 84, 1414–1420, https://doi.org/10.1002/jsfa.1810, 2004.
Holopainen, J. K., Kivimaenpaa, M., and Nizkorodov, S. A.: Plant-derived
Secondary Organic Material in the Air and Ecosystems, Trend Plant
Sci., 22, 744–753, https://doi.org/10.1016/j.tplants.2017.07.004, 2017.
IPCC: Global Warming of 1.5 ∘C, An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, edited by: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T., in press, 2018.
Jacob, D. J., Field, B. D., Li, Q. B., Blake, D. R., de Gouw, J., Warneke,
C., Hansel, A., Wisthaler, A., Singh, H. B., and Guenther, A.: Global budget
of methanol: Constraints from atmospheric observations, J.
Geophys. Res.-Atmos., 110, D08303, https://doi.org/10.1029/2004jd005172, 2005.
Jardine, K., Yañez Serrano, A., Arneth, A., Abrell, L., Jardine, A., Artaxo, P., Alves, E., Kesselmeier, J., Taylor, T., Saleska, S., and Huxman, T.: Ecosystem-scale compensation points of formic and acetic acid in the central Amazon, Biogeosciences, 8, 3709–3720, https://doi.org/10.5194/bg-8-3709-2011, 2011.
Jardine, K., Yañez-Serrano, A. M., Williams, J., Kunert, N., Jardine,
A., Taylor, T., Abrell, L., Artaxo, P., Guenther, A., Hewitt, C. N., House,
E., Florentino, A. P., Manzi, A., Higuchi, N., Kesselmeier, J., Behrendt,
T., Veres, P. R., Derstroff, B., Fuentes, J. D., Martin, S. T., and Andreae,
M. O.: Dimethyl sulfide in the Amazon rain forest, Global Biogeochem.
Cy., 29, 19–32, https://doi.org/10.1002/2014GB004969, 2015.
Jud, W., Fischer, L., Canaval, E., Wohlfahrt, G., Tissier, A., and Hansel, A.: Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry, Atmos. Chem. Phys., 16, 277–292, https://doi.org/10.5194/acp-16-277-2016, 2016.
Kammer, J., Decuq, C., Baisnee, D., Ciuraru, R., Lafouge, F., Buysse, P.,
Bsaibes, S., Henderson, B., Cristescu, S. M., Benabdallah, R., Chandra, V.,
Durand, B., Fanucci, O., Petit, J. E., Truong, F., Bonnaire, N.,
Sarda-Esteve, R., Gros, V., and Loubet, B.: Characterization of particulate
and gaseous pollutants from a French dairy and sheep farm, Sci.
Total Environ., 712, 135598, https://doi.org/10.1016/j.scitotenv.2019.135598, 2020.
Kanda, K.-I., Tsuruta, H., and Minami, K.: Emissions of biogenic sulfur
gases from maize and wheat fields, Soil Science and Plant Nutrition, 41,
1–8, https://doi.org/10.1080/00380768.1995.10419553, 1995.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models, Biogeosciences, 6, 1059–1087, https://doi.org/10.5194/bg-6-1059-2009, 2009.
Karl, T., Curtis, A. J., Rosenstiel, T. N., Monson, R. K., and Fall, R.:
Transient releases of acetaldehyde from tree leaves – products of a pyruvate
overflow mechanism?, Plant Cell Environ., 25, 1121–1131, https://doi.org/10.1046/j.1365-3040.2002.00889.x, 2002.
Karl, T., Guenther, A., Lindinger, C., Jordan, A., Fall, R., and Lindinger,
W.: Eddy covariance measurements of oxygenated volatile organic compound
fluxes from crop harvesting using a redesigned proton-transfer-reaction mass
spectrometer, J. Geophys. Res.-Atmos., 106, 24157–24167, https://doi.org/10.1029/2000jd000112, 2001.
Karl, T., Harren, F., Warneke, C., de Gouw, J., Grayless, C., and Fall, R.:
Senescing grass crops as regional sources of reactive volatile organic
compounds, J. Geophys. Res.-Atmos., 110, D15302, https://doi.org/10.1029/2005jd005777, 2005.
Karl, T., Guenther, A., Turnipseed, A., Tyndall, G., Artaxo, P., and Martin, S.: Rapid formation of isoprene photo-oxidation products observed in Amazonia, Atmos. Chem. Phys., 9, 7753–7767, https://doi.org/10.5194/acp-9-7753-2009, 2009.
Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C.,
Turnipseed, A., and Jardine, K.: Efficient Atmospheric Cleansing of Oxidized
Organic Trace Gases by Vegetation, Science, 330, 816–819, https://doi.org/10.1126/science.1192534, 2010.
Karl, T., Hansel, A., Cappellin, L., Kaser, L., Herdlinger-Blatt, I., and Jud, W.: Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO+ ionization mass spectrometry, Atmos. Chem. Phys., 12, 11877–11884, https://doi.org/10.5194/acp-12-11877-2012, 2012.
Keenan, T., Niinemets, Ü., Sabate, S., Gracia, C., and Peñuelas, J.: Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties, Atmos. Chem. Phys., 9, 4053–4076, https://doi.org/10.5194/acp-9-4053-2009, 2009.
Keskitalo, J., Bergquist, G., Gardestrom, P., and Jansson, S.: A cellular
timetable of autumn senescence, Plant Physiol., 139, 1635–1648, https://doi.org/10.1104/pp.105.066845, 2005.
Kesselmeier, J., Bode, K., Gerlach, C., and Jork, E. M.: Exchange of
atmospheric formic and acetic acids with trees and crop plants under
controlled chamber and purified air conditions, Atmos. Environ., 32,
1765–1775, https://doi.org/10.1016/S1352-2310(97)00465-2, 1998.
Kiraly, Z.: Phenol Content in Rust Infected and Nitrogen Fertilized Wheat
Leaves, Phytopathology, 52, 657–738, 1962.
Konig, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and
Rudolph, J.: Relative Contribution of Oxygenated Hydrocarbons to the Total
Biogenic Voc Emissions of Selected Mid-European Agricultural and Natural
Plant-Species, Atmos. Environ., 29, 861–874, https://doi.org/10.1016/1352-2310(95)00026-U, 1995.
Kormann, R. and Meixner, F. X.: An analytical footprint model for
non-neutral stratification, Bound.-Lay. Meteorol., 99, 207–224, 2001.
Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., and de Gouw, J.: Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment, Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, 2018.
Kreuzwieser, J., Harren, F. J. M., Laarhoven, L. J. J., Boamfa, I., Te
Lintel-Hekkert, S., Scheerer, U., Hüglin, C., and Rennenberg, H.:
Acetaldehyde emission by the leaves of trees – correlation with
physiological and environmental parameters, Physiol. Plantarum, 113,
41–49, https://doi.org/10.1034/j.1399-3054.2001.1130106.x,
2001.
Laffineur, Q., Aubinet, M., Schoon, N., Amelynck, C., Müller, J.-F., Dewulf, J., Van Langenhove, H., Steppe, K., and Heinesch, B.: Abiotic and biotic control of methanol exchanges in a temperate mixed forest, Atmos. Chem. Phys., 12, 577–590, https://doi.org/10.5194/acp-12-577-2012, 2012.
Lang-Yona, N., Rudich, Y., Mentel, Th. F., Bohne, A., Buchholz, A., Kiendler-Scharr, A., Kleist, E., Spindler, C., Tillmann, R., and Wildt, J.: The chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions, Atmos. Chem. Phys., 10, 7253–7265, https://doi.org/10.5194/acp-10-7253-2010, 2010.
Langford, B., Acton, W., Ammann, C., Valach, A., and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, 2015.
Lathière, J., Hewitt, C. N., and Beerling, D. J.: Sensitivity of
isoprene emissions from the terrestrial biosphere to 20th century changes in
atmospheric CO2 concentration, climate, and land use, Global Biogeochem.
Cy., 24, GB1004, https://doi.org/10.1029/2009GB003548, 2010.
Laufs, S., Cazaunau, M., Stella, P., Kurtenbach, R., Cellier, P., Mellouki, A., Loubet, B., and Kleffmann, J.: Diurnal fluxes of HONO above a crop rotation, Atmos. Chem. Phys., 17, 6907–6923, https://doi.org/10.5194/acp-17-6907-2017, 2017.
Leuning, R.: The correct form of the Webb, Pearman and Leuning equation for
eddy fluxes of trace gases in steady and non-steady state, horizontally
homogeneous flows, Bound.-Lay. Meteorol., 123, 263–267, https://doi.org/10.1007/s10546-006-9138-5, 2007.
Link, M. F., Nguyen, T. B., Bates, K., Müller, J.-F., and Farmer, D. K.:
Can Isoprene Oxidation Explain High Concentrations of Atmospheric Formic and
Acetic Acid over Forests?, ACS Earth and Space Chemistry, 4, 730–740, https://doi.org/10.1021/acsearthspacechem.0c00010, 2020.
Loubet, B.: Volatile Organic Compound (VOC) fluxes and concentrations over a winter wheat field near Paris France, V2 ed, Portail Data INRAE [data set], https://doi.org/10.15454/IRZ9XX, 2021.
Loubet, B., Genermont, S., Ferrara, R., Bedos, G., Decuq, G., Personne, E.,
Fanucci, O., Durand, B., Rana, G., and Cellier, P.: An inverse model to
estimate ammonia emissions from fields, Eur. J. Soil Sci.,
61, 793–805, https://doi.org/10.1111/j.1365-2389.2010.01268.x, 2010.
Loubet, B., Carozzi, M., Voylokov, P., Cohan, J.-P., Trochard, R., and Génermont, S.: Evaluation of a new inference method for estimating ammonia volatilisation from multiple agronomic plots, Biogeosciences, 15, 3439–3460, https://doi.org/10.5194/bg-15-3439-2018, 2018.
Loubet, B., Laville, P., Lehuger, S., Larmanou, E., Flechard, C., Mascher,
N., Genermont, S., Roche, R., Ferrara, R. M., Stella, P., Personne, E.,
Durand, B., Decuq, C., Flura, D., Masson, S., Fanucci, O., Rampon, J. N.,
Siemens, J., Kindler, R., Gabrielle, B., Schrumpf, M., and Cellier, P.:
Carbon, nitrogen and Greenhouse gases budgets over a four years crop
rotation in northern France, Plant Soil, 343, 109–137, https://doi.org/10.1007/s11104-011-0751-9, 2011.
Loubet, B., Decuq, C., Personne, E., Massad, R. S., Flechard, C., Fanucci, O., Mascher, N., Gueudet, J.-C., Masson, S., Durand, B., Genermont, S., Fauvel, Y., and Cellier, P.: Investigating the stomatal, cuticular and soil ammonia fluxes over a growing tritical crop under high acidic loads, Biogeosciences, 9, 1537–1552, https://doi.org/10.5194/bg-9-1537-2012, 2012.
Makkonen, R., Asmi, A., Kerminen, V.-M., Boy, M., Arneth, A., Hari, P., and Kulmala, M.: Air pollution control and decreasing new particle formation lead to strong climate warming, Atmos. Chem. Phys., 12, 1515–1524, https://doi.org/10.5194/acp-12-1515-2012, 2012.
Messina, P., Lathière, J., Sindelarova, K., Vuichard, N., Granier, C., Ghattas, J., Cozic, A., and Hauglustaine, D. A.: Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters, Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, 2016.
Mielnik, A., Link, M., Mattila, J., Fulgham, S. R., and Farmer, D. K.:
Emission of formic and acetic acids from two Colorado soils, Environ.
Sci.-Proc. Imp., 20, 1537–1545, https://doi.org/10.1039/c8em00356d, 2018.
Miresmailli, S., Zeri, M., Zangerl, A. R., Bernacchi, C. J., Berenbaum, M.
R., and DeLucia, E. H.: Impacts of herbaceous bioenergy crops on atmospheric
volatile organic composition and potential consequences for global climate
change, GCB Bioenergy, 5, 375–383, https://doi.org/10.1111/j.1757-1707.2012.01189.x, 2013.
Misztal, P. K., Heal, M. R., Nemitz, E., and Cape, J. N.: Development of
PTR-MS selectivity for structural isomers: Monoterpenes as a case study,
Int. J. Mass Spectrom., 310, 10–19, https://doi.org/10.1016/j.ijms.2011.11.001, 2012.
Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B., and Goldstein, A. H.: Airborne flux measurements of biogenic isoprene over California, Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, 2014.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Montes, F., Hafner, S. D., Rotz, C. A., and Mitloehner, F. M.: Temperature
and air velocity effects on ethanol emission from corn silage with the
characteristics of an exposed silo face, Atmos. Environ., 44,
1987–1995, https://doi.org/10.1016/j.atmosenv.2010.02.037, 2010.
Morrison, E. C., Drewer, J., and Heal, M. R.: A comparison of isoprene and
monoterpene emission rates from the perennial bioenergy crops short-rotation
coppice willow and Miscanthus and the annual arable crops wheat and oilseed
rape, GCB Bioenergy, 8, 211–225, https://doi.org/10.1111/gcbb.12257, 2016.
Mozaffar, A., Schoon, N., Bachy, A., Digrado, A., Heinesch, B., Aubinet, M.,
Fauconnier, M. L., Delaplace, P., du Jardin, P., and Amelynck, C.: Biogenic
volatile organic compound emissions from senescent maize leaves and a
comparison with other leaf developmental stages, Atmos. Environ.,
176, 71–81, https://doi.org/10.1016/j.atmosenv.2017.12.020,
2018.
Müller, M., Graus, M., Ruuskanen, T. M., Schnitzhofer, R., Bamberger, I., Kaser, L., Titzmann, T., Hörtnagl, L., Wohlfahrt, G., Karl, T., and Hansel, A.: First eddy covariance flux measurements by PTR-TOF, Atmos. Meas. Tech., 3, 387–395, https://doi.org/10.5194/amt-3-387-2010, 2010.
Nguyen, T. B., Crounse, J. D., Teng, A. P., St Clair, J. M., Paulot, F.,
Wolfe, G. M., and Wennberg, P. O.: Rapid deposition of oxidized biogenic
compounds to a temperate forest, P. Natl. Acad. Sci. USA, 112, E392–E401, https://doi.org/10.1073/pnas.1418702112, 2015.
Ni, J.-Q., Robarge, W. P., Xiao, C., and Heber, A. J.: Volatile organic
compounds at swine facilities: A critical review, Chemosphere, 89, 769–788, https://doi.org/10.1016/j.chemosphere.2012.04.061, 2012.
Niinemets, Ü., Kuhn, U., Harley, P. C., Staudt, M., Arneth, A., Cescatti, A., Ciccioli, P., Copolovici, L., Geron, C., Guenther, A., Kesselmeier, J., Lerdau, M. T., Monson, R. K., and Peñuelas, J.: Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols, Biogeosciences, 8, 2209–2246, https://doi.org/10.5194/bg-8-2209-2011, 2011.
Niinemets, Ü., Fares, S., Harley, P., and Jardine, K. J.: Bidirectional
exchange of biogenic volatiles with vegetation: emission sources, reactions,
breakdown and deposition, Plant Cell Environ., 37, 1790–1809, https://doi.org/10.1111/pce.12322, 2014.
Pang, X.: Biogenic volatile organic compound analyses by PTR-TOF-MS:
Calibration, humidity effect and reduced electric field dependency, J.
Environ. Sci., 32, 196–206,
https://doi.org/10.1016/j.jes.2015.01.013, 2015.
Papageorgiou, A., Voutsa, D., and Papadakis, N.: Occurrence and fate of
ozonation by-products at a full-scale drinking water treatment plant,
Sci. Total Environ., 481, 392–400, https://doi.org/10.1016/j.scitotenv.2014.02.069, 2014.
Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik,
J., and Holzinger, R.: Active Atmosphere-Ecosystem Exchange of the Vast
Majority of Detected Volatile Organic Compounds, Science, 341, 643–647, https://doi.org/10.1126/science.1235053, 2013a.
Park, J.-H., Goldstein, A. H., Timkovsky, J., Fares, S., Weber, R., Karlik, J., and Holzinger, R.: Eddy covariance emission and deposition flux measurements using proton transfer reaction – time of flight – mass spectrometry (PTR-TOF-MS): comparison with PTR-MS measured vertical gradients and fluxes, Atmos. Chem. Phys., 13, 1439–1456, https://doi.org/10.5194/acp-13-1439-2013, 2013b.
Personne, E., Tardy, F., Genermont, S., Decuq, C., Gueudet, J. C., Mascher,
N., Durand, B., Masson, S., Lauransot, M., Flechard, C., Burkharlt, J., and
Loubet, B.: Investigating sources and sinks for ammonia exchanges between
the atmosphere and a wheat canopy following slurry application with trailing
hose, Agr. Forest Meteorol., 207, 11–23, https://doi.org/10.1016/j.agrformet.2015.03.002, 2015.
Portillo-Estrada, M., Zenone, T., Arriga, N., and Ceulemans, R.:
Contribution of volatile organic compound fluxes to the ecosystem carbon
budget of a poplar short-rotation plantation, GCB
Bioenergy, 10, 405–414, https://doi.org/10.1111/gcbb.12506, 2018.
Portillo-Estrada, M., Ariza-Carricondo, C., and Ceulemans, R.: Outburst of
senescence-related VOC emissions from a bioenergy poplar plantation, Plant
Physiol. Bioch., 148, 324–332, https://doi.org/10.1016/j.plaphy.2020.01.024,
2020.
Potier, E., Ogee, J., Jouanguy, J., Lamaud, E., Stella, P., Personne, E.,
Durand, B., Mascher, N., and Loubet, B.: Multi layer modelling of ozone
fluxes on winter wheat reveals large deposition on wet senescing leaves,
Agr. Forest Meteorol., 211, 58–71, https://doi.org/10.1016/j.agrformet.2015.05.006, 2015.
Potier, E., Loubet, B., Durand, B., Flura, D., Bourdat-Deschamps, M.,
Ciuraru, R., and Ogee, J.: Chemical reaction rates of ozone in water
infusions of wheat, beech, oak and pine leaves of different ages,
Atmos. Environ., 151, 176–187, https://doi.org/10.1016/j.atmosenv.2016.11.069, 2017.
Rantala, P., Aalto, J., Taipale, R., Ruuskanen, T. M., and Rinne, J.: Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere, Biogeosciences, 12, 5753–5770, https://doi.org/10.5194/bg-12-5753-2015, 2015.
Ruuskanen, T. M., Müller, M., Schnitzhofer, R., Karl, T., Graus, M., Bamberger, I., Hörtnagl, L., Brilli, F., Wohlfahrt, G., and Hansel, A.: Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF, Atmos. Chem. Phys., 11, 611–625, https://doi.org/10.5194/acp-11-611-2011, 2011.
Schade, G. W. and Goldstein, A. H.: Fluxes of oxygenated volatile organic
compounds from a ponderosa pine plantation, J. Geophys.
Res.-Atmos., 106, 3111–3123, https://doi.org/10.1029/2000jd900592, 2001.
Scholler, C. E. G., Gurtler, H., Pedersen, R., Molin, S., and Wilkins, K.:
Volatile metabolites from actinomycetes, J. Agr. Food
Chem., 50, 2615–2621, https://doi.org/10.1021/jf0116754, 2002.
Seco, R., Penuelas, J., and Filella, I.: Short-chain oxygenated VOCs:
Emission and uptake by plants and atmospheric sources, sinks, and
concentrations, Atmos. Environ., 41, 2477–2499, https://doi.org/10.1016/j.atmosenv.2006.11.029, 2007.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics. From
air pollution to climate change, Wiley-Interscience, 1326 pp., ISBN 978-1-118-94740-1, 1998.
Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341, https://doi.org/10.5194/acp-14-9317-2014, 2014.
Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A., Schaub, A., Beauchamp, J., Wisthaler, A., and Hansel, A.: Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 5, 465–481, https://doi.org/10.5194/acp-5-465-2005, 2005.
Staudt, M., Wolf, A., and Kesselmeier, J.: Influence of environmental
factors on the emissions of gaseous formic and acetic acids from orange
(Citrus sinensis L.) foliage, Biogeochemistry, 48, 199–216, https://doi.org/10.1023/a:1006289120280, 2000.
Steeghs, M. M. L., Crespo, E., and Harren, F. J. M.: Collision induced
dissociation study of 10 monoterpenes for identification in trace gas
measurements using the newly developed proton-transfer reaction ion trap
mass spectrometer, Int. J. Mass Spectrom., 263, 204–212, https://doi.org/10.1016/j.ijms.2007.02.011, 2007.
Stella, P., Personne, E., Lamaud, E., Loubet, B., Trebs, I., and Cellier,
P.: Assessment of the total, stomatal, cuticular, and soil 2 year ozone
budgets of an agricultural field with winter wheat and maize crops, J. Geophys. Res.-Biogeo., 118, 1120–1132, https://doi.org/10.1002/jgrg.20094,
2013.
Stockwell, C. E.: Advanced measurements of undersampled globally significant
biomass burning sources, Graduate Student Theses, Dissertations, & Professional Papers, University of Montana, Montana, USA,available at: https://scholarworks.umt.edu/etd/10905 (last access: 11 February 2022), 2016.
Sulzer, P., Hartungen, E., Hanel, G., Feil, S., Winkler, K., Mutschlechner,
P., Haidacher, S., Schottkowsky, R., Gunsch, D., Seehauser, H., Striednig,
M., Jürschik, S., Breiev, K., Lanza, M., Herbig, J., Märk, L.,
Märk, T. D., and Jordan, A.: A Proton Transfer Reaction-Quadrupole
interface Time-Of-Flight Mass Spectrometer (PTR-QiTOF): High speed due to
extreme sensitivity, Int. J. Mass Spectrom., 368, 1–5,
https://doi.org/10.1016/j.ijms.2014.05.004, 2014.
Tani, A., Hayward, S., and Hewitta, C. N.: Measurement of monoterpenes and
related compounds by proton transfer reaction-mass spectrometry (PTR-MS),
Int. J. Mass Spectrom., 223, 561–578, https://doi.org/10.1016/s1387-3806(02)00880-1, 2003.
Tani, A., Hayward, S., Hansel, A., and Hewitt, C. N.: Effect of water vapour
pressure on monoterpene measurements using proton transfer reaction-mass
spectrometry (PTR-MS), Int. J. Mass Spectrom., 239,
161–169, https://doi.org/10.1016/j.ijms.2004.07.020, 2004.
Tuzet, A., Perrier, A., Loubet, B., and Cellier, P.: Modelling ozone
deposition fluxes: The relative roles of deposition and detoxification
processes, Agr. Forest Meteorol., 151, 480–492, https://doi.org/10.1016/j.agrformet.2010.12.004, 2011.
Venneman, J., Vandermeersch, L., Walgraeve, C., Audenaert, K., Ameye, M.,
Verwaeren, J., Steppe, K., Van Langenhove, H., Haesaert, G., and Vereecke,
D.: Respiratory CO2 Combined With a Blend of Volatiles Emitted by Endophytic
Serendipita Strains Strongly Stimulate Growth of Arabidopsis Implicating
Auxin and Cytokinin Signaling, Front. Plant Sci., 11, 544435, https://doi.org/10.3389/fpls.2020.544435, 2020.
Vettikkat, L., Sinha, V., Datta, S., Kumar, A., Hakkim, H., Yadav, P., and Sinha, B.: Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment, Atmos. Chem. Phys., 20, 375–389, https://doi.org/10.5194/acp-20-375-2020, 2020.
Vlasenko, A., Macdonald, A. M., Sjostedt, S. J., and Abbatt, J. P. D.: Formaldehyde measurements by Proton transfer reaction – Mass Spectrometry (PTR-MS): correction for humidity effects, Atmos. Meas. Tech., 3, 1055–1062, https://doi.org/10.5194/amt-3-1055-2010, 2010.
Vuolo, R. M., Loubet, B., Mascher, N., Gueudet, J.-C., Durand, B., Laville, P., Zurfluh, O., Ciuraru, R., Stella, P., and Trebs, I.: Nitrogen oxides and ozone fluxes from an oilseed-rape management cycle: the influence of cattle slurry application, Biogeosciences, 14, 2225–2244, https://doi.org/10.5194/bg-14-2225-2017, 2017.
Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W.,
and Crutzen, P.: Acetone, methanol, and other partially oxidized volatile
organic emissions from dead plant matter by abiological processes:
Significance for atmospheric HOx chemistry, Global Biogeochem. Cy.,
13, 9–17, https://doi.org/10.1029/98GB02428, 1999.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux
measurements for density effects due to heat and water vapour transfer,
Q. J. Roy. Meteor. Soc., 106, 85–100, 1980.
Wiss, F., Ghirardo, A., Schnitzler, J. P., Nendel, C., Augustin, J.,
Hoffmann, M., and Grote, R.: Net ecosystem fluxes and composition of
biogenic volatile organic compounds over a maize field-interaction of
meteorology and phenological stages, GCB Bioenergy, 9,
1627–1643, https://doi.org/10.1111/gcbb.12454, 2017.
Woo, H. R., Kim, H. J., Lim, P. O., and Nam, H. G.: Leaf Senescence: Systems
and Dynamics Aspects, in: Annual Review of Plant Biology, edited by:
Merchant, S. S., Annu. Rev. Plant Biol.,70, 347–376, https://doi.org/10.1146/annurev-arplant-050718-095859, 2019.
Xiong, J., He, Z., Tang, X., Misztal, P. K., and Goldstein, A. H.: Modeling
the Time-Dependent Concentrations of Primary and Secondary Reaction Products
of Ozone with Squalene in a University Classroom, Environ. Sci. Technol., 53,
8262–8270, https://doi.org/10.1021/acs.est.9b02302, 2019.
Yáñez-Serrano, A. M., Filella, I., Llusià, J., Gargallo-Garriga,
A., Granda, V., Bourtsoukidis, E., Williams, J., Seco, R., Cappellin, L.,
Werner, C., de Gouw, J., and Peñuelas, J.: GLOVOCS – Master compound
assignment guide for proton transfer reaction mass spectrometry users,
Atmos. Environ., 244, 117929,
https://doi.org/10.1016/j.atmosenv.2020.117929, 2021.
Yonemura, S., Sandoval-Soto, L., Kesselmeier, J., Kuhn, U., Von Hobe, M.,
Yakir, D., and Kawashima, S.: Uptake of carbonyl sulfide (COS) and emission
of dimethyl sulfide (DMS) by plants, Phyton-Ann. Rei Bot., 45,
17–24, 2005.
Zenone, T., Hendriks, C., Brilli, F., Fransen, E., Gioli, B.,
Portillo-Estrada, M., Schaap, M., and Ceulemans, R.: Interaction between
isoprene and ozone fluxes in a poplar plantation and its impact on air
quality at the European level, Sci. Rep.-UK, 6, 32676, https://doi.org/10.1038/srep32676,
2016.
Zhao, J., Wang, Z., Wu, T., Wang, X. M., Dai, W. H., Zhang, Y. J., Wang, R.,
Zhang, Y. G., and Shi, C. F.: Volatile organic compound emissions from
straw-amended agricultural soils and their relations to bacterial
communities: A laboratory study, J. Environ. Sci., 45,
257–269, https://doi.org/10.1016/j.jes.2015.12.036, 2016.
Zhou, P., Ganzeveld, L., Taipale, D., Rannik, Ü., Rantala, P., Rissanen, M. P., Chen, D., and Boy, M.: Boreal forest BVOC exchange: emissions versus in-canopy sinks, Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017, 2017.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(6752 KB) - Full-text XML
- Corrigendum
-
Supplement
(1852 KB) - BibTeX
- EndNote
Short summary
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or aerosols. Emission by agricultural land was still poorly characterized. We report experimental measurements of ecosystem-scale VOC fluxes above a wheat field with a highly sensitive proton transfer mass spectrometer. We report the fluxes of 123 compounds and confirm that methanol is the most emitted VOC by wheat. The second most emitted compound was C6H4O. Around 75 % of the compounds were deposited.
Volatile organic compounds (VOCs) are precursors of tropospheric pollutants like ozone or...
Altmetrics
Final-revised paper
Preprint