Articles | Volume 22, issue 22
https://doi.org/10.5194/acp-22-14987-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-14987-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Source apportionment of VOCs, IVOCs and SVOCs by positive matrix factorization in suburban Livermore, California
Department of Civil and Environmental Engineering, University of
California Berkeley, Berkeley, CA 94720, USA
Department of Environmental Science, Policy and Management, University of
California Berkeley, Berkeley,
CA 94720, USA
Nathan M. Kreisberg
Aerosol Dynamics, Inc., Berkeley, CA 94710, USA
Robert J. Weber
Department of Environmental Science, Policy and Management, University of
California Berkeley, Berkeley,
CA 94720, USA
Greg T. Drozd
Department of Chemistry, Colby College, Waterville, ME 04901, USA
Allen H. Goldstein
Department of Civil and Environmental Engineering, University of
California Berkeley, Berkeley, CA 94720, USA
Department of Environmental Science, Policy and Management, University of
California Berkeley, Berkeley,
CA 94720, USA
Related authors
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Erin F. Katz, Caleb M. Arata, Eva Y. Pfannerstill, Robert J. Weber, Darian Ng, Michael J. Milazzo, Haley Byrne, Hui Wang, Alex B. Guenther, Camilo Rey-Sanchez, Joshua Apte, Dennis D. Baldocchi, and Allen H. Goldstein
EGUsphere, https://doi.org/10.5194/egusphere-2025-2682, https://doi.org/10.5194/egusphere-2025-2682, 2025
Short summary
Short summary
Terpenoids are organic gases that can originate from natural and human-caused sources, and their fast reactions in the atmosphere can cause air pollution. Emissions of organic gases in an urban environment were measured. For some terpenoids, human-caused sources were responsible for about a quarter of the emissions, while others were likely to be entirely from vegetation. The terpenoids contributed substantially to the potential to form secondary pollutants.
James D. A. Butler, Afsara Tasnia, Deep Sengupta, Nathan Kreisberg, Kelley C. Barsanti, Allen H. Goldstein, Chelsea V. Preble, Rebecca A. Sugrue, and Thomas W. Kirchstetter
EGUsphere, https://doi.org/10.5194/egusphere-2025-2295, https://doi.org/10.5194/egusphere-2025-2295, 2025
Short summary
Short summary
Prescribed burns are controlled fires used to prevent wildfires. Smoke emissions were measured to characterize emission factors and optical properties of black and brown soot particles. Brown particles were emitted at 7–14 times that of black particles and contributed 82 % of atmospheric absorption by particles for ultraviolet light and 23 % for total solar radiation. These findings will improve inventories and climate models for prescribed burns.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Audrey J. Dang, Nathan M. Kreisberg, Tyler L. Cargill, Jhao-Hong Chen, Sydney Hornitschek, Remy Hutheesing, Jay R. Turner, and Brent J. Williams
Atmos. Meas. Tech., 17, 2067–2087, https://doi.org/10.5194/amt-17-2067-2024, https://doi.org/10.5194/amt-17-2067-2024, 2024
Short summary
Short summary
The Multichannel Organics In situ enviRonmental Analyzer (MOIRA) is a new instrument for measuring speciated volatile organic compounds (VOCs) in the air and has been developed for mapping concentrations from a hybrid car. MOIRA is characterized in the lab and pilot field studies of indoor air in a single-family residence and outdoor air during a mobile deployment. Future applications include indoor, outdoor, and lab measurements to grasp the impact of VOCs on air quality, health, and climate.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Yutong Liang, Rebecca A. Wernis, Kasper Kristensen, Nathan M. Kreisberg, Philip L. Croteau, Scott C. Herndon, Arthur W. H. Chan, Nga L. Ng, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12441–12454, https://doi.org/10.5194/acp-23-12441-2023, https://doi.org/10.5194/acp-23-12441-2023, 2023
Short summary
Short summary
We measured the gas–particle partitioning behaviors of biomass burning markers and examined the effect of wildfire organic aerosol on the partitioning of semivolatile organic compounds. Most compounds measured are less volatile than model predictions. Wildfire aerosol enhanced the condensation of polar compounds and caused some nonpolar (e.g., polycyclic aromatic hydrocarbons) compounds to partition into the gas phase, thus affecting their lifetimes in the atmosphere and the mode of exposure.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Emily B. Franklin, Lindsay D. Yee, Bernard Aumont, Robert J. Weber, Paul Grigas, and Allen H. Goldstein
Atmos. Meas. Tech., 15, 3779–3803, https://doi.org/10.5194/amt-15-3779-2022, https://doi.org/10.5194/amt-15-3779-2022, 2022
Short summary
Short summary
The composition of atmospheric aerosols are extremely complex, containing hundreds of thousands of estimated individual compounds. The majority of these compounds have never been catalogued in widely used databases, making them extremely difficult for atmospheric chemists to identify and analyze. In this work, we present Ch3MS-RF, a machine-learning-based model to enable characterization of complex mixtures and prediction of structure-specific properties of unidentifiable organic compounds.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Delaney B. Kilgour, Gordon A. Novak, Jon S. Sauer, Alexia N. Moore, Julie Dinasquet, Sarah Amiri, Emily B. Franklin, Kathryn Mayer, Margaux Winter, Clare K. Morris, Tyler Price, Francesca Malfatti, Daniel R. Crocker, Christopher Lee, Christopher D. Cappa, Allen H. Goldstein, Kimberly A. Prather, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 1601–1613, https://doi.org/10.5194/acp-22-1601-2022, https://doi.org/10.5194/acp-22-1601-2022, 2022
Short summary
Short summary
We report measurements of gas-phase volatile organosulfur molecules made during a mesocosm phytoplankton bloom experiment. Dimethyl sulfide (DMS), methanethiol (MeSH), and benzothiazole accounted for on average over 90 % of total gas-phase sulfur emissions. This work focuses on factors controlling the production and emission of DMS and MeSH and the role of non-DMS molecules (such as MeSH and benzothiazole) in secondary sulfate formation in coastal marine environments.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Yutong Liang, Coty N. Jen, Robert J. Weber, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 21, 5719–5737, https://doi.org/10.5194/acp-21-5719-2021, https://doi.org/10.5194/acp-21-5719-2021, 2021
Short summary
Short summary
This article reports the molecular composition of smoke particles people in SF Bay Area were exposed to during northern California wildfires in Oct. 2017. Major components are sugars, acids, aromatics, and terpenoids. These observations can be used to better understand health impacts of smoke exposure. Tracer compounds indicate which fuels burned, including diterpenoids for softwood and syringyls for hardwood. A statistical analysis reveals a group of secondary compounds formed in daytime aging.
James F. Hurley, Nathan M. Kreisberg, Braden Stump, Chenyang Bi, Purushottam Kumar, Susanne V. Hering, Pat Keady, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 13, 4911–4925, https://doi.org/10.5194/amt-13-4911-2020, https://doi.org/10.5194/amt-13-4911-2020, 2020
Short summary
Short summary
The chemical composition of aerosols has implications for human and ecosystem health. Current methods for determining chemical composition are expensive and require highly trained personnel. Our method is promising for moderate-cost, low-maintenance measurements of oxygen / carbon ratios, a key chemical parameter, and other elements may also be studied. In this work, we coupled two commonly used detectors to assess O / C ratios in a variety of compounds and mixtures within an acceptable error.
Cited articles
Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J.,
Lee, J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.:
Contributions from transport, solid fuel burning and cooking to primary
organic aerosols in two UK cities, Atmos. Chem. Phys., 10, 647–668,
https://doi.org/10.5194/acp-10-647-2010, 2010.
Anderson, W. A. C. and Castle, L.: Benzophenone in cartonboard packaging
materials and the factors that influence its migration into food, Food
Addit. Contam., 20, 607–618, https://doi.org/10.1080/0265203031000109486,
2003.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34,
2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R. and Arey, J.: Lifetimes and fates of toxic air contaminants in
California's atmosphere, June 1993, Final report, California Air Resources
Board Research Division, 1993.
Atkinson, R. and Arey, J.: Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens., Environ. Health Perspect., 102, 117–126, https://doi.org/10.1289/ehp.94102s4117, 1994.
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420,
2003.
Agency for Toxic Substances and Disease Registry (ATSDR): Toxicological Profile for Dichlorobenzenes, U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA, 2006.
Bay Area Air Quality Management District: Understanding Particulate Matter: https://www.baaqmd.gov/rules-and-compliance/wood-smoke/information-and-data (last access 30 March 2022), 2021.
Bertrand, A., Stefenelli, G., Jen, C. N., Pieber, S. M., Bruns, E. A., Ni,
H., Temime-Roussel, B., Slowik, J. G., Goldstein, A. H., El Haddad, I.,
Baltensperger, U., Prévôt, A. S. H., Wortham, H., and Marchand, N.:
Evolution of the chemical fingerprint of biomass burning organic aerosol
during aging, Atmos. Chem. Phys., 18, 7607–7624,
https://doi.org/10.5194/acp-18-7607-2018, 2018.
Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C., and
Guillermo, R.: An investigation into the traffic-related fraction of
isoprene at an urban location, Atmos. Environ., 35, 3749–3760,
https://doi.org/10.1016/S1352-2310(01)00170-4, 2001.
Boreddy, S. K. R., Haque, Md. M., Kawamura, K., Fu, P., and Kim, Y.:
Homologous series of n-alkanes (C19–C35), fatty acids (C12–C32) and
n-alcohols (C8–C30) in atmospheric aerosols from central Alaska: Molecular
distributions, seasonality and source indices, Atmos. Environ., 184, 87–97,
https://doi.org/10.1016/j.atmosenv.2018.04.021, 2018.
Bouvier-Brown, N. C., Goldstein, A. H., Gilman, J. B., Kuster, W. C., and de
Gouw, J. A.: In-situ ambient quantification of monoterpenes, sesquiterpenes,
and related oxygenated compounds during BEARPEX 2007: implications for gas-
and particle-phase chemistry, Atmos. Chem. Phys., 9, 5505–5518,
https://doi.org/10.5194/acp-9-5505-2009, 2009.
Brown, S. G., Frankel, A., and Hafner, H. R.: Source apportionment of VOCs
in the Los Angeles area using positive matrix factorization, Atmos.
Environ., 41, 227–237, https://doi.org/10.1016/j.atmosenv.2006.08.021,
2007.
Brunekreef, B. and Holgate, S. T.: Air pollution and health, The Lancet,
360, 1233–1242, https://doi.org/10.1016/S0140-6736(02)11274-8, 2002.
Bui, T. T., Giovanoulis, G., Cousins, A. P., Magnér, J., Cousins, I. T.,
and de Wit, C. A.: Human exposure, hazard and risk of alternative
plasticizers to phthalate esters, Sci. Total Environ., 541, 451–467,
https://doi.org/10.1016/j.scitotenv.2015.09.036, 2016.
Cahill, T. M., Seaman, V. Y., Charles, M. J., Holzinger, R., and Goldstein, A. H.: Secondary organic aerosols formed from oxidation of biogenic volatile organic compounds in the Sierra Nevada Mountains of California, J. Geophys. Res. Atmos., 111, D16312, https://doi.org/10.1029/2006JD007178, 2006.
Caravaggio, G. A., Charland, J.-P., Macdonald, P., and Graham, L.: n-Alkane
Profiles of Engine Lubricating Oil and Particulate Matter by Molecular Sieve
Extraction, Environ. Sci. Technol., 41, 3697–3701,
https://doi.org/10.1021/es062233h, 2007.
Carpenter, L. J. and Liss, P. S.: On temperate sources of bromoform and
other reactive organic bromine gases, J. Geophys. Res.-Atmos., 105,
20539–20547, https://doi.org/10.1029/2000JD900242, 2000.
Cecinato, A., Di Palo, V., Pomata, D., Tomasi Scianò, M. C., and
Possanzini, M.: Measurement of phase-distributed nitrophenols in Rome
ambient air, Chemosphere, 59, 679–683,
https://doi.org/10.1016/j.chemosphere.2004.10.045, 2005.
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M.
N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and
Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of
naphthalene and alkylnaphthalenes: implications for oxidation of
intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9,
3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009.
Chen, J., Wenger, J. C., and Venables, D. S.: Near-Ultraviolet Absorption
Cross Sections of Nitrophenols and Their Potential Influence on Tropospheric
Oxidation Capacity, J. Phys. Chem. A, 115, 12235–12242,
https://doi.org/10.1021/jp206929r, 2011.
Cheng, X., Chen, Q., Li, Y., Huang, G., Liu, Y., Lu, S., Zheng, Y., Qiu, W.,
Lu, K., Qiu, X., Bianchi, F., Yan, C., Yuan, B., Shao, M., Wang, Z.,
Canagaratna, M. R., Zhu, T., Wu, Y., and Zeng, L.: Secondary Production of
Gaseous Nitrated Phenols in Polluted Urban Environments, Environ. Sci.
Technol., 55, 4410–4419, https://doi.org/10.1021/acs.est.0c07988, 2021.
Chin, J.-Y., Godwin, C., Jia, C., Robins, T., Lewis, T., Parker, E., Max,
P., and Batterman, S.: Concentrations and risks of p-dichlorobenzene in
indoor and outdoor air, Indoor Air, 23, 40–49,
https://doi.org/10.1111/j.1600-0668.2012.00796.x, 2013.
Clausen, P. A., Liu, Z., Kofoed-Sørensen, V., Little, J., and Wolkoff,
P.: Influence of Temperature on the Emission of Di-(2-ethylhexyl)phthalate
(DEHP) from PVC Flooring in the Emission Cell FLEC, Environ. Sci. Technol.,
46, 909–915, https://doi.org/10.1021/es2035625, 2012.
Coggon, M. M., McDonald, B. C., Vlasenko, A., Veres, P. R., Bernard, F.,
Koss, A. R., Yuan, B., Gilman, J. B., Peischl, J., Aikin, K. C., DuRant, J.,
Warneke, C., Li, S.-M., and de Gouw, J. A.: Diurnal Variability and Emission
Pattern of Decamethylcyclopentasiloxane (D5) from the Application of
Personal Care Products in Two North American Cities, Environ. Sci. Technol.,
52, 5610–5618, https://doi.org/10.1021/acs.est.8b00506, 2018.
Coggon, M. M., Gkatzelis, G. I., McDonald, B. C., Gilman, J. B., Schwantes,
R. H., Abuhassan, N., Aikin, K. C., Arend, M. F., Berkoff, T. A., Brown, S.
S., Campos, T. L., Dickerson, R. R., Gronoff, G., Hurley, J. F.,
Isaacman-VanWertz, G., Koss, A. R., Li, M., McKeen, S. A., Moshary, F.,
Peischl, J., Pospisilova, V., Ren, X., Wilson, A., Wu, Y., Trainer, M., and
Warneke, C.: Volatile chemical product emissions enhance ozone and modulate
urban chemistry, P. Natl. Acad. Sci. USA, 118, e2026653118,
https://doi.org/10.1073/pnas.2026653118, 2021.
Corchnoy, S. B. and Atkinson, R.: Kinetics of the gas-phase reactions of
hydroxyl and nitrogen oxide (NO3) radicals with 2-carene, 1,8-cineole,
p-cymene, and terpinolene, Environ. Sci. Technol., 24, 1497–1502,
https://doi.org/10.1021/es00080a007, 1990.
Cousins, I. T. and Mackay, D.: Gas-Particle Partitioning of Organic
Compounds and Its Interpretation Using Relative Solubilities, Environ. Sci.
Technol., 35, 643–647, https://doi.org/10.1021/es001123m, 2001.
Dall'Osto, M., Paglione, M., Decesari, S., Facchini, M. C., O'Dowd, C.,
Plass-Duellmer, C., and Harrison, R. M.: On the Origin of AMS “Cooking
Organic Aerosol” at a Rural Site, Environ. Sci. Technol., 49, 13964–13972,
https://doi.org/10.1021/acs.est.5b02922, 2015.
de Gouw, J. A., Middlebrook, A. M., Warneke, C., Ahmadov, R., Atlas, E. L.,
Bahreini, R., Blake, D. R., Brock, C. A., Brioude, J., Fahey, D. W.,
Fehsenfeld, F. C., Holloway, J. S., Le Henaff, M., Lueb, R. A., McKeen, S.
A., Meagher, J. F., Murphy, D. M., Paris, C., Parrish, D. D., Perring, A.
E., Pollack, I. B., Ravishankara, A. R., Robinson, A. L., Ryerson, T. B.,
Schwarz, J. P., Spackman, J. R., Srinivasan, A., and Watts, L. A.: Organic
aerosol formation downwind from the Deepwater Horizon oil spill, Science,
331, 1295–1299, https://doi.org/10.1126/science.1200320, 2011.
del Nogal Sánchez, M., Pérez-Pavón, J. L., and Moreno Cordero,
B.: Determination of suspected allergens in cosmetic products by
headspace-programmed temperature vaporization–fast gas
chromatography–quadrupole mass spectrometry, Anal. Bioanal. Chem., 397,
2579–2591, https://doi.org/10.1007/s00216-010-3803-8, 2010.
Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A
two-dimensional volatility basis set: 1. organic-aerosol mixing
thermodynamics, Atmos. Chem. Phys., 11, 3303–3318,
https://doi.org/10.5194/acp-11-3303-2011, 2011.
Donahue, N. M., Henry, K. M., Mentel, T. F., Kiendler-Scharr, A., Spindler,
C., Bohn, B., Brauers, T., Dorn, H. P., Fuchs, H., Tillmann, R., Wahner, A.,
Saathoff, H., Naumann, K.-H., Möhler, O., Leisner, T., Müller, L.,
Reinnig, M.-C., Hoffmann, T., Salo, K., Hallquist, M., Frosch, M., Bilde,
M., Tritscher, T., Barmet, P., Praplan, A. P., DeCarlo, P. F., Dommen, J.,
Prévôt, A. S. H., and Baltensperger, U.: Aging of biogenic secondary
organic aerosol via gas-phase OH radical reactions, P. Natl. Acad. Sci.
USA, 109, 13503–13508, https://doi.org/10.1073/pnas.1115186109, 2012.
Downs, C. A., DiNardo, J. C., Stien, D., Rodrigues, A. M. S., and Lebaron,
P.: Benzophenone Accumulates over Time from the Degradation of Octocrylene
in Commercial Sunscreen Products, Chem. Res. Toxicol., 34, 1046–1054,
https://doi.org/10.1021/acs.chemrestox.0c00461, 2021.
Drozd, G. T., Zhao, Y., Saliba, G., Frodin, B., Maddox, C., Weber, R. J.,
Chang, M.-C. O., Maldonado, H., Sardar, S., Robinson, A. L., and Goldstein,
A. H.: Time Resolved Measurements of Speciated Tailpipe Emissions from Motor
Vehicles: Trends with Emission Control Technology, Cold Start Effects, and
Speciation, Environ. Sci. Technol., 50, 13592–13599,
https://doi.org/10.1021/acs.est.6b04513, 2016.
Drozd, G. T., Weber, R. J., and Goldstein, A. H.: Highly Resolved
Composition during Diesel Evaporation with Modeled Ozone and Secondary
Aerosol Formation: Insights into Pollutant Formation from Evaporative
Intermediate Volatility Organic Compound Sources, Environ. Sci. Technol.,
55, 5742–5751, https://doi.org/10.1021/acs.est.0c08832, 2021.
Drugs.com Drug Information Database: Camphor (Professional Patient Advice), https://www.drugs.com/ppa/camphor.html, last access: 28 March 2022.
Duhl, T. R., Helmig, D., and Guenther, A.: Sesquiterpene emissions from
vegetation: a review, Biogeosciences, 5, 761–777,
https://doi.org/10.5194/bg-5-761-2008, 2008.
European Chemicals Agency: 2-Methoxynaphthalene Information,
https://echa.europa.eu/substance-information/-/substanceinfo/100.002.013,
last access: 12 April 2022.
Fantuzzi, G., Righi, E., Predieri, G., Ceppelli, G., Gobba, F., and
Aggazzotti, G.: Occupational exposure to trihalomethanes in indoor swimming
pools, Sci. Total Environ., 264, 257–265,
https://doi.org/10.1016/S0048-9697(00)00722-1, 2001.
Finewax, Z., de Gouw, J. A., and Ziemann, P. J.: Identification and
Quantification of 4-Nitrocatechol Formed from OH and NO3 Radical-Initiated
Reactions of Catechol in Air in the Presence of NOx: Implications for
Secondary Organic Aerosol Formation from Biomass Burning, Environ. Sci.
Technol., 52, 1981–1989, https://doi.org/10.1021/acs.est.7b05864, 2018.
Flagg, M., Hoag, K., and Lapka, J.: 2020 Air Monitoring Network Plan, Bay Area Air Quality Management District, 2020.
Fruekilde, P., Hjorth, J., Jensen, N. R., Kotzias, D., and Larsen, B.:
Ozonolysis at vegetation surfaces: a source of acetone, 4-oxopentanal,
6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere, Atmos.
Environ., 32, 1893–1902, https://doi.org/10.1016/S1352-2310(97)00485-8,
1998.
Fu, P., Kawamura, K., Chen, J., and Miyazaki, Y.: Secondary Production of
Organic Aerosols from Biogenic VOCs over Mt. Fuji, Japan, Environ. Sci.
Technol., 48, 8491–8497, https://doi.org/10.1021/es500794d, 2014.
Fujii, M., Shinohara, N., Lim, A., Otake, T., Kumagai, K., and Yanagisawa,
Y.: A study on emission of phthalate esters from plastic materials using a
passive flux sampler, Atmos. Environ., 37, 5495–5504,
https://doi.org/10.1016/j.atmosenv.2003.09.026, 2003.
Gao, G., Chen, H., Chai, Y., Jin, L., Liu, X., and Lu, C.: A method based on
precolumn derivatization and ultra high performance liquid chromatography
with high-resolution mass spectrometry for the simultaneous determination of
phthalimide and phthalic acid in tea, J. Sep. Sci., 42, 1304–1311,
https://doi.org/10.1002/jssc.201801128, 2019.
Gentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R.,
Wood, E. C., Herndon, S. C., Goldstein, A. H., and Harley, R. A.: Chemical
Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and
Implications for Ozone Production, Environ. Sci. Technol., 47, 11837–11848,
https://doi.org/10.1021/es401470e, 2013.
Gkatzelis, G. I., Coggon, M. M., McDonald, B. C., Peischl, J., Aikin, K. C.,
Gilman, J. B., Trainer, M., and Warneke, C.: Identifying Volatile Chemical
Product Tracer Compounds in U.S. Cities, Environ. Sci. Technol., 55,
188–199, https://doi.org/10.1021/acs.est.0c05467, 2021.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic
Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41,
1514–1521, https://doi.org/10.1021/es072476p, 2007.
Guenther, A.: Seasonal and Spatial Variations in Natural Volatile Organic
Compound Emissions, Ecol. Appl., 7, 34–45,
https://doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2, 1997.
Han, D., Li, J., Cao, H., He, M., Hu, J., and Yao, S.: Theoretical
investigation on the mechanisms and kinetics of OH-initiated photooxidation
of dimethyl phthalate (DMP) in atmosphere, Chemosphere, 95, 50–57,
https://doi.org/10.1016/j.chemosphere.2013.07.087, 2014.
Hand, J. L., Schichtel, B. A., Malm, W. C., and Frank, N. H.: Spatial and
Temporal Trends in PM2.5 Organic and Elemental Carbon across the United
States, Adv. Meteorol., 2013, e367674, https://doi.org/10.1155/2013/367674,
2013.
Harrison, M. A. J., Heal, M. R., and Cape, J. N.: Evaluation of the pathways
of tropospheric nitrophenol formation from benzene and phenol using a
multiphase model, Atmos. Chem. Phys., 5, 1679–1695,
https://doi.org/10.5194/acp-5-1679-2005, 2005a.
Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and
Iulian Olariu, R.: Nitrated phenols in the atmosphere: a review, Atmos.
Environ., 39, 231–248, https://doi.org/10.1016/j.atmosenv.2004.09.044,
2005b.
Heald, C. L., Henze, D. K., Horowitz, L. W., Feddema, J., Lamarque, J.-F.,
Guenther, A., Hess, P. G., Vitt, F., Seinfeld, J. H., Goldstein, A. H., and
Fung, I.: Predicted change in global secondary organic aerosol
concentrations in response to future climate, emissions, and land use
change, J. Geophys. Res.-Atmos., 113, D05211, https://doi.org/10.1029/2007JD009092,
2008.
Hellén, H., Tykkä, T., and Hakola, H.: Importance of monoterpenes
and isoprene in urban air in northern Europe, Atmos. Environ., 59, 59–66,
https://doi.org/10.1016/j.atmosenv.2012.04.049, 2012.
Hoffmann, D., Iinuma, Y., and Herrmann, H.: Development of a method for fast
analysis of phenolic molecular markers in biomass burning particles using
high performance liquid chromatography/atmospheric pressure chemical
ionisation mass spectrometry, J. Chromatogr. A, 1143, 168–175,
https://doi.org/10.1016/j.chroma.2007.01.035, 2007.
Hopke, P. K.: Review of receptor modeling methods for source apportionment,
J. Air Waste Manag. Assoc., 66, 237–259,
https://doi.org/10.1080/10962247.2016.1140693, 2016.
Horii, Y. and Kannan, K.: Survey of Organosilicone Compounds, Including
Cyclic and Linear Siloxanes, in Personal-Care and Household Products, Arch.
Environ. Contam. Toxicol., 55, 701–710,
https://doi.org/10.1007/s00244-008-9172-z, 2008.
Hurteau, M. D., Westerling, A. L., Wiedinmyer, C., and Bryant, B. P.:
Projected Effects of Climate and Development on California Wildfire
Emissions through 2100, Environ. Sci. Technol., 48, 2298–2304,
https://doi.org/10.1021/es4050133, 2014.
Inomata, S., Tanimoto, H., Fujitani, Y., Sekimoto, K., Sato, K., Fushimi,
A., Yamada, H., Hori, S., Kumazawa, Y., Shimono, A., and Hikida, T.: On-line
measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by
proton-transfer-reaction mass spectrometry, Atmos. Environ., 73, 195–203,
https://doi.org/10.1016/j.atmosenv.2013.03.035, 2013.
International Programme on Chemical Safety: Environmental Health Criteria
174 Isophorone, World Health Organization, Geneva, Switzerland, ISBN: 978-92-4-157174-6, 1995.
Isaacman, G., Kreisberg, N. M., Worton, D. R., Hering, S. V., and Goldstein,
A. H.: A versatile and reproducible automatic injection system for liquid
standard introduction: application to in-situ calibration, Atmos. Meas.
Tech., 4, 1937–1942, https://doi.org/10.5194/amt-4-1937-2011, 2011.
Isaacman, G., Chan, A. W. H., Nah, T., Worton, D. R., Ruehl, C. R., Wilson,
K. R., and Goldstein, A. H.: Heterogeneous OH Oxidation of Motor Oil
Particles Causes Selective Depletion of Branched and Less Cyclic
Hydrocarbons, Environ. Sci. Technol., 46, 10632–10640,
https://doi.org/10.1021/es302768a, 2012.
Isaacman, G., Kreisberg, N. M., Yee, L. D., Worton, D. R., Chan, A. W. H.,
Moss, J. A., Hering, S. V., and Goldstein, A. H.: Online derivatization for
hourly measurements of gas- and particle-phase semi-volatile oxygenated
organic compounds by thermal desorption aerosol gas chromatography (SV-TAG),
Atmos. Meas. Tech., 7, 4417–4429, https://doi.org/10.5194/amt-7-4417-2014,
2014.
Jaoui, M., Kleindienst, T. E., Lewandowski, M., Offenberg, J. H., and Edney,
E. O.: Identification and Quantification of Aerosol Polar Oxygenated
Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds
from Monoterpenes, Environ. Sci. Technol., 39, 5661–5673,
https://doi.org/10.1021/es048111b, 2005.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
E, Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P.
I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer,
S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,
Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina,
K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A.
M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529,
https://doi.org/10.1126/science.1180353, 2009.
Kaltsonoudis, C., Kostenidou, E., Florou, K., Psichoudaki, M., and Pandis,
S. N.: Temporal variability and sources of VOCs in urban areas of the
eastern Mediterranean, Atmos. Chem. Phys., 16, 14825–14842,
https://doi.org/10.5194/acp-16-14825-2016, 2016.
Kataoka, H., Terada, Y., Inoue, R., and Mitani, K.: Determination of
isophorone in food samples by solid-phase microextraction coupled with gas
chromatography–mass spectrometry, J. Chromatogr. A, 1155, 100–104,
https://doi.org/10.1016/j.chroma.2007.04.005, 2007.
Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and related
compounds in atmospheric aerosols: Molecular distributions, sources and
transformation, Atmos. Res., 170, 140–160,
https://doi.org/10.1016/j.atmosres.2015.11.018, 2016.
Kawamura, K., Ishimura, Y., and Yamazaki, K.: Four years' observations of
terrestrial lipid class compounds in marine aerosols from the western North
Pacific, Global Biogeochem. Cy., 17, 3-1–3-19,
https://doi.org/10.1029/2001GB001810, 2003.
Kerger, B. D., Schmidt, C. E., and Paustenbach, D. J.: Assessment of
Airborne Exposure to Trihalomethanes from Tap Water in Residential Showers
and Baths, Risk Anal., 20, 637–652,
https://doi.org/10.1111/0272-4332.205058, 2000.
Khare, P., Machesky, J., Soto, R., He, M., Presto, A. A., and Gentner, D.
R.: Asphalt-related emissions are a major missing nontraditional source of
secondary organic aerosol precursors, Sci. Adv., 6, eabb9785,
https://doi.org/10.1126/sciadv.abb9785, 2020.
Kirstine, W., Galbally, I., Ye, Y., and Hooper, M.: Emissions of volatile
organic compounds (primarily oxygenated species) from pasture, J. Geophys.
Res.-Atmos., 103, 10605–10619, https://doi.org/10.1029/97JD03753, 1998.
Kitanovski, Z., Grgiæ, I., Vermeylen, R., Claeys, M., and Maenhaut, W.:
Liquid chromatography tandem mass spectrometry method for characterization
of monoaromatic nitro-compounds in atmospheric particulate matter, J.
Chromatogr. A, 1268, 35–43, https://doi.org/10.1016/j.chroma.2012.10.021,
2012.
Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., and
Docherty, K. S.: The formation of SOA and chemical tracer compounds from the
photooxidation of naphthalene and its methyl analogs in the presence and
absence of nitrogen oxides, Atmos. Chem. Phys., 12, 8711–8726,
https://doi.org/10.5194/acp-12-8711-2012, 2012.
Kniss, V. M. L., Gioia, J., and Ronen, H.: 2017 Clean Air Plan, Bay Area Air Quality Management District, https://www.baaqmd.gov/plans-and-climate/air-quality-plans/current-plans (last access: 16 November 2022), 2017.
Krasner, S. W., McGuire, M. J., Jacangelo, J. G., Patania, N. L., Reagan, K.
M., and Aieta, E. M.: The Occurrence of Disinfection By-products in US
Drinking Water, J. Am. Water Works Assoc., 81, 41–53,
https://doi.org/10.1002/j.1551-8833.1989.tb03258.x, 1989.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003,
2008.
Lapczynski, A., Jones, L., McGinty, D., Bhatia, S. P., Letizia, C. S., and
Api, A. M.: Fragrance material review on methyl salicylate, Food Chem.
Toxicol., 45, S428–S452, https://doi.org/10.1016/j.fct.2007.09.053, 2007.
Lee, B. and Wang, J.: Concentration variation of isoprene and its
implications for peak ozone concentration, Atmos. Environ., 40, 5486–5495,
https://doi.org/10.1016/j.atmosenv.2006.03.035, 2006.
Li, R., Wang, Q., He, X., Zhu, S., Zhang, K., Duan, Y., Fu, Q., Qiao, L.,
Wang, Y., Huang, L., Li, L., and Yu, J. Z.: Source apportionment of
PM2.5 in Shanghai based on hourly organic molecular markers and other
source tracers, Atmos. Chem. Phys., 20, 12047–12061,
https://doi.org/10.5194/acp-20-12047-2020, 2020.
Li, X., Jiang, L., Hoa, L. P., Lyu, Y., Xu, T., Yang, X., Iinuma, Y., Chen,
J., and Herrmann, H.: Size distribution of particle-phase sugar and
nitrophenol tracers during severe urban haze episodes in Shanghai, Atmos.
Environ., 145, 115–127, https://doi.org/10.1016/j.atmosenv.2016.09.030,
2016.
Liakakou, E., Vrekoussis, M., Bonsang, B., Donousis, Ch., Kanakidou, M., and
Mihalopoulos, N.: Isoprene above the Eastern Mediterranean: Seasonal
variation and contribution to the oxidation capacity of the atmosphere,
Atmos. Environ., 41, 1002–1010,
https://doi.org/10.1016/j.atmosenv.2006.09.034, 2007.
Liang, Y. and Xu, Y.: Emission of Phthalates and Phthalate Alternatives from
Vinyl Flooring and Crib Mattress Covers: The Influence of Temperature,
Environ. Sci. Technol., 48, 14228–14237, https://doi.org/10.1021/es504801x,
2014.
Lim, Y. B. and Ziemann, P. J.: Effects of Molecular Structure on Aerosol
Yields from OH Radical-Initiated Reactions of Linear, Branched, and Cyclic
Alkanes in the Presence of NOx, Environ. Sci. Technol., 43, 2328–2334,
https://doi.org/10.1021/es803389s, 2009.
Lin, G., Penner, J. E., and Zhou, C.: How will SOA change in the future?,
Geophys. Res. Lett., 43, 1718–1726, https://doi.org/10.1002/2015GL067137,
2016.
Lippmann, M. and Chen, L.-C.: Health effects of concentrated ambient air
particulate matter (CAPs) and its components, Crit. Rev. Toxicol., 39,
865–913, https://doi.org/10.3109/10408440903300080, 2009.
Liu, Z. and Little, J. C.: 5 - Semivolatile organic compounds (SVOCs):
phthalates and flame retardants, in: Toxicity of Building Materials, edited
by: Pacheco-Torgal, F., Jalali, S., and Fucic, A., Woodhead Publishing,
122–137, https://doi.org/10.1533/9780857096357.122, 2012.
Logue, J. M., McKone, T. E., Sherman, M. H., and Singer, B. C.: Hazard
assessment of chemical air contaminants measured in residences, Indoor Air,
21, 92–109, https://doi.org/10.1111/j.1600-0668.2010.00683.x, 2011.
Loscos, N., Hernandez-Orte, P., Cacho, J., and Ferreira, V.: Release and
Formation of Varietal Aroma Compounds during Alcoholic Fermentation from
Nonfloral Grape Odorless Flavor Precursors Fractions, J. Agric. Food Chem.,
55, 6674–6684, https://doi.org/10.1021/jf0702343, 2007.
Lu, K., Fuchs, H., Hofzumahaus, A., Tan, Z., Wang, H., Zhang, L., Schmitt,
S. H., Rohrer, F., Bohn, B., Broch, S., Dong, H., Gkatzelis, G. I., Hohaus,
T., Holland, F., Li, X., Liu, Y., Liu, Y., Ma, X., Novelli, A., Schlag, P.,
Shao, M., Wu, Y., Wu, Z., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A.,
and Zhang, Y.: Fast Photochemistry in Wintertime Haze: Consequences for
Pollution Mitigation Strategies, Environ. Sci. Technol., 53, 10676–10684,
https://doi.org/10.1021/acs.est.9b02422, 2019.
Luecken, D. J., Hutzell, W. T., Strum, M. L., and Pouliot, G. A.: Regional
sources of atmospheric formaldehyde and acetaldehyde, and implications for
atmospheric modeling, Atmos. Environ., 47, 477–490,
https://doi.org/10.1016/j.atmosenv.2011.10.005, 2012.
Lüttke, J., Scheer, V., Levsen, K., Wünsch, G., Neil Cape, J.,
Hargreaves, K. J., Storeton-West, R. L., Acker, K., Wieprecht, W., and
Jones, B.: Occurrence and formation of nitrated phenols in and out of cloud,
Atmos. Environ., 31, 2637–2648,
https://doi.org/10.1016/S1352-2310(96)00229-4, 1997.
Lüttke, J., Levsen, K., Acker, K., Wieprecht, W., and Möller, D.:
Phenols and Nitrated Phenols in Clouds at Mount Brocken, Int. J. Environ.
Anal. Chem., 74, 69–89, https://doi.org/10.1080/03067319908031417, 1999.
Manley, S. L., Goodwin, K., and North, W. J.: Laboratory production of
bromoform, methylene bromide, and methyl iodide by macroalgae and
distribution in nearshore southern California waters, Limnol. Oceanogr., 37,
1652–1659, https://doi.org/10.4319/lo.1992.37.8.1652, 1992.
Mao, D., Weghe, H. V. D., Lookman, R., Vanermen, G., Brucker, N. D., and
Diels, L.: Resolving the unresolved complex mixture in motor oils using
high-performance liquid chromatography followed by comprehensive
two-dimensional gas chromatography, Fuel, 88, 312–318,
https://doi.org/10.1016/j.fuel.2008.08.021, 2009.
Masiol, M. and Harrison, R. M.: Aircraft engine exhaust emissions and other
airport-related contributions to ambient air pollution: A review, Atmos.
Environ., 95, 409–455, https://doi.org/10.1016/j.atmosenv.2014.05.070,
2014.
Mason, S. A., Field, R. J., Yokelson, R. J., Kochivar, M. A., Tinsley, M.
R., Ward, D. E., and Hao, W. M.: Complex effects arising in smoke plume
simulations due to inclusion of direct emissions of oxygenated organic
species from biomass combustion, J. Geophys. Res.-Atmos., 106, 12527–12539,
https://doi.org/10.1029/2001JD900003, 2001.
McDonald, B. C., Gentner, D. R., Goldstein, A. H., and Harley, R. A.:
Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas, Environ.
Sci. Technol., 47, 10022–10031, https://doi.org/10.1021/es401034z, 2013.
McDonald, B. C., Gouw, J. A. de, Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S.-W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and
Trainer, M.: Volatile chemical products emerging as largest petrochemical
source of urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.
Medcraft, C. and Schnell, M.: A Comparative Study of Two Bicyclic Ethers,
Eucalyptol and 1,4-Cineole, by Broadband Rotational Spectroscopy, Z. Phys.
Chem., 230, 1–14, https://doi.org/10.1515/zpch-2015-0643, 2016.
Meek, M. E., Giddings, M., and Gomes, R.: 1,2-Dichlorobenzene: Evaluation of
risks to health from environmental exposure in Canada, J. Environ. Sci.
Health C, 12, 269–275, https://doi.org/10.1080/10590509409373445, 1994.
Mohr, C., DeCarlo, P. F., Heringa, M. F., Chirico, R., Slowik, J. G.,
Richter, R., Reche, C., Alastuey, A., Querol, X., Seco, R., Peñuelas,
J., Jiménez, J. L., Crippa, M., Zimmermann, R., Baltensperger, U., and
Prévôt, A. S. H.: Identification and quantification of organic
aerosol from cooking and other sources in Barcelona using aerosol mass
spectrometer data, Atmos. Chem. Phys., 12, 1649–1665,
https://doi.org/10.5194/acp-12-1649-2012, 2012.
Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prévôt, A. S. H., Xu,
L., Ng, N. L., Herndon, S. C., Williams, L. R., Franklin, J. P., Zahniser,
M. S., Worsnop, D. R., Knighton, W. B., Aiken, A. C., Gorkowski, K. J.,
Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of Nitrated
Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United
Kingdom during Winter Time, Environ. Sci. Technol., 47, 6316–6324,
https://doi.org/10.1021/es400683v, 2013.
Moise, T. and Rudich, Y.: Reactive Uptake of Ozone by Aerosol-Associated
Unsaturated Fatty Acids: Kinetics, Mechanism, and Products, J. Phys. Chem.
A, 106, 6469–6476, https://doi.org/10.1021/jp025597e, 2002.
Montemayor, B. P., Price, B. B., and van Egmond, R. A.: Accounting for
intended use application in characterizing the contributions of
cyclopentasiloxane (D5) to aquatic loadings following personal care product
use: Antiperspirants, skin care products and hair care products,
Chemosphere, 93, 735–740,
https://doi.org/10.1016/j.chemosphere.2012.10.043, 2013.
Mudge, S. M., DeLeo, P. C., and Dyer, S. D.: Quantifying the anthropogenic
fraction of fatty alcohols in a terrestrial environment, Environ. Toxicol.
Chem., 31, 1209–1222, https://doi.org/10.1002/etc.1808, 2012.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Zhang, H., Aamaas, B., Boucher, O., Dalsøren,
S. B., Daniel, J. S., Forster, P., Granier, C., Haigh, J., Hodnebrog, Ø.,
Kaplan, J. O., Marston, G., Nielsen, C. J., O'Neill, B. C., Peters, G. P.,
Pongratz, J., Ramaswamy, V., Roth, R., Rotstayn, L., Smith, S. J.,
Stevenson, D., Vernier, J.-P., Wild, O., Young, P., Jacob, D., Ravishankara,
A. R., and Shine, K.: Anthropogenic and Natural Radiative Forcing. In:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
82, ISBN: 9781139917193, 2014.
National Center for Biotechnology Information: PubChem Compound Summary for CID 6616, Camphene: https://pubchem.ncbi.nlm.nih.gov/compound/camphene, last access: 16 November 2022a.
National Center for Biotechnology Information: PubChem Compound Summary for CID 6654, alpha-Pinene: https://pubchem.ncbi.nlm.nih.gov/compound/alpha-Pinene, last access: 16 November 2022b.
National Center for Biotechnology Information: PubChem Compound Summary for CID 10913, Decamethylcyclopentasiloxane: https://pubchem.ncbi.nlm.nih.gov/compound/Decamethylcyclopentasiloxane, last access: 16 November 2022c.
National Center for Biotechnology Information: PubChem Compound Summary for CID 13588, 2-Cyclopenten-1-one: https://pubchem.ncbi.nlm.nih.gov/compound/2-Cyclopenten-1-one, last access: 12 April 2022d.
National Center for Biotechnology Information: PubChem Compound Summary for CID 14896, beta-Pinene: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Pinene, last access: 16 November 2022e.
National Center for Biotechnology Information: PubChem Compound Summary for CID 22311, Limonene: https://pubchem.ncbi.nlm.nih.gov/compound/22311, last access: 16 November 2022f.
National Center for Biotechnology Information: Pubchem Compound Summary for CID 26049, 3-Carene: https://pubchem.ncbi.nlm.nih.gov/compound/3-carene, last access: 16 November 2022g.
National Institute of Standards and Technology: NIST Standard Reference Database 1A, NIST/EPA/NIH Mass Spectral Library [data set], https://www.nist.gov/srd/nist-standard-reference-database-1a (last access: 19 April 2022), 2020.
National Research Council: Rethinking the Ozone Problem in Urban and
Regional Air Pollution, National Academies Press, 525 pp., ISBN: 978-0-309-04631-2, 1992.
Navea, J. G., Young, M. A., Xu, S., Grassian, V. H., and Stanier, C. O.: The
atmospheric lifetimes and concentrations of cyclic methylsiloxanes
octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) and
the influence of heterogeneous uptake, Atmos. Environ., 45, 3181–3191,
https://doi.org/10.1016/j.atmosenv.2011.02.038, 2011.
Nel, A.: Air Pollution-Related Illness: Effects of Particles, Science, 308,
804–806, https://doi.org/10.1126/science.1108752, 2005.
Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H.,
Kwan, A. J., McCabe, D. C., Wennberg, P. O., Sorooshian, A., Murphy, S. M.,
Dalleska, N. F., Flagan, R. C., and Seinfeld, J. H.: Effect of NOx level on
secondary organic aerosol (SOA) formation from the photooxidation of
terpenes, Atmos. Chem. Phys., 16, 2007.
Nojima, K., Kawaguchi, A., Ohya, T., Kanno, S., and Hirobe, M.: Studies on
Photochemical Reaction of Air Pollutants. X. Identification of Nitrophenols
in Suspended Particulates, Chem. Pharm. Bull., 31, 1047–1051,
https://doi.org/10.1248/cpb.31.1047, 1983.
Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T.: Highly
Polar Organic Compounds Present in Wood Smoke and in the Ambient Atmosphere,
Environ. Sci. Technol., 35, 1912–1919, https://doi.org/10.1021/es001420r,
2001.
Nolte, C. G., Schauer, J. J., Cass, G. R., and Simoneit, B. R. T.:
Trimethylsilyl Derivatives of Organic Compounds in Source Samples and in
Atmospheric Fine Particulate Matter, Environ. Sci. Technol., 36, 4273–4281,
https://doi.org/10.1021/es020518y, 2002.
Norris, G., Duvall, R., Brown, S., and Bai, S.: Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/108 (NTIS PB2015-105147), 2014.
Nurmatov, U. B., Tagieva, N., Semple, S., Devereux, G., and Sheikh, A.:
Volatile organic compounds and risk of asthma and allergy: a systematic
review and meta-analysis of observational and interventional studies, Prim.
Care Respir. J., 22, PS9–PS15, https://doi.org/10.4104/pcrj.2013.00010, 2013.
Paatero, P. and Hopke, P. K.: Rotational tools for factor analytic models,
J. Chemom., 23, 91–100, https://doi.org/10.1002/cem.1197, 2009.
Paatero, P. and Tapper, U.: Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,
Environmetrics, 5, 111–126, https://doi.org/10.1002/env.3170050203, 1994.
Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T.
P., Guenther, A., Wiedinmyer, C., Stanton, J. C., Pilling, M. J., Pressley,
S. N., Lamb, B., and Sumner, A. L.: Quantifying the seasonal and interannual
variability of North American isoprene emissions using satellite
observations of the formaldehyde column, J. Geophys. Res.-Atmos., 111, D12315,
https://doi.org/10.1029/2005JD006689, 2006.
Pollmann, J., Ortega, J., and Helmig, D.: Analysis of Atmospheric
Sesquiterpenes: Sampling Losses and Mitigation of Ozone Interferences,
Environ. Sci. Technol., 39, 9620–9629, https://doi.org/10.1021/es050440w,
2005.
Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.:
Secondary Organic Aerosol Formation from High-NOx Photo-Oxidation of Low
Volatility Precursors: n-Alkanes, Environ. Sci. Technol., 44, 2029–2034,
https://doi.org/10.1021/es903712r, 2010.
Ravindra, K., Sokhi, R., and Van Grieken, R.: Atmospheric polycyclic
aromatic hydrocarbons: Source attribution, emission factors and regulation,
Atmos. Environ., 42, 2895–2921,
https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Reimann, S., Calanca, P., and Hofer, P.: The anthropogenic contribution to
isoprene concentrations in a rural atmosphere, Atmos. Environ., 34,
109–115, https://doi.org/10.1016/S1352-2310(99)00285-X, 2000.
Reissell, A., Arey, J., and Atkinson, R.: Atmospheric Chemistry of Camphor,
Int. J. Chem. Kinet., 33, 56–63,
https://doi.org/10.1002/1097-4601(20010101)33:1<56::AID-KIN7>3.0.CO;2-Y, 2001.
Ren, Y., McGillen, M. R., Daële, V., Casas, J., and Mellouki, A.: The
fate of methyl salicylate in the environment and its role as signal in
multitrophic interactions, Sci. Total Environ., 749, 141406,
https://doi.org/10.1016/j.scitotenv.2020.141406, 2020.
Richardson, S. D., DeMarini, D. M., Kogevinas, M., Fernandez, P., Marco, E.,
Lourencetti, C., Ballest, é C., Heederik, D., Meliefste, K., McKague, A.
B., Marcos, R., Font, -Ribera Laia, Grimalt, J. O., and Villanueva, C. M.:
What's in the Pool? A Comprehensive Identification of Disinfection
By-products and Assessment of Mutagenicity of Chlorinated and Brominated
Swimming Pool Water, Environ. Health Perspect., 118, 1523–1530,
https://doi.org/10.1289/ehp.1001965, 2010.
Ridley, D. A., Heald, C. L., Ridley, K. J., and Kroll, J. H.: Causes and
consequences of decreasing atmospheric organic aerosol in the United States,
P. Natl. Acad. Sci. USA, 115, 290–295,
https://doi.org/10.1073/pnas.1700387115, 2018.
Righi, E., Fantuzzi, G., Predieri, G., and Aggazzotti, G.: Bromate,
chlorite, chlorate, haloacetic acids, and trihalomethanes occurrence in
indoor swimming pool waters in Italy, Microchem. J., 113, 23–29,
https://doi.org/10.1016/j.microc.2013.11.007, 2014.
Robinson, A. L., Subramanian, R., Donahue, N. M., Bernardo-Bricker, A., and
Rogge, W. F.: Source Apportionment of Molecular Markers and Organic Aerosol.
3. Food Cooking Emissions, Environ. Sci. Technol., 40, 7820–7827,
https://doi.org/10.1021/es060781p, 2006.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,
Science, 315, 1259–1262, 2007.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol, 1. Charbroilers and meat cooking
operations, Environ. Sci. Technol., 25, 1112–1125,
https://doi.org/10.1021/es00018a015, 1991.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of fine organic aerosol, 2. Noncatalyst and
catalyst-equipped automobiles and heavy-duty diesel trucks, Environ. Sci.
Technol., 27, 636–651, https://doi.org/10.1021/es00041a007, 1993.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Mathematical modeling of atmospheric fine particle-associated
primary organic compound concentrations, J. Geophys. Res.-Atmos., 101,
19379–19394, https://doi.org/10.1029/95JD02050, 1996.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R. T.: Sources of Fine Organic Aerosol, 7. Hot Asphalt Roofing Tar Pot
Fumes, Environ. Sci. Technol., 31, 2726–2730,
https://doi.org/10.1021/es960525k, 1997.
Salvador, C. M. G., Tang, R., Priestley, M., Li, L., Tsiligiannis, E., Le
Breton, M., Zhu, W., Zeng, L., Wang, H., Yu, Y., Hu, M., Guo, S., and
Hallquist, M.: Ambient nitro-aromatic compounds – biomass burning versus
secondary formation in rural China, Atmos. Chem. Phys., 21, 1389–1406,
https://doi.org/10.5194/acp-21-1389-2021, 2021.
Samimi, B.: Exposure to isophorone and other organic solvents in a screen
printing plant, Am. Ind. Hyg. Assoc. J., 43, 43–48,
https://doi.org/10.1080/15298668291409343, 1982.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as
solvent, Atmos. Chem. Phys., 15, 4399–4981,
https://doi.org/10.5194/acp-15-4399-2015, 2015.
San Francisco Chronicle: Why is air quality so bad in the winter? How wood-smoke pollution and
“temperature inversions” work in the Bay Area:
https://www.sfchronicle.com/projects/2021/winter-air-pollution/, last
access: 30 March 2022.
Sangwan, M. and Zhu, L.: Role of Methyl-2-nitrophenol Photolysis as a
Potential Source of OH Radicals in the Polluted Atmosphere: Implications
from Laboratory Investigation, J. Phys. Chem. A, 122, 1861–1872,
https://doi.org/10.1021/acs.jpca.7b11235, 2018.
Sasaki, K., Tagata, H., Kawakami, H., Nagasaki, T., Nemoto, S., and Maitani,
T.: Determination of Isophorone in Foods, J. Food Hyg. Soc. Jpn, 46, 28–32,
https://doi.org/10.3358/shokueishi.46.28, 2005.
Schauer, J. J., Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R.,
and Simoneit, B. R. T.: Source apportionment of airborne particulate matter
using organic compounds as tracers, Atmos. Environ., 30, 3837–3855,
https://doi.org/10.1016/1352-2310(96)00085-4, 1996.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources, 1. C1 through C29
Organic Compounds from Meat Charbroiling, Environ. Sci. Technol., 33,
1566–1577, https://doi.org/10.1021/es980076j, 1999a.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources, 2. C1 through C30
Organic Compounds from Medium Duty Diesel Trucks, Environ. Sci. Technol.,
33, 1578–1587, https://doi.org/10.1021/es980081n, 1999b.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources, 4. C1–C27 Organic
Compounds from Cooking with Seed Oils, Environ. Sci. Technol., 36, 567–575,
https://doi.org/10.1021/es002053m, 2002a.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of Emissions from Air Pollution Sources, 5. C1–C32 Organic
Compounds from Gasoline-Powered Motor Vehicles, Environ. Sci. Technol., 36,
1169–1180, https://doi.org/10.1021/es0108077, 2002b.
Seinfeld, J. H. and Pankow, J. F.: Organic Atmospheric Particulate Material,
Annu. Rev. Phys. Chem., 54, 121–140,
https://doi.org/10.1146/annurev.physchem.54.011002.103756, 2003.
Shi, S., Cao, J., Zhang, Y., and Zhao, B.: Emissions of Phthalates from
Indoor Flat Materials in Chinese Residences, Environ. Sci. Technol., 52,
13166–13173, https://doi.org/10.1021/acs.est.8b03580, 2018.
Shumway, L. A.: Trace Element and Polycyclic Aromatic Hydrocarbon Analyses of Jet Engine Fuels: Jet A, JP5, and JP8. Technical Report no. 1845. United States Navy SPAWAR Systems Center San Diego, San Diego, CA, https://doi.org/10.21236/ADA390641, 2000.
Simoneit, B. R. T.: Organic matter of the troposphere – V: Application of
molecular marker analysis to biogenic emissions into the troposphere for
source reconciliations, J. Atmos. Chem., 8, 251–275,
https://doi.org/10.1007/BF00051497, 1989.
Simoneit, B. R. T.: A review of biomarker compounds as source indicators and
tracers for air pollution, Environ. Sci. Pollut. Res., 6, 159–169,
https://doi.org/10.1007/BF02987621, 1999.
Simoneit, B. R. T.: Biomass burning – a review of organic tracers for
smoke from incomplete combustion, Appl. Geochem., 17, 129–162,
https://doi.org/10.1016/S0883-2927(01)00061-0, 2002.
Simoneit, B. R. T.: Atmospheric Transport of Terrestrial Organic Matter to
the Sea, in: Marine Organic Matter: Biomarkers, Isotopes and DNA, edited by:
Volkman, J. K., Springer, Berlin, Heidelberg, 165–208,
https://doi.org/10.1007/698_2_006, 2006.
Simoneit, B. R. T. and Mazurek, M. A.: Organic matter of the
troposphere – II.: For Part I, see Simoneit et al. (1977), Natural
background of biogenic lipid matter in aerosols over the rural western
united states, Atmos. Environ., 16, 2139–2159,
https://doi.org/10.1016/0004-6981(82)90284-0, 1982.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33,
173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Srivastava, A., Joseph, A. E., Patil, S., More, A., Dixit, R. C., and
Prakash, M.: Air toxics in ambient air of Delhi, Atmos. Environ., 39, 59–71,
https://doi.org/10.1016/j.atmosenv.2004.09.053, 2005.
Steinbacher, M., Dommen, J., Ordonez, C., Reimann, S., Grüebler, F. C.,
Staehelin, J., Andreani-Aksoyoglu, S., and Prevot, A. S. H.: Volatile
Organic Compounds in the Po Basin, Part B: Biogenic VOCs, J. Atmos. Chem.,
51, 293–315, https://doi.org/10.1007/s10874-005-3577-0, 2005.
Steinemann, A.: Volatile emissions from common consumer products, Air. Qual.
Atmos. Health, 8, 273–281, https://doi.org/10.1007/s11869-015-0327-6, 2015.
Steinemann, A. C., MacGregor, I. C., Gordon, S. M., Gallagher, L. G., Davis,
A. L., Ribeiro, D. S., and Wallace, L. A.: Fragranced consumer products:
Chemicals emitted, ingredients unlisted, Environ. Impact Assess. Rev., 31,
328–333, https://doi.org/10.1016/j.eiar.2010.08.002, 2011.
Stockwell, C. E., Coggon, M. M., Gkatzelis, G. I., Ortega, J., McDonald, B.
C., Peischl, J., Aikin, K., Gilman, J. B., Trainer, M., and Warneke, C.:
Volatile organic compound emissions from solvent- and water-borne coatings
– compositional differences and tracer compound identifications, Atmos.
Chem. Phys., 21, 6005–6022, https://doi.org/10.5194/acp-21-6005-2021, 2021.
Sturges, W. T., Cota, G. F., and Buckley, P. T.: Bromoform emission from
Arctic ice algae, Nature, 358, 660–662, https://doi.org/10.1038/358660a0,
1992.
Su, H.-J., Chao, C.-J., Chang, H.-Y., and Wu, P.-C.: The effects of
evaporating essential oils on indoor air quality, Atmos. Environ., 41,
1230–1236, https://doi.org/10.1016/j.atmosenv.2006.09.044, 2007.
Tang, X., Misztal, P. K., Nazaroff, W. W., and Goldstein, A. H.: Siloxanes
Are the Most Abundant Volatile Organic Compound Emitted from Engineering
Students in a Classroom, Environ. Sci. Technol. Lett., 2, 303–307,
https://doi.org/10.1021/acs.estlett.5b00256, 2015.
Tremp, J., Mattrel, P., Fingler, S., and Giger, W.: Phenols and nitrophenols
as tropospheric pollutants: Emissions from automobile exhausts and phase
transfer in the atmosphere, Water Air Soil Pollut., 68, 113–123,
https://doi.org/10.1007/BF00479396, 1993.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez,
J. L.: Interpretation of organic components from Positive Matrix
Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9,
2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
United States Census Bureau: Census Bureau Table S0801: Commuting Characteristics By Sex in Livermore city, California, 2018 American Community Survey 1-Year Estimates Subject Tables, American Community Survey [data set]: https://data.census.gov/table?q=Livermore+city,+California&tid=ACSST1Y2018.S0801 (last access: 17 March 2022), 2019.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
2-Methoxynaphthalene:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID7044392, last
access: 12 April 2022a.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
2-Nitrophenol:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID1021790, last
access: 5 April 2022b.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
4-Hydroxybenzoic Acid:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID3026647, last
access: 12 April 2022c.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
4-Nitrophenol:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID0021834, last
access: 5 April 2022d.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
Benzophenone:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID0021961, last
access: 28 March 2022e.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
p-Anisic Acid:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID4059205, last
access: 14 April 2022f.
U.S. EPA (Environmental Protection Agency): Comptox Chemicals Dashboard:
Phthalimide:
https://comptox.epa.gov/dashboard/chemical/details/DTXSID3026514, last
access: 12 April 2022g.
Vione, D., Maurino, V., Minero, C., Duncianu, M., Olariu, R.-I., Arsene, C.,
Sarakha, M., and Mailhot, G.: Assessing the transformation kinetics of 2-
and 4-nitrophenol in the atmospheric aqueous phase. Implications for the
distribution of both nitroisomers in the atmosphere, Atmos. Environ., 43,
2321–2327, https://doi.org/10.1016/j.atmosenv.2009.01.025, 2009.
Wang, H., Gao, Y., Wang, S., Wu, X., Liu, Y., Li, X., Huang, D., Lou, S.,
Wu, Z., Guo, S., Jing, S., Li, Y., Huang, C., Tyndall, G. S., Orlando, J.
J., and Zhang, X.: Atmospheric Processing of Nitrophenols and Nitrocresols
From Biomass Burning Emissions, J. Geophys. Res.-Atmos., 125, e2020JD033401,
https://doi.org/10.1029/2020JD033401, 2020.
Wang, L., Atkinson, R., and Arey, J.: Dicarbonyl Products of the OH
Radical-Initiated Reactions of Naphthalene and the C1- and
C2-Alkylnaphthalenes, Environ. Sci. Technol., 41, 2803–2810,
https://doi.org/10.1021/es0628102, 2007.
Wang, L., Wang, X., Gu, R., Wang, H., Yao, L., Wen, L., Zhu, F., Wang, W.,
Xue, L., Yang, L., Lu, K., Chen, J., Wang, T., Zhang, Y., and Wang, W.:
Observations of fine particulate nitrated phenols in four sites in northern
China: concentrations, source apportionment, and secondary formation, Atmos.
Chem. Phys., 18, 4349–4359, https://doi.org/10.5194/acp-18-4349-2018, 2018.
Wang, Q., Huang, X. H. H., Tam, F. C. V., Zhang, X., Liu, K. M., Yeung, C.,
Feng, Y., Cheng, Y. Y., Wong, Y. K., Ng, W. M., Wu, C., Zhang, Q., Zhang,
T., Lau, N. T., Yuan, Z., Lau, A. K. H., and Yu, J. Z.: Source apportionment
of fine particulate matter in Macao, China with and without organic tracers:
A comparative study using positive matrix factorization, Atmos. Environ.,
198, 183–193, https://doi.org/10.1016/j.atmosenv.2018.10.057, 2019a.
Wang, R., Moody, R., Koniecki, D., and Zhu, J.: Low molecular weight cyclic
volatile methylsiloxanes in cosmetic products sold in Canada: implication
for dermal exposure, Environ. Int., 35, 900–904,
https://doi.org/10.1016/j.envint.2009.03.009, 2009.
Wang, X., Gu, R., Wang, L., Xu, W., Zhang, Y., Chen, B., Li, W., Xue, L.,
Chen, J., and Wang, W.: Emissions of fine particulate nitrated phenols from
the burning of five common types of biomass, Environ. Pollut., 230,
405–412, https://doi.org/10.1016/j.envpol.2017.06.072, 2017.
Wang, Y., Hu, M., Wang, Y., Zheng, J., Shang, D., Yang, Y., Liu, Y., Li, X.,
Tang, R., Zhu, W., Du, Z., Wu, Y., Guo, S., Wu, Z., Lou, S., Hallquist, M.,
and Yu, J. Z.: The formation of nitro-aromatic compounds under high NOx
and anthropogenic VOC conditions in urban Beijing, China, Atmos. Chem.
Phys., 19, 7649–7665, https://doi.org/10.5194/acp-19-7649-2019, 2019b.
Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B.,
Atlas, E., Blake, D., Trainer, M., and Parrish, D. D.: Multiyear trends in
volatile organic compounds in Los Angeles, California: Five decades of
decreasing emissions, J. Geophys. Res.-Atmos., 117, D00V17,
https://doi.org/10.1029/2012JD017899, 2012.
Weitkamp, E. A., Sage, A. M., Pierce, J. R., Donahue, N. M., and Robinson,
A. L.: Organic Aerosol Formation from Photochemical Oxidation of Diesel
Exhaust in a Smog Chamber, Environ. Sci. Technol., 41, 6969–6975,
https://doi.org/10.1021/es070193r, 2007.
Wernis, R. A., Kreisberg, N. M., Weber, R. J., Liang, Y., Jayne, J., Hering,
S., and Goldstein, A. H.: Development of an in situ dual-channel thermal
desorption gas chromatography instrument for consistent quantification of
volatile, intermediate-volatility and semivolatile organic compounds, Atmos.
Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, 2021.
Westerling, A. L.: Increasing western US forest wildfire activity:
sensitivity to changes in the timing of spring, Philos. T. R. Soc. B, 371,
20150178, https://doi.org/10.1098/rstb.2015.0178, 2016.
Westerlund, J., Bryngelsson, I.-L., Löfstedt, H., Eriksson, K.,
Westberg, H., and Graff, P.: Occupational exposure to trichloramine and
trihalomethanes: adverse health effects among personnel in habilitation and
rehabilitation swimming pools, J. Occup. Environ. Hyg., 16, 78–88,
https://doi.org/10.1080/15459624.2018.1536825, 2019.
World Meteorological Organization: United States, National Oceanic and
Atmospheric Administration, United States, National Aeronautics and Space
Administration, United Nations Environment Programme, and European
Commission: Scientific assessment of ozone depletion, 2018, ISBN: 978-1-73293-171-8, 2019.
Yao, D., Lyu, X., Lu, H., Zeng, L., Liu, T., Chan, C. K., and Guo, H.:
Characteristics, sources and evolution processes of atmospheric organic
aerosols at a roadside site in Hong Kong, Atmos. Environ., 252, 118298,
https://doi.org/10.1016/j.atmosenv.2021.118298, 2021.
Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L.,
Zhang, Q., Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds
(VOCs) in urban air: How chemistry affects the interpretation of positive
matrix factorization (PMF) analysis, J. Geophys. Res.-Atmos., 117, D24302,
https://doi.org/10.1029/2012JD018236, 2012.
Yuan, B., Liggio, J., Wentzell, J., Li, S.-M., Stark, H., Roberts, J. M.,
Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A., Osthoff, H. D.,
Wild, R., Brown, S. S., and de Gouw, J. A.: Secondary formation of nitrated
phenols: insights from observations during the Uintah Basin Winter Ozone
Study (UBWOS) 2014, Atmos. Chem. Phys., 16, 2139–2153,
https://doi.org/10.5194/acp-16-2139-2016, 2016.
Yuan, Z., Lau, A. K. H., Shao, M., Louie, P. K. K., Liu, S. C., and Zhu, T.:
Source analysis of volatile organic compounds by positive matrix
factorization in urban and rural environments in Beijing, J. Geophys. Res.-Atmos., 114, D00G15, https://doi.org/10.1029/2008JD011190, 2009.
Zota, A. R., Calafat, A. M., and Woodruff, T. J.: Temporal Trends in
Phthalate Exposures: Findings from the National Health and Nutrition
Examination Survey, 2001–2010, Environ. Health Perspect., 122, 235–241,
https://doi.org/10.1289/ehp.1306681, 2014.
Zwiener, C., Richardson, S. D., De Marini, D. M., Grummt, T., Glauner, T.,
and Frimmel, F. H.: Drowning in Disinfection Byproducts? Assessing Swimming
Pool Water, Environ. Sci. Technol., 41, 363–372,
https://doi.org/10.1021/es062367v, 2007.
Short summary
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase compounds in the atmosphere during an 11 d period in a Bay Area suburb. We separated compounds based on variability in time to arrive at 13 distinct sources. Some compounds emitted from plants are found in greater quantities as fragrance compounds in consumer products. The wide volatility range of these measurements enables the construction of more complete source profiles.
We measured volatile and intermediate-volatility gases and semivolatile gas- and particle-phase...
Altmetrics
Final-revised paper
Preprint