Articles | Volume 22, issue 18
https://doi.org/10.5194/acp-22-12629-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-12629-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China
Jinjin Sun
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Key Laboratory of Meteorological Disaster, Ministry of Education,
Joint International Research Laboratory of Climate and Environment Change,
Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China
Meteorological Administration, Nanjing University of Information Science and
Technology, Nanjing 210044, China
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Xiaodong Xie
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Wenxing Fu
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Yang Qin
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Key Laboratory of Meteorological Disaster, Ministry of Education,
Joint International Research Laboratory of Climate and Environment Change,
Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China
Meteorological Administration, Nanjing University of Information Science and
Technology, Nanjing 210044, China
Li Sheng
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Lin Li
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Jingyi Li
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Ishaq Dimeji Sulaymon
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Lei Jiang
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Lin Huang
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Xingna Yu
Key Laboratory of Meteorological Disaster, Ministry of Education,
Joint International Research Laboratory of Climate and Environment Change,
Collaborative Innovation Center on Forecast and Evaluation of Meteorological
Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China
Meteorological Administration, Nanjing University of Information Science and
Technology, Nanjing 210044, China
Jianlin Hu
CORRESPONDING AUTHOR
Jiangsu Key Laboratory of Atmospheric Environment Monitoring and
Pollution Control, Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology, Nanjing University of Information
Science & Technology, Nanjing 210044, China
Related authors
No articles found.
Yu Li, Momei Qin, Weiwei Hu, Bin Zhao, Ying Li, Havala O. T. Pye, Jingyi Li, Linghan Zeng, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2879, https://doi.org/10.5194/egusphere-2025-2879, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We evaluated how well a widely used air quality model simulates key properties of organic particles in the atmosphere, such as volatility and oxygen content, which influence how particles age, spread, and affect both air quality and climate. Using observations from eastern China, we found the model underestimated particle mass and misrepresented their chemical makeup. Our results highlight the need for improved emissions and chemical treatments to better predict air quality and climate impacts.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Jianjiong Mao, Lei Jiang, Zhicheng Feng, Jingyi Li, Yanhong Zhu, Momei Qin, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2992, https://doi.org/10.5194/egusphere-2025-2992, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tiny air particles impact air quality and climate change. Our study improved their prediction in China by modeling two key formation processes: ions + sulfuric acid (daytime) and sulfuric acid + dimethylamine (morning/evening). This improved model increases predictions by 36–84 % in Beijing and Nanjing. These advancements enable better demonstrate how these chemical processes significantly influence China's particulate pollution.
Haifeng Yu, Yunhua Chang, Lin Cheng, Yusen Duan, and Jianlin Hu
Atmos. Chem. Phys., 25, 5355–5369, https://doi.org/10.5194/acp-25-5355-2025, https://doi.org/10.5194/acp-25-5355-2025, 2025
Short summary
Short summary
This study presents long-term measurements and comprehensive analysis of carbonaceous aerosols in fine particles in Shanghai. We further estimated primary and secondary carbon levels, examining their temporal variations on interannual, monthly, seasonal, and diurnal scales. Through rigorous statistical analysis and correlation studies with meteorological parameters and pollutant concentrations, the origins, formation mechanisms, and spatial distribution patterns of secondary organic carbon were elucidated.
Huilin Hu, Yunyi Liang, Ting Li, Yongliang She, Yao Wang, Ting Yang, Min Zhou, Ziyue Li, Chenxi Li, Huayun Xiao, Jianlin Hu, Jingyi Li, and Yue Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1909, https://doi.org/10.5194/egusphere-2025-1909, 2025
Short summary
Short summary
Isoprene-derived secondary organic aerosol (iSOA) is a major type of biogenic SOA in the atmosphere, yet its response to long-term anthropogenic emission reductions remains poorly understood. Here, combing field observations and model simulations, we characterized the abundance, trend, and underlying drivers of iSOA in Shanghai, China during 2015–2021, which will advance our understandings of the formation and impacts of biogenic SOA under rapidly evolving emission scenarios in urban regions.
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
Atmos. Chem. Phys., 25, 4767–4783, https://doi.org/10.5194/acp-25-4767-2025, https://doi.org/10.5194/acp-25-4767-2025, 2025
Short summary
Short summary
India is facing a severe air pollution crisis that poses significant health risks, particularly from PM2.5 and O3. Our study reveals rising levels of both pollutants from 1995 to 2014, leading to increased premature mortality. While anthropogenic emissions play a significant role, biomass burning also impacts air quality, in particular seasons and regions in India. This study underscores the urgent need for localized policies to protect public health amid escalating environmental challenges.
Hanrui Lang, Yunjiang Zhang, Sheng Zhong, Yongcai Rao, Minfeng Zhou, Jian Qiu, Jingyi Li, Diwen Liu, Florian Couvidat, Olivier Favez, Didier Hauglustaine, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2025-231, https://doi.org/10.5194/egusphere-2025-231, 2025
Short summary
Short summary
This study investigates how dust pollution influences particulate nitrate formation. We found that dust pollution could reduce the effectiveness of ammonia emission controls by altering aerosol chemistry. Using field observations and modeling, we showed that dust particles affect nitrate distribution between gas and particle phases. Our findings highlight the need for pollution control strategies that consider both human emissions and dust sources for better urban air quality management.
Fei Ye, Jingyi Li, Yaqin Gao, Hongli Wang, Jingyu An, Cheng Huang, Song Guo, Keding Lu, Kangjia Gong, Haowen Zhang, Momei Qin, and Jianlin Hu
Atmos. Chem. Phys., 24, 7467–7479, https://doi.org/10.5194/acp-24-7467-2024, https://doi.org/10.5194/acp-24-7467-2024, 2024
Short summary
Short summary
Naphthalene (Nap) and methylnaphthalene (MN) are key precursors of secondary organic aerosol (SOA), yet their sources and sinks are often inadequately represented in air quality models. In this study, we incorporated detailed emissions, gas-phase chemistry, and SOA parameterization of Nap and MN into CMAQ to address this issue. The findings revealed remarkably high SOA formation potentials for these compounds despite their low emissions in the Yangtze River Delta region during summer.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Yongliang She, Jingyi Li, Xiaopu Lyu, Hai Guo, Momei Qin, Xiaodong Xie, Kangjia Gong, Fei Ye, Jianjiong Mao, Lin Huang, and Jianlin Hu
Atmos. Chem. Phys., 24, 219–233, https://doi.org/10.5194/acp-24-219-2024, https://doi.org/10.5194/acp-24-219-2024, 2024
Short summary
Short summary
In this study, we use multi-site volatile organic compound (VOC) measurements to evaluate the CMAQ-model-predicted VOCs and assess the impacts of VOC bias on O3 simulation. Our results demonstrate that current modeling setups and emission inventories are likely to underpredict VOC concentrations, and this underprediction of VOCs contributes to lower O3 predictions in China.
Xiaodong Xie, Jianlin Hu, Momei Qin, Song Guo, Min Hu, Dongsheng Ji, Hongli Wang, Shengrong Lou, Cheng Huang, Chong Liu, Hongliang Zhang, Qi Ying, Hong Liao, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 10563–10578, https://doi.org/10.5194/acp-23-10563-2023, https://doi.org/10.5194/acp-23-10563-2023, 2023
Short summary
Short summary
The atmospheric age of particles reflects how long particles have been formed and suspended in the atmosphere, which is closely associated with the evolution processes of particles. An analysis of the atmospheric age of PM2.5 provides a unique perspective on the evolution processes of different PM2.5 components. The results also shed lights on how to design effective emission control actions under unfavorable meteorological conditions.
Yiqi Zheng, Larry W. Horowitz, Raymond Menzel, David J. Paynter, Vaishali Naik, Jingyi Li, and Jingqiu Mao
Atmos. Chem. Phys., 23, 8993–9007, https://doi.org/10.5194/acp-23-8993-2023, https://doi.org/10.5194/acp-23-8993-2023, 2023
Short summary
Short summary
Biogenic secondary organic aerosols (SOAs) account for a large fraction of fine aerosol at the global scale. Using long-term measurements and a climate model, we investigate anthropogenic impacts on biogenic SOA at both decadal and centennial timescales. Results show that despite reductions in biogenic precursor emissions, SOA has been strongly amplified by anthropogenic emissions since the preindustrial era and exerts a cooling radiative forcing.
Hejun Hu, Haichao Wang, Keding Lu, Jie Wang, Zelong Zheng, Xuezhen Xu, Tianyu Zhai, Xiaorui Chen, Xiao Lu, Wenxing Fu, Xin Li, Limin Zeng, Min Hu, Yuanhang Zhang, and Shaojia Fan
Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, https://doi.org/10.5194/acp-23-8211-2023, 2023
Short summary
Short summary
Nitrate radical chemistry is critical to the degradation of volatile organic compounds (VOCs) and secondary organic aerosol formation. This work investigated the level, seasonal variation, and trend of nitrate radical reactivity towards volatile organic compounds (kNO3) in Beijing. We show the key role of isoprene and styrene in regulating seasonal variation in kNO3 and rebuild a long-term record of kNO3 based on the reported VOC measurements.
Lizi Tang, Min Hu, Dongjie Shang, Xin Fang, Jianjiong Mao, Wanyun Xu, Jiacheng Zhou, Weixiong Zhao, Yaru Wang, Chong Zhang, Yingjie Zhang, Jianlin Hu, Limin Zeng, Chunxiang Ye, Song Guo, and Zhijun Wu
Atmos. Chem. Phys., 23, 4343–4359, https://doi.org/10.5194/acp-23-4343-2023, https://doi.org/10.5194/acp-23-4343-2023, 2023
Short summary
Short summary
There was an evident distinction in the frequency of new particle formation (NPF) events at Nam Co station on the Tibetan Plateau: 15 % in pre-monsoon season and 80 % in monsoon season. The frequent NPF events in monsoon season resulted from the higher frequency of southerly air masses, which brought the organic precursors to participate in the NPF process. It increased the amount of aerosol and CCN compared with those in pre-monsoon season, which may markedly affect earth's radiation balance.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Zefeng Zhang, Hengnan Guo, Hanqing Kang, Jing Wang, Junlin An, Xingna Yu, Jingjing Lv, and Bin Zhu
Atmos. Meas. Tech., 15, 7259–7264, https://doi.org/10.5194/amt-15-7259-2022, https://doi.org/10.5194/amt-15-7259-2022, 2022
Short summary
Short summary
In this study, we first analyze the relationship between the visibility, the extinction coefficient, and atmospheric compositions. Then we propose to use the harmonic average of visibility data as the average visibility, which can better reflect changes in atmospheric extinction coefficients and aerosol concentrations. It is recommended to use the harmonic average visibility in the studies of climate change, atmospheric radiation, air pollution, environmental health, etc.
Xun Li, Momei Qin, Lin Li, Kangjia Gong, Huizhong Shen, Jingyi Li, and Jianlin Hu
Atmos. Chem. Phys., 22, 14799–14811, https://doi.org/10.5194/acp-22-14799-2022, https://doi.org/10.5194/acp-22-14799-2022, 2022
Short summary
Short summary
Photochemical indicators have been widely used to predict O3–NOx–VOC sensitivity with given thresholds. Here we assessed the effectiveness of four indicators with a case study in the Yangtze River Delta, China. The overall performance was good, while some indicators showed inconsistencies with the O3 isopleths. The methodology used to determine the thresholds may produce uncertainties. These results would improve our understanding of the use of photochemical indicators in policy implications.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Ruqian Miao, Qi Chen, Manish Shrivastava, Youfan Chen, Lin Zhang, Jianlin Hu, Yan Zheng, and Keren Liao
Atmos. Chem. Phys., 21, 16183–16201, https://doi.org/10.5194/acp-21-16183-2021, https://doi.org/10.5194/acp-21-16183-2021, 2021
Short summary
Short summary
We apply process-based and observation-constrained schemes to simulate organic aerosol in China and conduct comprehensive model–observation comparisons. The results show that anthropogenic semivolatile and intermediate-volatility organic compounds (SVOCs and IVOCs) are the main sources of secondary organic aerosol (SOA) in polluted regions, for which the residential sector is perhaps the predominant contributor. The hydroxyl radical level is also important for SOA modeling in polluted regions.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Zhihao Shi, Lin Huang, Jingyi Li, Qi Ying, Hongliang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 13455–13466, https://doi.org/10.5194/acp-20-13455-2020, https://doi.org/10.5194/acp-20-13455-2020, 2020
Short summary
Short summary
Meteorological conditions play important roles in the formation of O3 and PM2.5 pollution in China. O3 is most sensitive to temperature and the sensitivity is dependent on the O3 chemistry formation or loss regime. PM2.5 is negatively sensitive to temperature, wind speed, and planetary boundary layer height and positively sensitive to humidity. The results imply that air quality in certain regions of China is sensitive to climate changes.
Cited articles
Alexander, B., Sherwen, T., Holmes, C. D., Fisher, J. A., Chen, Q., Evans, M. J., and Kasibhatla, P.: Global inorganic nitrate production mechanisms: comparison of a global model with nitrate isotope observations, Atmos. Chem. Phys., 20, 3859–3877, https://doi.org/10.5194/acp-20-3859-2020, 2020.
An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Wang, H., Jing, S., Zhang, Y., Liu, Y., Chen, Y., Xu, C., Qiao, L., Zhou, M., Zhu, S., Hu, Q., Lu, J., and Chen, C.: Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021, 2021.
Byun, D. and Schere, K. L.: Review of the Governing Equations,
Computational Algorithms, and Other Components of the Models-3 Community
Multiscale Air Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Chan, Y.-C., Evans, M. J., He, P., Holmes, C. D., Jaeglé, L.,
Kasibhatla, P., Liu, X.-Y., Sherwen, T., Thornton, J. A., Wang, X., Xie, Z.,
Zhai, S., and Alexander, B.: Heterogeneous Nitrate Production Mechanisms in
Intense Haze Events in the North China Plain, J. Geophys. Res.-Atmos., 126, e2021JD034688, https://doi.org/10.1029/2021JD034688, 2021.
Chen, T.-F., Chang, K.-H., and Lee, C.-H.: Simulation and analysis of causes
of a haze episode by combining CMAQ-IPR and brute force source sensitivity
method, Atmos. Environ., 218, 117006, https://doi.org/10.1016/j.atmosenv.2019.117006, 2019.
Chen, X., Jiang, Z., Shen, Y., Li, R., Fu, Y., Liu, J., Han, H., Liao, H.,
Cheng, X., Jones, D. B. A., Worden, H., and Abad, G. G.: Chinese Regulations
Are Working – Why Is Surface Ozone Over Industrialized Areas Still High?
Applying Lessons From Northeast US Air Quality Evolution, Geophys. Res.
Lett., 48, e2021GL092816, https://doi.org/10.1029/2021GL092816,
2021.
Chen, X. R., Wang, H. C., Lu, K. D., Li, C., Zhai, T., Tan, Z., Ma, X.,
Yang, X., Liu, Y., Chen, S., Dong, H., Li, X., Wu, Z., Hu, M., Zeng, L., and
Zhang, Y.: Field Determination of Nitrate Formation Pathway in Winter
Beijing, Environ. Sci. Technol., 54, 9243–9253, https://doi.org/10.1021/acs.est.0c00972,
2020.
Chuang, M.-T., Wu, C.-F., Lin, C.-Y., Lin, W.-C., Chou, C. C. K., Lee,
C.-T., Lin, T.-H., Fu, J. S., and Kong, S. S.-K.: Simulating nitrate
formation mechanisms during PM2.5 events in Taiwan and their implications
for the controlling direction, Atmos. Environ., 269, 118856, https://doi.org/10.1016/j.atmosenv.2021.118856, 2022.
Dai, H. B., Zhu, J., Liao, H., Li, J., Liang, M., Yang, Y., and Yue, X.:
Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over
2013–2019: Spatiotemporal distribution and meteorological conditions,
Atmos. Res., 249, 105363, https://doi.org/10.1016/j.atmosres.2020.105363, 2021.
Ding, A. J., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie,
Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang, L., Sun, J., Yang, X. Q.,
Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant
reduction of PM2.5 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018, Atmos. Chem. Phys., 19, 11791–11801, https://doi.org/10.5194/acp-19-11791-2019, 2019.
Du, H., Li, J., Wang, Z., Dao, X., Guo, S., Wang, L., Ma, S., Wu, J., Yang,
W., Chen, X., and Sun, Y.: Effects of Regional Transport on Haze in the
North China Plain: Transport of Precursors or Secondary Inorganic Aerosols,
Geophys. Res. Lett., 47, e2020GL087461, https://doi.org/10.1029/2020gl087461, 2020.
Emery, C. and Tai, E.: Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes, Final Report Submitted to Texas Natural Resources Conservation Commission, ENVIRON, International Corporation, Novato, USA, Corpus ID: 127579774,
https://wayback.archive-it.org/414/20210529063824/https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/mm/EnhancedMetModelingAndPerformanceEvaluation.pdf, last access: 30 April 2021.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manage. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.
Fan, M.-Y., Zhang, Y.-L., Lin, Y.-C., Cao, F., Zhao, Z.-Y., Sun, Y., Qiu,
Y., Fu, P., and Wang, Y.: Changes of Emission Sources to Nitrate Aerosols in
Beijing After the Clean Air Actions: Evidence From Dual Isotope
Compositions, J. Geophys. Res.-Atmos., 125,
e2019JD031998, https://doi.org/10.1029/2019JD031998, 2020.
Fan, M.-Y., Zhang, Y.-L., Lin, Y.-C., Hong, Y., Zhao, Z.-Y., Xie, F., Du,
W., Cao, F., Sun, Y., and Fu, P.: Important Role of NO3 Radical to Nitrate
Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes
Measured at the Tower, Environ. Sci. Technol., 56, 6870–6879, https://doi.org/10.1021/acs.est.1c02843,
2021.
Fu, X., Wang, T., Gao, J., Wang, P., Liu, Y., Wang, S., Zhao, B., and Xue,
L.: Persistent Heavy Winter Nitrate Pollution Driven by Increased
Photochemical Oxidants in Northern China, Environ. Sci. Technol., 54,
3881–3889, https://doi.org/10.1021/acs.est.9b07248, 2020.
Griffith, S. M., Huang, X. H. H., Louie, P. K. K., and Yu, J. Z.:
Characterizing the thermodynamic and chemical composition factors
controlling PM2.5 nitrate: Insights gained from two years of online
measurements in Hong Kong, Atmos. Environ., 122, 864–875,
https://doi.org/10.1016/j.atmosenv.2015.02.009, 2015.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J.: Effectiveness of ammonia reduction on control of fine particle nitrate, Atmos. Chem. Phys., 18, 12241–12256, https://doi.org/10.5194/acp-18-12241-2018, 2018.
He, P., Xie, Z., Chi, X., Yu, X., Fan, S., Kang, H., Liu, C., and Zhan, H.: Atmospheric Δ17O(NO3−) reveals nocturnal chemistry dominates nitrate production in Beijing haze, Atmos. Chem. Phys., 18, 14465–14476, https://doi.org/10.5194/acp-18-14465-2018, 2018.
He, P., Xie, Z., Yu, X., Wang, L., Kang, H., and Yue, F.: The observation of
isotopic compositions of atmospheric nitrate in Shanghai China and its
implication for reactive nitrogen chemistry, Sci. Total Environ., 714,
136727, https://doi.org/10.1016/j.scitotenv.2020.136727, 2020.
Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system, Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, 2016.
Hu, S., Zhao, G., Tan, T., Li, C., Zong, T., Xu, N., Zhu, W., and Hu, M.:
Current challenges of improving visibility due to increasing nitrate
fraction in PM2.5 during the haze days in Beijing, China, Environ. Pollut.,
290, 118032, https://doi.org/10.1016/j.envpol.2021.118032,
2021.
Huang, L., Zhu, Y., Zhai, H., Xue, S., Zhu, T., Shao, Y., Liu, Z., Emery,
C., Yarwood, G., Wang, Y., Fu, J., Zhang, K., and Li, L.: Recommendations on
benchmarks for numerical air quality model applications in China – Part 1:
PM2.5 and chemical species, Atmos. Chem. Phys., 21, 2725–2743, https://doi.org/10.5194/acp-21-2725-2021, 2021.
Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y.,
Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P.,
Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad, I. E., and
Prévôt, A. S. H.: High secondary aerosol contribution to particulate
pollution during haze events in China, Nature, 514, 218–222,
https://doi.org/10.1038/nature13774, 2014.
Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., and Fu, C.:
Amplified transboundary transport of haze by aerosol–boundary layer
interaction in China, Nat. Geosci., 13, 428–434, https://doi.org/10.1038/s41561-020-0583-4,
2020a.
Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D., Qi, X., Tang, R.,
Wang, J., Ren, C., Nie, W., Chi, X., Xu, Z., Chen, L., Li, Y., Che, F.,
Pang, N., Wang, H., Tong, D., Qin, W., Cheng, W., Liu, W., Fu, Q., Liu, B.,
Chai, F., Davis, S. J., Zhang, Q., and He, K.: Enhanced secondary pollution
offset reduction of primary emissions during COVID-19 lockdown in China,
Nat. Sci. Rev., 8, nwaa137, https://doi.org/10.1093/nsr/nwaa137, 2020b.
Huang, X., Huang, J. T., Ren, C. H., Wang, J., Wang, H., Wang, J., Yu, H.,
Chen, J., Gao, J., and Ding, A.: Chemical Boundary Layer and Its Impact on
Air Pollution in Northern China, Environ. Sci. Technol. Lett., 7, 826–832,
https://doi.org/10.1021/acs.estlett.0c00755, 2020c.
Itahashi, S., Uno, I., Osada, K., Kamiguchi, Y., Yamamoto, S., Tamura, K., Wang, Z., Kurosaki, Y., and Kanaya, Y.: Nitrate transboundary heavy pollution over East Asia in winter, Atmos. Chem. Phys., 17, 3823–3843, https://doi.org/10.5194/acp-17-3823-2017, 2017.
Khezri, B., Mo, H., Yan, Z., Chong, S.-L., Heng, A. K., and Webster, R. D.:
Simultaneous online monitoring of inorganic compounds in aerosols and gases
in an industrialized area, Atmos. Environ., 80, 352–360, https://doi.org/10.1016/j.atmosenv.2013.08.008, 2013.
Kim, Y. J., Spak, S. N., Carmichael, G. R., Riemer, N., and Stanier, C. O.:
Modeled aerosol nitrate formation pathways during wintertime in the Great
Lakes region of North America, J. Geophys. Res.-Atmos.,
119, 12420–412445, https://doi.org/10.1002/2014JD022320,
2014.
Li, C., Hammer, M. S., Zheng, B., and Cohen, R. C.: Accelerated reduction of
air pollutants in China, 2017–2020, Sci. Total Environ., 803, 150011,
https://doi.org/10.1016/j.scitotenv.2021.150011, 2022.
Li, L., Xie, F., Li, J., Gong, K., Xie, X., Qin, Y., Qin, M., and Hu, J.:
Diagnostic analysis of regional ozone pollution in Yangtze River Delta,
China: A case study in summer 2020, Sci. Total Environ., 812, 151511, https://doi.org/10.1016/j.scitotenv.2021.151511, 2021a.
Li, M., Zhang, Z., Yao, Q., Wang, T., Xie, M., Li, S., Zhuang, B., and Han, Y.: Nonlinear responses of particulate nitrate to NOx emission controls in the megalopolises of China, Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, 2021b.
Lin, Y. C., Zhang, Y. L., Fan, M. Y., and Bao, M.: Heterogeneous formation
of particulate nitrate under ammonium-rich regimes during the high-PM2.5
events in Nanjing, China, Atmos. Chem. Phys., 20, 3999–4011, https://doi.org/10.5194/acp-20-3999-2020, 2020.
Liu, L., Liu, L., Liu, S., Li, X., Zhou, J., Feng, T., Cao, J., Qian, Y.,
Cao, J., and Li, G.: Effects of organic coating on the nitrate formation by
suppressing the N2O5 heterogeneous hydrolysis: a case study during wintertime in Beijing–Tianjin–Hebei (BTH), Atmos. Chem. Phys., 19, 8189–8207, https://doi.org/10.5194/acp-19-8189-2019, 2019.
Liu, L., Bei, N., Hu, B., Wu, J., Liu, S., Li, X., Wang, R., Liu, Z., Shen,
Z., and Li, G.: Wintertime nitrate formation pathways in the north China
plain: Importance of N2O5 heterogeneous hydrolysis, Environ. Pollut., 266,
115287, https://doi.org/10.1016/j.envpol.2020.115287, 2020a.
Liu, P., Zhang, Y., Yu, S., and Schere, K. L.: Use of a process analysis
tool for diagnostic study on fine particulate matter predictions in the
U.S. – Part II: Analyses and sensitivity simulations, Atmos. Pollut.
Res., 2, 61–71, https://doi.org/10.5094/APR.2011.008, 2011.
Liu, T., Wang, X. Y., Hu, J. L., Wang, Q., An, J., Gong, K., Sun, J., Li,
L., Qin, M., Li, J., Tian, J., Huang, Y., Liao, H., Zhou, M., Hu, Q., Yan,
R., Wang, H., and Huang, C.: Driving Forces of Changes in Air Quality during
the COVID-19 Lockdown Period in the Yangtze River Delta Region, China,
Environ. Sci. Technol. Lett., 7, 779–786, https://doi.org/10.1021/acs.estlett.0c00511,
2020b.
Lu, M., Tang, X., Feng, Y., Wang, Z., Chen, X., Kong, L., Ji, D., Liu, Z.,
Liu, K., Wu, H., Liang, S., Zhou, H., and Hu, K.: Nonlinear response of SIA
to emission changes and chemical processes over eastern and central China
during a heavy haze month, Sci. Total Environ., 788, 147747, https://doi.org/10.1016/j.scitotenv.2021.147747, 2021a.
Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M.,
Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L., and Zhang, Y.:
The underappreciated role of agricultural soil nitrogen oxide emissions in
ozone pollution regulation in North China, Nat. Commun., 12, 5021,
https://doi.org/10.1038/s41467-021-25147-9, 2021b.
Luo, L., Kao, S., Wu, Y., Zhang, X., Lin, H., Zhang, R., and Xiao, H.:
Stable oxygen isotope constraints on nitrate formation in Beijing in
springtime, Environ. Pollut., 263, 114515, https://doi.org/10.1016/j.envpol.2020.114515, 2020a.
Luo, L., Pan, Y.-Y., Zhu, R.-G., Zhang, Z.-Y., Zheng, N.-J., Liu, Y.-H.,
Liu, C., Xiao, H.-W., and Xiao, H.-Y.: Assessment of the seasonal cycle of
nitrate in PM2.5 using chemical compositions and stable nitrogen and oxygen
isotopes at Nanchang, China, Atmos. Environ., 225, 117371, https://doi.org/10.1016/j.atmosenv.2020.117371, 2020b.
Ma, J., Shen, J., Wang, P., Zhu, S., Wang, Y., Wang, P., Wang, G., Chen, J., and Zhang, H.: Modeled changes in source contributions of particulate matter during the COVID-19 pandemic in the Yangtze River Delta, China, Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, 2021.
Prabhakar, G., Parworth, C. L., Zhang, X., Kim, H., Young, D. E., Beyersdorf, A. J., Ziemba, L. D., Nowak, J. B., Bertram, T. H., Faloona, I. C., Zhang, Q., and Cappa, C. D.: Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations, Atmos. Chem. Phys., 17, 14747–14770, https://doi.org/10.5194/acp-17-14747-2017, 2017.
Qiao, X., Tang, Y., Hu, J., Zhang, S., Li, J., Kota, S. H., Wu, L., Gao, H.,
Zhang, H., and Ying, Q.: Modeling dry and wet deposition of sulfate,
nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China
using a source-oriented CMAQ model: Part I. Base case model results, Sci.
Total Environ., 532, 831–839, https://doi.org/10.1016/j.scitotenv.2015.05.108, 2015.
Qin, Y., Li, J. Y., Gong, K. J., Wu, Z., Chen, M., Qin, M., Huang, L., and
Hu, J.: Double high pollution events in the Yangtze River Delta from 2015 to
2019: Characteristics, trends, and meteorological situations, Sci. Total
Environ., 792, 148349, https://doi.org/10.1016/j.scitotenv.2021.148349, 2021.
Qu, K., Wang, X. S., Xiao, T., Shen, J., Lin, T., Chen, D., He, L.-Y.,
Huang, X.-F., Zeng, L., Lu, K., Ou, Y., and Zhang, Y.: Cross-regional
transport of PM2.5 nitrate in the Pearl River Delta, China: Contributions
and mechanisms, Sci. Total Environ., 753, 142439, https://doi.org/10.1016/j.scitotenv.2020.142439, 2021.
Shah, V., Jaeglé, L., Thornton, J. A., Lopez-Hilfiker, F. D., Lee, B.
H., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Guo, H., Sullivan,
A. P., Weber, R. J., Green, J. R., Fiddler, M. N., Bililign, S., Campos, T.
L., Stell, M., Weinheimer, A. J., Montzka, D. D., and Brown, S. S.: Chemical
feedbacks weaken the wintertime response of particulate sulfate and nitrate
to emissions reductions over the eastern United States, P. Natl. Acad. Sci. USA, 115, 8110–8115, https://doi.org/10.1073/pnas.1803295115, 2018.
Shen, J., Zhao, Q., Cheng, Z., Wang, P., Ying, Q., Liu, J., Duan, Y., and
Fu, Q.: Insights into source origins and formation mechanisms of nitrate
during winter haze episodes in the Yangtze River Delta, Sci. Total Environ.,
741, 140187, https://doi.org/10.1016/j.scitotenv.2020.140187, 2020.
Sheng, L., Qin, M., Li, L., Wang, C., Gong, K., Liu, T., Li, J., and Hu, J.:
Impacts of emissions along the lower Yangtze River on air quality and public
health in the Yangtze River delta, China, Atmos. Pollut. Res.,
13, 101420, https://doi.org/10.1016/j.apr.2022.101420, 2022.
Shi, Z., Li, J., Huang, L., Wang, P., Wu, L., Ying, Q., Zhang, H., Lu, L.,
Liu, X., Liao, H., and Hu, J.: Source apportionment of fine particulate
matter in China in 2013 using a source-oriented chemical transport model,
Sci. Total Environ., 601–602, 1476–1487, https://doi.org/10.1016/j.scitotenv.2017.06.019, 2017.
Sulaymon, I. D., Zhang, Y., Hu, J., Hopke, P. K., Zhang, Y., Zhao, B., Xing,
J., Li, L., and Mei, X.: Evaluation of regional transport of PM2.5 during
severe atmospheric pollution episodes in the western Yangtze River Delta,
China, J. Environ. Manage., 293, 112827, https://doi.org/10.1016/j.jenvman.2021.112827, 2021.
Sun, J. J., Liang, M. J., Shi, Z. H., Shen, F., Li, J., Huang, L., Ge, X.,
Chen, Q., Sun, Y., Zhang, Y., Chang, Y., Ji, D., Ying, Q., Zhang, H., Kota,
S. H., and Hu, J.: Investigating the PM2.5 mass concentration growth
processes during 2013–2016 in Beijing and Shanghai, Chemosphere, 221,
452–463, https://doi.org/10.1016/j.chemosphere.2018.12.200,
2019.
Sun, P., Nie, W., Chi, X., Xie, Y., Huang, X., Xu, Z., Qi, X., Xu, Z., Wang, L., Wang, T., Zhang, Q., and Ding, A.: Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta: influences of thermodynamics and N2O5 hydrolysis, Atmos. Chem. Phys., 18, 17177–17190, https://doi.org/10.5194/acp-18-17177-2018, 2018.
Tan, Z. F., Wang, H. C., Lu, K. D., Dong, H. B., Liu, Y. H., Zeng, L. M.,
Hu, M., and Zhang, Y. H.: An Observational Based Modeling of the Surface
Layer Particulate Nitrate in the North China Plain During Summertime, J.
Geophys. Res.-Atmos., 126, e2021JD035623,
https://doi.org/10.1029/2021JD035623, 2021.
Vrekoussis, M., Kanakidou, M., Mihalopoulos, N., Crutzen, P. J., Lelieveld, J., Perner, D., Berresheim, H., and Baboukas, E.: Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign, Atmos. Chem. Phys., 4, 169–182, https://doi.org/10.5194/acp-4-169-2004, 2004.
Wang, H., Lu, K., Chen, X., Zhu, Q., Wu, Z., Wu, Y., and Sun, K.: Fast
particulate nitrate formation via N2O5 uptake aloft in winter in Beijing, Atmos. Chem. Phys., 18, 10483–10495, https://doi.org/10.5194/acp-18-10483-2018, 2018.
Wang, J., Gao, J., Che, F., Wang, Y., Lin, P., and Zhang, Y.: Decade-long
trends in chemical component properties of PM2.5 in Beijing, China
(2011–2020), Sci. Total Environ., 832, 154664, https://doi.org/10.1016/j.scitotenv.2022.154664, 2022.
Wang, X., Li, L., Gong, K., Mao, J., Hu, J., Li, J., Liu, Z., Liao, H., Qiu,
W., Yu, Y., Dong, H., Guo, S., Hu, M., Zeng, L., and Zhang, Y.: Modelling
air quality during the EXPLORE-YRD campaign – Part I. Model performance
evaluation and impacts of meteorological inputs and grid resolutions, Atmos.
Environ., 246, 118131, https://doi.org/10.1016/j.atmosenv.2020.118131, 2021.
Wang, Y.-L., Song, W., Yang, W., Sun, X.-C., Tong, Y.-D., Wang, X.-M., Liu,
C.-Q., Bai, Z.-P., and Liu, X.-Y.: Influences of Atmospheric Pollution on
the Contributions of Major Oxidation Pathways to PM2.5 Nitrate Formation in
Beijing, J. Geophys. Res.-Atmos., 124, 4174–4185,
https://doi.org/10.1029/2019JD030284, 2019.
Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L., Wang, T., Zhang, Q., and Wang, W.: Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy, Atmos. Chem. Phys., 18, 11261–11275, https://doi.org/10.5194/acp-18-11261-2018, 2018.
Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011.
Womack, C. C., McDuffie, E. E., Edwards, P. M., Bares, R., de Gouw, J. A.,
Docherty, K. S., Dubé, W. P., Fibiger, D. L., Franchin, A., Gilman, J.
B., Goldberger, L., Lee, B. H., Lin, J. C., Long, R., Middlebrook, A. M.,
Millet, D. B., Moravek, A., Murphy, J. G., Quinn, P. K., Riedel, T. P.,
Roberts, J. M., Thornton, J. A., Valin, L. C., Veres, P. R., Whitehill, A.
R., Wild, R. J., Warneke, C., Yuan, B., Baasandorj, M., and Brown, S. S.: An
Odd Oxygen Framework for Wintertime Ammonium Nitrate Aerosol Pollution in
Urban Areas: NOx and VOC Control as Mitigation Strategies, Geophys. Res.
Lett., 46, 4971–4979, https://doi.org/10.1029/2019GL082028,
2019.
Wu, C., Liu, L., Wang, G., Zhang, S., Li, G., Lv, S., Li, J., Wang, F.,
Meng, J., and Zeng, Y.: Important contribution of N2O5 hydrolysis to the
daytime nitrate in Xi'an, China during haze periods: Isotopic analysis and
WRF-Chem model simulation, Environ. Pollut., 288, 117712, https://doi.org/10.1016/j.envpol.2021.117712, 2021.
Wu, J.-B., Wang, Z., Wang, Q., Li, J., Xu, J., Chen, H., Ge, B., Zhou, G.,
and Chang, L.: Development of an on-line source-tagged model for sulfate,
nitrate and ammonium: A modeling study for highly polluted periods in
Shanghai, China, Environ. Pollut., 221, 168–179, https://doi.org/10.1016/j.envpol.2016.11.061, 2017.
Wyat Appel, K., Napelenok, S., Hogrefe, C., Pouliot, G., Foley, K. M.,
Roselle, S. J., Pleim, J. E., Bash, J., Pye, H. O. T., Heath, N., Murphy,
B., and Mathur, R.: Overview and Evaluation of the Community Multiscale Air
Quality (CMAQ) Modeling System Version 5.2, in: Air Pollution Modeling and its
Application XXV, Cham, 69–73, https://doi.org/10.1007/978-3-319-57645-9_11, 2018.
Xie, X., Hu, J., Qin, M., Guo, S., Hu, M., Wang, H., Lou, S., Li, J., Sun,
J., Li, X., Sheng, L., Zhu, J., Chen, G., Yin, J., Fu, W., Huang, C., and
Zhang, Y.: Modeling particulate nitrate in China: current findings and
future directions, Environ. Int., 166, 107369, https://doi.org/10.1016/j.envint.2022.107369, 2022.
Xie, Y., Wang, G., Wang, X., Chen, J., Chen, Y., Tang, G., Wang, L., Ge, S.,
Xue, G., Wang, Y., and Gao, J.: Nitrate-dominated PM2.5 and elevation of particle pH observed in urban Beijing during the winter of 2017, Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, 2020.
Yang, X., Wu, K., Wang, H., Liu, Y., Gu, S., Lu, Y., Zhang, X., Hu, Y., Ou,
Y., Wang, S., and Wang, Z.: Summertime ozone pollution in Sichuan Basin,
China: Meteorological conditions, sources and process analysis, Atmos.
Environ., 226, 117392, https://doi.org/10.1016/j.atmosenv.2020.117392, 2020.
Ying, Q., Wu, L., and Zhang, H.: Local and inter-regional contributions to
PM2.5 nitrate and sulfate in China, Atmos. Environ., 94, 582–592, https://doi.org/10.1016/j.atmosenv.2014.05.078, 2014.
Zang, H., Zhao, Y., Huo, J., Zhao, Q., Fu, Q., Duan, Y., Shao, J., Huang, C., An, J., Xue, L., Li, Z., Li, C., and Xiao, H.: High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze River Delta of China, Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, 2022.
Zhai, S. X., Jacob, D. J., Wang, X., Liu, Z., Wen, T., Shah, V., Li, K.,
Moch, J. M., Bates, K. H., Song, S., Shen, L., Zhang, Y., Luo, G., Yu, F.,
Sun, Y., Wang, L., Qi, M., Tao, J., Gui, K., Xu, H., Zhang, Q., Zhao, T.,
Wang, Y., Lee, H. C., Choi, H., and Liao, H.: Control of particulate nitrate
air pollution in China, Nat. Geosci., 14, 389–395,
https://doi.org/10.1038/s41561-021-00726-z, 2021.
Zhang, Y.-L., Zhang, W., Fan, M.-Y., Li, J., Fang, H., Cao, F., Lin, Y.-C.,
Wilkins, B. P., Liu, X., Bao, M., Hong, Y., and Michalski, G.: A diurnal
story of Δ17O(NO3−) in urban Nanjing and its
implication for nitrate aerosol formation, NPJ Clim. Atmos. Sci., 5, 50, https://doi.org/10.1038/s41612-022-00273-3, 2022.
Zhang, Z., Cao, L., Liang, Y., Guo, W., Guan, H., and Zheng, N.: Importance
of NO3 radical in particulate nitrate formation in a southeast Chinese urban
city: New constraints by δ15N-δ18O space of NO3−, Atmos. Environ.,
253, 118387, https://doi.org/10.1016/j.atmosenv.2021.118387,
2021.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, H., Song, S., Sarwar, G., Gen, M., Wang, S., Ding, D., Chang, X.,
Zhang, S., Xing, J., Sun, Y., Ji, D., Chan, C. K., Gao, J., and McElroy, M.
B.: Contribution of Particulate Nitrate Photolysis to Heterogeneous Sulfate
Formation for Winter Haze in China, Environ. Sci. Technol. Lett., 7,
632–638, https://doi.org/10.1021/acs.estlett.0c00368, 2020.
Zhou, M., Nie, W., Qiao, L., Huang, D. D., Zhu, S., Lou, S., Wang, H., Wang,
Q., Tao, S., Sun, P., Liu, Y., Xu, Z., An, J., Yan, R., Su, H., Huang, C.,
Ding, A., and Chen, C.: Elevated formation of particulate nitrate from N2O5
hydrolysis in the Yangtze River Delta region from 2011 to 2019, Geophys.
Res. Lett., 49, e2021GL097393, https://doi.org/10.1029/2021GL097393, 2022.
Short summary
NO3- has become the dominant and the least reduced chemical component of fine particulate matter in China. NO3- formation is mostly in the NH3-rich regime in the Yangtze River Delta (YRD). OH + NO2 contributes 60 %–83 % of the TNO3 production rates, and the N2O5 heterogeneous pathway contributes 10 %–36 %. The N2O5 heterogeneous pathway becomes more important in cold seasons. Local emissions and regional transportation contribute 50 %–62 % and 38 %–50 % to YRD NO3- concentrations, respectively.
NO3- has become the dominant and the least reduced chemical component of fine particulate matter...
Altmetrics
Final-revised paper
Preprint