Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11543-2022
https://doi.org/10.5194/acp-22-11543-2022
Research article
 | 
07 Sep 2022
Research article |  | 07 Sep 2022

Atmospheric oxidation mechanism and kinetics of indole initiated by OH and Cl: a computational study

Jingwen Xue, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie

Related authors

Effect of humidity on the first steps of atmospheric new particles formation: Computational study of hydrated molecular clusters
Ivo Neefjes, Yosef Knattrup, Haide Wu, Georg Baadsgaard Trolle, Jonas Elm, and Jakub Kubečka
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-30,https://doi.org/10.5194/ar-2025-30, 2025
Preprint under review for AR
Short summary
Insights into microphysical and optical properties of typical mineral dust within urban snowpack via wet and dry deposition in Changchun, northeastern China
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025,https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Growth of atmospheric freshly nucleated particles: a semi-empirical molecular dynamics study
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025,https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Acid-catalyzed hydrolysis kinetics of organic hydroperoxides: Computational strategy and structure-activity relationship
Qiaojing Zhao, Fangfang Ma, Hui Zhao, Qian Xu, Rujing Yin, Hong-Bin Xie, Xin Wang, and Jingwen Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1662,https://doi.org/10.5194/egusphere-2025-1662, 2025
Short summary
Uptake of organic vapours and nitric acid on atmospheric freshly nucleated particles
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025,https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary

Cited articles

Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement III. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 18, 881–1097, https://doi.org/10.1063/1.555832, 1989. 
Atkinson, R., Tuazon, E. C., Arey, J., and Aschmann, S. M.: Atmospheric and indoor chemistry of gas-phase indole, quinoline, and isoquinoline, Atmos. Environ., 29, 3423–3432, https://doi.org/10.1016/1352-2310(95)00103-6, 1995. 
Barker, J. R.: Multiple-well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite, Int. J. Chem. Kinet., 33, 232–245, https://doi.org/10.1002/kin.1017, 2001. 
Barker, J. R. and Ortiz, N. F.: Multiple-Well, multiple-path unimolecular reaction systems. II. 2-methylhexyl free radicals, Int. J. Chem. Kinet., 33, 246–261, https://doi.org/10.1002/kin.1018, 2001. 
Download
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
Share
Altmetrics
Final-revised paper
Preprint