Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study
Jingwen Xue
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Fangfang Ma
CORRESPONDING AUTHOR
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Jonas Elm
Department of Chemistry and iClimate, Aarhus University,
Langelandsgade 140, 8000 Aarhus C, Denmark
Jingwen Chen
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Hong-Bin Xie
CORRESPONDING AUTHOR
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Related authors
No articles found.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024, https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
Short summary
The exact point at which a given assembly of molecules represents an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods, here we explore a cluster-to-particle transition point. Based on our results, we deduce a property-based criterion for defining freshly nucleated particles (FNPs) that act as a boundary between discrete cluster configurations and bulk particles.
Yosef Knattrup and Jonas Elm
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-37, https://doi.org/10.5194/ar-2024-37, 2024
Preprint under review for AR
Short summary
Short summary
Using quantum chemical methods we studied the uptake of first generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to the early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic-organic interactions during co-condensation onto the particle contributes to the growth.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-28, https://doi.org/10.5194/ar-2024-28, 2024
Preprint under review for AR
Short summary
Short summary
Aerosol formation is an important process for our global climate. However, there are large uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular cluster composed of sulfuric acid (SA), ammonia (AM) and dimethyl amine (DMA). We find that mixed SA-AM-DMA clusters more efficiently for freshly nucleated particles compared to the pure SA-AM and SA-DMA systems.
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024, https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Short summary
Aerosol formation is an important process for our global climate. While inorganic species have been shown to be important for aerosol formation, there remains a large gap in our knowledge about the exact involvement of organics. We present a new quantum chemical procedure for screening relevant organics that for the first time allows us to obtain direct molecular-level insight into the organics involved in aerosol formation.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976, https://doi.org/10.5194/acp-21-9955-2021, https://doi.org/10.5194/acp-21-9955-2021, 2021
Short summary
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Yibei Wan, Xiangpeng Huang, Bin Jiang, Binyu Kuang, Manfei Lin, Deming Xia, Yuhong Liao, Jingwen Chen, Jian Zhen Yu, and Huan Yu
Atmos. Chem. Phys., 20, 9821–9835, https://doi.org/10.5194/acp-20-9821-2020, https://doi.org/10.5194/acp-20-9821-2020, 2020
Short summary
Short summary
Biogenic iodine emission from macroalgae and microalgae could initiate atmospheric new particle formation (NPF). But it is unknown if other species are needed to drive the growth of new iodine particles in the marine boundary layer. Unlike the deeper understanding of organic compounds driving continental NPF, little is known about the organics involved in coastal or open-ocean NPF. This article reveals a new group of important organic compounds involved in this process.
Noora Hyttinen, Jonas Elm, Jussi Malila, Silvia M. Calderón, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 5679–5696, https://doi.org/10.5194/acp-20-5679-2020, https://doi.org/10.5194/acp-20-5679-2020, 2020
Short summary
Short summary
Organosulfates have been identified in atmospheric secondary organic aerosol (SOA). The thermodynamic properties of SOA constituents, such as organosulfates, affect the stability and atmospheric impact of the SOA. Here we present estimated solubility, activity, pKa, saturation vapor pressure and Henry's law solubility values for several atmospherically relevant monoterpene- and isoprene-derived organosulfate compounds. These properties can be used, for example, in aerosol process modeling.
Yonghong Wang, Matthieu Riva, Hongbin Xie, Liine Heikkinen, Simon Schallhart, Qiaozhi Zha, Chao Yan, Xu-Cheng He, Otso Peräkylä, and Mikael Ehn
Atmos. Chem. Phys., 20, 5145–5155, https://doi.org/10.5194/acp-20-5145-2020, https://doi.org/10.5194/acp-20-5145-2020, 2020
Short summary
Short summary
Chamber experiments were conducted with alpha-pinene and chlorine under low- and high-nitrogen-oxide (NOX) conditions. We estimated the HOM yields from chlorine-initiated oxidation of alpha-pinene under low-NOX conditions to be around 1.8 %, though with a uncertainty range (0.8 %–4 %) due to lack of suitable calibration methods. Our study clearly demonstrates that the chlorine-atom-initiated oxidation of alpha-pinene can produce low-volatility organic compounds.
Related subject area
Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths
An emerging aerosol climatology via remote sensing over Metro Manila, the Philippines
Ozone Monitoring Instrument (OMI) UV aerosol index data analysis over the Arctic region for future data assimilation and climate forcing applications
Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system
Comparisons between the distributions of dust and combustion aerosols in MERRA-2, FLEXPART, and CALIPSO and implications for deposition freezing over wintertime Siberia
Identifying the spatiotemporal variations in ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Aerosol vertical distribution and interactions with land/sea breezes over the eastern coast of the Red Sea from lidar data and high-resolution WRF-Chem simulations
Improved inversion of aerosol components in the atmospheric column from remote sensing data
Retrieval of aerosol components directly from satellite and ground-based measurements
Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance
Retrieval of desert dust and carbonaceous aerosol emissions over Africa from POLDER/PARASOL products generated by the GRASP algorithm
Estimating the open biomass burning emissions in central and eastern China from 2003 to 2015 based on satellite observation
Intra-annual variations of regional aerosol optical depth, vertical distribution, and particle types from multiple satellite and ground-based observational datasets
Chemical composition of ambient PM2. 5 over China and relationship to precursor emissions during 2005–2012
Synergistic use of Lagrangian dispersion and radiative transfer modelling with satellite and surface remote sensing measurements for the investigation of volcanic plumes: the Mount Etna eruption of 25–27 October 2013
Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models
A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances
Simulation of GOES-R ABI aerosol radiances using WRF-CMAQ: a case study approach
Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations
The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
A unified approach to infrared aerosol remote sensing and type specification
Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events
Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010
Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data
Mixing of dust and NH3 observed globally over anthropogenic dust sources
The composition and variability of atmospheric aerosol over Southeast Asia during 2008
NASA A-Train and Terra observations of the 2010 Russian wildfires
The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles
Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO
Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition
Jie Luo, Dan Li, Yuanyuan Wang, Dandan Sun, Weizhen Hou, Jinghe Ren, Hailing Wu, Peng Zhou, and Jibing Qiu
Atmos. Chem. Phys., 24, 427–448, https://doi.org/10.5194/acp-24-427-2024, https://doi.org/10.5194/acp-24-427-2024, 2024
Short summary
Short summary
Remote sensing of brown carbon is very important for climate research, and current optical methods rely mainly on spectral properties for inversion. However, the influence of the microscopic properties of black carbon has rarely been considered by previous studies. This paper shows how the remote sensing of brown carbon is affected by the microphysical properties of black carbon and highlights the adaptability of remote sensing methods.
Genevieve Rose Lorenzo, Avelino F. Arellano, Maria Obiminda Cambaliza, Christopher Castro, Melliza Templonuevo Cruz, Larry Di Girolamo, Glenn Franco Gacal, Miguel Ricardo A. Hilario, Nofel Lagrosas, Hans Jarett Ong, James Bernard Simpas, Sherdon Niño Uy, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10579–10608, https://doi.org/10.5194/acp-23-10579-2023, https://doi.org/10.5194/acp-23-10579-2023, 2023
Short summary
Short summary
Aerosol and weather interactions in Southeast Asia are complex and understudied. An emerging aerosol climatology was established in Metro Manila, the Philippines, from aerosol particle physicochemical properties and meteorology, revealing five sources. Even with local traffic, transported smoke from biomass burning, aged dust, and cloud processing, background marine particles dominate and correspond to lower aerosol optical depth in Metro Manila compared to other Southeast Asian megacities.
Blake T. Sorenson, Jianglong Zhang, Jeffrey S. Reid, Peng Xian, and Shawn L. Jaker
Atmos. Chem. Phys., 23, 7161–7175, https://doi.org/10.5194/acp-23-7161-2023, https://doi.org/10.5194/acp-23-7161-2023, 2023
Short summary
Short summary
We quality-control Ozone Monitoring Instrument (OMI) aerosol index data by identifying row anomalies and removing systematic biases, using the data to quantify trends in UV-absorbing aerosols over the Arctic region. We found decreasing trends in UV-absorbing aerosols in spring months and increasing trends in summer months. For the first time, observational evidence of increasing trends in UV-absorbing aerosols over the North Pole is found using the OMI data, especially over the last half decade.
Sebastien Garrigues, Samuel Remy, Julien Chimot, Melanie Ades, Antje Inness, Johannes Flemming, Zak Kipling, Istvan Laszlo, Angela Benedetti, Roberto Ribas, Soheila Jafariserajehlou, Bertrand Fougnie, Shobha Kondragunta, Richard Engelen, Vincent-Henri Peuch, Mark Parrington, Nicolas Bousserez, Margarita Vazquez Navarro, and Anna Agusti-Panareda
Atmos. Chem. Phys., 22, 14657–14692, https://doi.org/10.5194/acp-22-14657-2022, https://doi.org/10.5194/acp-22-14657-2022, 2022
Short summary
Short summary
The Copernicus Atmosphere Monitoring Service (CAMS) provides global monitoring of aerosols using the ECMWF forecast model constrained by the assimilation of satellite aerosol optical depth (AOD). This work aims at evaluating two new satellite AODs to enhance the CAMS aerosol global forecast. It highlights the spatial and temporal differences between the satellite AOD products at the model spatial resolution, which is essential information to design multi-satellite AOD data assimilation schemes.
Lauren M. Zamora, Ralph A. Kahn, Nikolaos Evangeliou, Christine D. Groot Zwaaftink, and Klaus B. Huebert
Atmos. Chem. Phys., 22, 12269–12285, https://doi.org/10.5194/acp-22-12269-2022, https://doi.org/10.5194/acp-22-12269-2022, 2022
Short summary
Short summary
Arctic dust, smoke, and pollution particles can affect clouds and Arctic warming. The distributions of these particles were estimated in three different satellite, reanalysis, and model products. These products showed good agreement overall but indicate that it is important to include local dust in models. We hypothesize that mineral dust effects on ice processes in the Arctic atmosphere might be highest over Siberia, where it is cold, moist, and subject to relatively high dust levels.
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Na Zhao, Bingbo Gao, and Qi Yao
Atmos. Chem. Phys., 21, 15631–15646, https://doi.org/10.5194/acp-21-15631-2021, https://doi.org/10.5194/acp-21-15631-2021, 2021
Short summary
Short summary
We employed ground observations of ozone and satellite products of HCHO and NO2 to investigate spatiotemporal variations of ozone formation regimes across China. Two different models were employed for determining the crucial thresholds that separate three ozone formation regimes, including NOx-limited, VOC-limited, and transitional regimes. The close output from two different models provides a reliable reference for better understanding ozone formation regimes.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Illia Shevchenko, Oleg Dubovik, and Anton Lopatin
Atmos. Chem. Phys., 20, 16089–16116, https://doi.org/10.5194/acp-20-16089-2020, https://doi.org/10.5194/acp-20-16089-2020, 2020
Short summary
Short summary
Both natural (dust, sea salt) and anthropogenic (sulfate, organic and black carbon) aerosols are common over the Red Sea coastal plains. King Abdullah University of Science and Technology (KAUST), located on the eastern coast of the Red Sea, hosts the only operating lidar system in the Arabian Peninsula, which measures atmospheric aerosols day and night. We use these lidar data and high-resolution WRF-Chem model simulations to study the potential effect of dust aerosols on Red Sea environment.
Ying Zhang, Zhengqiang Li, Yu Chen, Gerrit de Leeuw, Chi Zhang, Yisong Xie, and Kaitao Li
Atmos. Chem. Phys., 20, 12795–12811, https://doi.org/10.5194/acp-20-12795-2020, https://doi.org/10.5194/acp-20-12795-2020, 2020
Short summary
Short summary
Observation of atmospheric aerosol components plays an important role in reducing uncertainty in climate assessment. In this study, an improved remote sensing method which can better distinguish scattering components is developed, and the aerosol components in the atmospheric column over China are retrieved based on the Sun–sky radiometer Observation NETwork (SONET). The component distribution shows there could be a sea salt component in northwest China from a paleomarine source in desert land.
Lei Li, Oleg Dubovik, Yevgeny Derimian, Gregory L. Schuster, Tatyana Lapyonok, Pavel Litvinov, Fabrice Ducos, David Fuertes, Cheng Chen, Zhengqiang Li, Anton Lopatin, Benjamin Torres, and Huizheng Che
Atmos. Chem. Phys., 19, 13409–13443, https://doi.org/10.5194/acp-19-13409-2019, https://doi.org/10.5194/acp-19-13409-2019, 2019
Short summary
Short summary
A novel methodology to monitor atmospheric aerosol components using remote sensing is presented. The concept is realized within the GRASP (Generalized Retrieval of Aerosol and Surface Properties) project. Application to POLDER/PARASOL and AERONET observations yielded the spatial and temporal variability of absorbing and non-absorbing insoluble and soluble aerosol species in the fine and coarse size fractions. This presents the global-scale aerosol component derived from satellite measurements.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Cheng Chen, Oleg Dubovik, Daven K. Henze, Tatyana Lapyonak, Mian Chin, Fabrice Ducos, Pavel Litvinov, Xin Huang, and Lei Li
Atmos. Chem. Phys., 18, 12551–12580, https://doi.org/10.5194/acp-18-12551-2018, https://doi.org/10.5194/acp-18-12551-2018, 2018
Short summary
Short summary
This paper introduces a method to use satellite-observed spectral AOD and AAOD to derive three types of aerosol emission sources simultaneously based on inverse modelling at a high spatial and temporal resolution. This study shows it is possible to estimate aerosol emissions and improve the atmospheric aerosol simulation using detailed aerosol optical and microphysical information from satellite observations.
Jian Wu, Shaofei Kong, Fangqi Wu, Yi Cheng, Shurui Zheng, Qin Yan, Huang Zheng, Guowei Yang, Mingming Zheng, Dantong Liu, Delong Zhao, and Shihua Qi
Atmos. Chem. Phys., 18, 11623–11646, https://doi.org/10.5194/acp-18-11623-2018, https://doi.org/10.5194/acp-18-11623-2018, 2018
Short summary
Short summary
In order to support regional modeling impact on air quality and policy making on controlling open biomass burning emissions, accurate open biomass burning emissions were estimated from 2003 to 2015 with high spatial and temporal resolution. Multiple satellite data, updated biomass data and survey results were all used to improve the accuracy. In addition, management policies and all influencing factors in rural areas for open biomass burning emissions were considered.
Bin Zhao, Jonathan H. Jiang, David J. Diner, Hui Su, Yu Gu, Kuo-Nan Liou, Zhe Jiang, Lei Huang, Yoshi Takano, Xuehua Fan, and Ali H. Omar
Atmos. Chem. Phys., 18, 11247–11260, https://doi.org/10.5194/acp-18-11247-2018, https://doi.org/10.5194/acp-18-11247-2018, 2018
Short summary
Short summary
We combine satellite-borne and ground-based observations to investigate the intra-annual variations of regional aerosol column loading, vertical distribution, and particle types. Column aerosol optical depth (AOD), as well as AOD > 800 m, peaks in summer/spring. However, AOD < 800 m and surface PM2.5 concentrations mostly peak in winter. The aerosol intra-annual variations differ significantly according to aerosol types characterized by different sizes, light absorption, and emission sources.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Pasquale Sellitto, Alcide di Sarra, Stefano Corradini, Marie Boichu, Hervé Herbin, Philippe Dubuisson, Geneviève Sèze, Daniela Meloni, Francesco Monteleone, Luca Merucci, Justin Rusalem, Giuseppe Salerno, Pierre Briole, and Bernard Legras
Atmos. Chem. Phys., 16, 6841–6861, https://doi.org/10.5194/acp-16-6841-2016, https://doi.org/10.5194/acp-16-6841-2016, 2016
Short summary
Short summary
We combine plume dispersion and radiative transfer modelling, and satellite and surface remote sensing observations to study the regional influence of a relatively weak volcanic eruption from Mount Etna (25–27 October 2013) on the optical/micro-physical properties of Mediterranean aerosols. Our results indicate that even relatively weak volcanic eruptions may produce an observable effect on the aerosol properties at the regional scale, with a significant impact on the regional radiative balance.
Huikyo Lee, Olga V. Kalashnikova, Kentaroh Suzuki, Amy Braverman, Michael J. Garay, and Ralph A. Kahn
Atmos. Chem. Phys., 16, 6627–6640, https://doi.org/10.5194/acp-16-6627-2016, https://doi.org/10.5194/acp-16-6627-2016, 2016
Short summary
Short summary
The Multi-angle Imaging SpectroRadiometer (MISR) on NASA's TERRA satellite has provided a global distribution of aerosol amount and type information for each month over 16+ years since March 2000. This study analyzes, for the first time, characteristics of observed and simulated distributions of aerosols for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical – near or downwind of their major source regions.
M. J. M. Penning de Vries, S. Beirle, C. Hörmann, J. W. Kaiser, P. Stammes, L. G. Tilstra, O. N. E. Tuinder, and T. Wagner
Atmos. Chem. Phys., 15, 10597–10618, https://doi.org/10.5194/acp-15-10597-2015, https://doi.org/10.5194/acp-15-10597-2015, 2015
S. A. Christopher
Atmos. Chem. Phys., 14, 3183–3194, https://doi.org/10.5194/acp-14-3183-2014, https://doi.org/10.5194/acp-14-3183-2014, 2014
M. Mallet, O. Dubovik, P. Nabat, F. Dulac, R. Kahn, J. Sciare, D. Paronis, and J. F. Léon
Atmos. Chem. Phys., 13, 9195–9210, https://doi.org/10.5194/acp-13-9195-2013, https://doi.org/10.5194/acp-13-9195-2013, 2013
D. M. Winker, J. L. Tackett, B. J. Getzewich, Z. Liu, M. A. Vaughan, and R. R. Rogers
Atmos. Chem. Phys., 13, 3345–3361, https://doi.org/10.5194/acp-13-3345-2013, https://doi.org/10.5194/acp-13-3345-2013, 2013
L. Clarisse, P.-F. Coheur, F. Prata, J. Hadji-Lazaro, D. Hurtmans, and C. Clerbaux
Atmos. Chem. Phys., 13, 2195–2221, https://doi.org/10.5194/acp-13-2195-2013, https://doi.org/10.5194/acp-13-2195-2013, 2013
P. Wang, O. N. E. Tuinder, L. G. Tilstra, M. de Graaf, and P. Stammes
Atmos. Chem. Phys., 12, 9057–9077, https://doi.org/10.5194/acp-12-9057-2012, https://doi.org/10.5194/acp-12-9057-2012, 2012
N. C. Hsu, R. Gautam, A. M. Sayer, C. Bettenhausen, C. Li, M. J. Jeong, S.-C. Tsay, and B. N. Holben
Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, https://doi.org/10.5194/acp-12-8037-2012, 2012
A. Lana, R. Simó, S. M. Vallina, and J. Dachs
Atmos. Chem. Phys., 12, 7977–7993, https://doi.org/10.5194/acp-12-7977-2012, https://doi.org/10.5194/acp-12-7977-2012, 2012
P. Ginoux, L. Clarisse, C. Clerbaux, P.-F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme
Atmos. Chem. Phys., 12, 7351–7363, https://doi.org/10.5194/acp-12-7351-2012, https://doi.org/10.5194/acp-12-7351-2012, 2012
W. Trivitayanurak, P. I. Palmer, M. P. Barkley, N. H. Robinson, H. Coe, and D. E. Oram
Atmos. Chem. Phys., 12, 1083–1100, https://doi.org/10.5194/acp-12-1083-2012, https://doi.org/10.5194/acp-12-1083-2012, 2012
J. C. Witte, A. R. Douglass, A. da Silva, O. Torres, R. Levy, and B. N. Duncan
Atmos. Chem. Phys., 11, 9287–9301, https://doi.org/10.5194/acp-11-9287-2011, https://doi.org/10.5194/acp-11-9287-2011, 2011
H. Flentje, H. Claude, T. Elste, S. Gilge, U. Köhler, C. Plass-Dülmer, W. Steinbrecht, W. Thomas, A. Werner, and W. Fricke
Atmos. Chem. Phys., 10, 10085–10092, https://doi.org/10.5194/acp-10-10085-2010, https://doi.org/10.5194/acp-10-10085-2010, 2010
S. Peyridieu, A. Chédin, D. Tanré, V. Capelle, C. Pierangelo, N. Lamquin, and R. Armante
Atmos. Chem. Phys., 10, 1953–1967, https://doi.org/10.5194/acp-10-1953-2010, https://doi.org/10.5194/acp-10-1953-2010, 2010
P. B. Russell, R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa
Atmos. Chem. Phys., 10, 1155–1169, https://doi.org/10.5194/acp-10-1155-2010, https://doi.org/10.5194/acp-10-1155-2010, 2010
Cited articles
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and
Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric
Chemistry: Supplement III. IUPAC Subcommittee on Gas Kinetic Data Evaluation
for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 18, 881–1097,
https://doi.org/10.1063/1.555832, 1989.
Atkinson, R., Tuazon, E. C., Arey, J., and Aschmann, S. M.: Atmospheric and
indoor chemistry of gas-phase indole, quinoline, and isoquinoline, Atmos.
Environ., 29, 3423–3432, https://doi.org/10.1016/1352-2310(95)00103-6, 1995.
Barker, J. R.: Multiple-well, multiple-path unimolecular reaction systems.
I. MultiWell computer program suite, Int. J. Chem. Kinet., 33, 232–245,
https://doi.org/10.1002/kin.1017, 2001.
Barker, J. R. and Ortiz, N. F.: Multiple-Well, multiple-path unimolecular
reaction systems. II. 2-methylhexyl free radicals, Int. J. Chem. Kinet., 33,
246–261, https://doi.org/10.1002/kin.1018, 2001.
Borduas, N., da Silva, G., Murphy, J. G., and Abbatt, J. P. D.: Experimental
and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric
Amides with OH Radicals: Kinetics, Products, and Mechanisms, J. Phys. Chem.
A, 119, 4298–4308, https://doi.org/10.1021/jp503759f, 2015.
Borduas, N., Abbatt, J. P. D., Murphy, J. G., So, S., and da Silva, G.:
Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds
with OH Radicals, Environ. Sci. Technol., 50, 11723–11734,
https://doi.org/10.1021/acs.est.6b03797, 2016a.
Borduas, N., Murphy, J. G., Wang, C., da Silva, G., and Abbatt, J. P. D.:
Gas Phase Oxidation of Nicotine by OH Radicals: Kinetics, Mechanisms, and
Formation of HNCO, Environ. Sci. Technol. Lett., 3, 327–331,
https://doi.org/10.1021/acs.estlett.6b00231, 2016b.
Bunkan, A. J. C., Hetzler, J., Mikoviny, T., Wisthaler, A., Nielsen, C. J.,
and Olzmann, M.: The reactions of N-methylformamide and
N,N-dimethylformamide with OH and their photo-oxidation under atmospheric
conditions: experimental and theoretical studies, Phys. Chem. Chem. Phys.,
17, 7046–7059, https://doi.org/10.1039/C4CP05805D, 2015.
Bunkan, A. J. C., Mikoviny, T., Nielsen, C. J., Wisthaler, A., and Zhu, L.:
Experimental and Theoretical Study of the OH-Initiated Photo-oxidation of
Formamide, J. Phys. Chem. A, 120, 1222–1230,
https://doi.org/10.1021/acs.jpca.6b00032, 2016.
Cardoza, Y. J., Lait, C. G., Schmelz, E. A., Huang, J., and Tumlinson, J.
H.: Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on
Development of Beet Armyworm, Spodoptera Exigua Hübner (Lepidoptera:
Noctuidae) Larvae, Environ. Entomol., 32, 220–228,
https://doi.org/10.1603/0046-225X-32.1.220, 2003.
Chen, J., Jiang, S., Liu, Y.-R., Huang, T., Wang, C. Y., Miao, S. K., Wang,
Z. Q., Zhang, Y., and Huang, W.: Interaction of oxalic acid with
dimethylamine and its atmospheric implications, RSC Adv., 7, 6374–6388,
https://doi.org/10.1039/C6RA27945G, 2017.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207, 2013.
da Silva, G.: Formation of Nitrosamines and Alkyldiazohydroxides in the Gas
Phase: The CH3NH + NO Reaction Revisited, Environ. Sci. Technol., 47,
7766–7772, https://doi.org/10.1021/es401591n, 2013.
Ding, Z., Yi, Y., Wang, W., and Zhang, Q.: Atmospheric oxidation of indene
initiated by OH radical in the presence of O2 and NO: A mechanistic and
kinetic study, Chemosphere, 259, 127331,
https://doi.org/10.1016/j.chemosphere.2020.127331, 2020a.
Ding, Z., Yi, Y., Wang, W., and Zhang, Q.: Understanding the role of Cl and
NO3 radicals in initiating atmospheric oxidation of fluorene: A
mechanistic and kinetic study, Sci. Total Environ., 716, 136905,
https://doi.org/10.1016/j.scitotenv.2020.136905, 2020b.
Eckart, C.: The penetration of a potential barrier by electrons, Phys. Rev.,
35, 1303–1309, https://doi.org/10.1103/PhysRev.35.1303, 1930.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.
Faxon, C. B. and Allen, D. T.: Chlorine chemistry in urban atmospheres: a
review, Environ. Chem., 10, 221–233, https://doi.org/10.1071/en13026, 2013.
Fu, Z., Xie, H. B., Elm, J., Guo, X., Fu, Z., and Chen, J.: Formation of
Low-Volatile Products and Unexpected High Formaldehyde Yield from the
Atmospheric Oxidation of Methylsiloxanes, Environ. Sci. Technol., 54,
7136–7145, https://doi.org/10.1021/acs.est.0c01090, 2020.
Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. A
review, Atmos. Environ., 45, 524–546,
https://doi.org/10.1016/j.atmosenv.2010.10.012, 2011.
Gentner, D. R., Ormeño, E., Fares, S., Ford, T. B., Weber, R., Park, J.-H., Brioude, J., Angevine, W. M., Karlik, J. F., and Goldstein, A. H.: Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality, Atmos. Chem. Phys., 14, 5393–5413, https://doi.org/10.5194/acp-14-5393-2014, 2014.
Gilbert, R. G. and Smith, S. C: Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Carlton, Australia, ISBN-10 0632027495, 1990.
Glowacki, D. R., Liang, C.-H., Morley, C., Pilling, M. J., and Robertson, S.
H.: MESMER: An Open-Source Master Equation Solver for Multi-Energy Well
Reactions, J. Phys. Chem. A, 116, 9545–9560,
https://doi.org/10.1021/jp3051033, 2012.
Guo, X., Ma, F., Liu, C., Niu, J., He, N., Chen, J., and Xie, H. B.:
Atmospheric oxidation mechanism and kinetics of isoprene initiated by
chlorine radicals: A computational study, Sci. Total Environ., 712, 136330,
https://doi.org/10.1016/j.scitotenv.2019.136330, 2020.
Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M.,
Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in the
Troposphere, Science, 324, 1702–1704,
https://doi.org/10.1126/science.1164566, 2009.
Holbrook, K. A, Pilling, M. J., Robertson, S. H., and Robinson, P. J.:
Unimolecular Reactions, 2nd edn., Wiley, New York, ISBN 0471922684, 1996.
Jahn, L. G., Wang, D. S., Dhulipala, S. V., and Hildebrandt Ruiz, L.: Gas-phase
chlorine radical oxidation of alkanes: Effects of structural branching,
NOx, and relative humidity observed during environmental chamber
experiments, J. Phys. Chem. A, 125, 7303–7317,
https://doi.org/10.1021/acs.jpca.1c03516, 2021.
Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y.,
Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng, X., An, T.,
Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J.,
and Zhang, R.: Reassessing the atmospheric oxidation mechanism of toluene,
P. Natl. Acad. Sci. USA, 114, 8169, https://doi.org/10.1073/pnas.1705463114, 2017.
Ji, Y., Zheng, J., Qin, D., Li, Y., Gao, Y., Yao, M., Chen, X., Li, G., An,
T., and Zhang, R.: OH-Initiated Oxidation of Acetylacetone: Implications for
Ozone and Secondary Organic Aerosol Formation, Environ. Sci. Technol., 52,
11169–11177, https://doi.org/10.1021/acs.est.8b03972, 2018.
Ji, Y. M., Wang, H. H., Gao, Y. P., Li, G. Y., and An, T. C.: A theoretical model on the formation mechanism and kinetics of highly toxic air pollutants from halogenated formaldehydes reacted with halogen atoms, Atmos. Chem. Phys., 13, 11277–11286, https://doi.org/10.5194/acp-13-11277-2013, 2013.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban
flux measurements reveal a large pool of oxygenated volatile organic
compound emissions, P. Natl. Acad. Sci. USA, 115, 1186,
https://doi.org/10.1073/pnas.1714715115, 2018.
Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18, 5391–5413, https://doi.org/10.5194/acp-18-5391-2018, 2018.
Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of
Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using
High-Resolution Mass Spectrometry, Environ. Sci. Technol., 43, 3764–3771,
https://doi.org/10.1021/es803456n, 2009.
Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, 2018.
Lewis Alastair, C.: The changing face of urban air pollution, Science, 359,
744–745, https://doi.org/10.1126/science.aar4925, 2018.
Li, J., Zhang, N., Wang, P., Choi, M., Ying, Q., Guo, S., Lu, K., Qiu, X.,
Wang, S., Hu, M., Zhang, Y., and Hu, J.: Impacts of chlorine chemistry and
anthropogenic emissions on secondary pollutants in the Yangtze river delta
region, Environ. Pollut., 287, 117624,
https://doi.org/10.1016/j.envpol.2021.117624, 2021.
Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.
Lin, Y., Ji, Y., Li, Y., Secrest, J., Xu, W., Xu, F., Wang, Y., An, T., and Zhang, R.: Interaction between succinic acid and sulfuric acid–base clusters, Atmos. Chem. Phys., 19, 8003–8019, https://doi.org/10.5194/acp-19-8003-2019, 2019.
Ma, F. F., Ding, Z. Z., Elm, J., Xie, H. B., Yu, Q., Liu, C., Li, C., Fu, Z.,
Zhang, L., and Chen, J.: Atmospheric Oxidation of Piperazine Initiated by
⚫Cl: Unexpected High Nitrosamine Yield, Environ. Sci. Technol.,
52, 9801–9809, https://doi.org/10.1021/acs.est.8b02510, 2018a.
Ma, F. F., Xie, H. B., and Chen, J.: Benchmarking of DFT functionals for the
kinetics and mechanisms of atmospheric addition reactions of OH radicals
with phenyl and substituted phenyl-based organic pollutants, Int. J. Quantum
Chem., 118, e25533, https://doi.org/10.1002/qua.25533, 2018b.
Ma, F. F., Xie, H. B., Elm, J., Shen, J., Chen, J., and Vehkamäki, H.:
Piperazine Enhancing Sulfuric Acid-Based New Particle Formation:
Implications for the Atmospheric Fate of Piperazine, Environ. Sci. Technol.,
53, 8785–8795, https://doi.org/10.1021/acs.est.9b02117, 2019.
Ma, F. F., Guo, X. R., Xia, D. M., Xie, H. B., Wang, Y., Elm, J., Chen, J.,
and Niu, J.: Atmospheric Chemistry of Allylic Radicals from Isoprene: A
Successive Cyclization-Driven Autoxidation Mechanism, Environ. Sci.
Technol., 55, 4399–4409, https://doi.org/10.1021/acs.est.0c07925, 2021a.
Ma, F. F., Xie, H.-B., Li, M., Wang, S., Zhang, R., and Chen, J.:
Autoxidation mechanism for atmospheric oxidation of tertiary amines:
Implications for secondary organic aerosol formation, Chemosphere, 273,
129207, https://doi.org/10.1016/j.chemosphere.2020.129207, 2021b.
Ma, Q., Meng, N., Li, Y., and Wang, J.: Occurrence, impacts, and microbial
transformation of 3-methylindole (skatole): A critical review, J. Hazard.
Mater., 416, 126181, https://doi.org/10.1016/j.jhazmat.2021.126181, 2021.
MacLeod, M., Scheringer, M., Podey, H., Jones, K. C., and Hungerbühler,
K.: The Origin and Significance of Short-Term Variability of Semivolatile
Contaminants in Air, Environ. Sci. Technol., 41, 3249–3253,
https://doi.org/10.1021/es062135w, 2007.
McKee, M. L., Nicolaides, A., and Radom, L.: A Theoretical Study of Chlorine
Atom and Methyl Radical Addition to Nitrogen Bases: Why Do Cl Atoms Form
Two-Center-Three-Electron Bonds Whereas CH3 Radicals Form
Two-Center-Two-Electron Bonds, J. Am. Chem. Soc., 118, 10571–10576,
https://doi.org/10.1021/ja9613973, 1996.
Misztal, P. K., Hewitt, C. N., Wildt, J., Blande, J. D., Eller, A. S. D.,
Fares, S., Gentner, D. R., Gilman, J. B., Graus, M., Greenberg, J.,
Guenther, A. B., Hansel, A., Harley, P., Huang, M., Jardine, K., Karl, T.,
Kaser, L., Keutsch, F. N., Kiendler-Scharr, A., Kleist, E., Lerner, B. M.,
Li, T., Mak, J., Nölscher, A. C., Schnitzhofer, R., Sinha, V., Thornton,
B., Warneke, C., Wegener, F., Werner, C., Williams, J., Worton, D. R.,
Yassaa, N., and Goldstein, A. H.: Atmospheric benzenoid emissions from
plants rival those from fossil fuels, Sci. Rep.-UK, 5, 12064,
https://doi.org/10.1038/srep12064, 2015.
Montgomery, J. A., Frisch, M. J., Ochterski, J. W., and Petersson, G. A.: A
complete basis set model chemistry. VI. Use of density functional geometries
and frequencies, J. Chem. Phys., 110, 2822–2827,
https://doi.org/10.1063/1.477924, 1999.
Montoya-Aguilera, J., Horne, J. R., Hinks, M. L., Fleming, L. T., Perraud, V., Lin, P., Laskin, A., Laskin, J., Dabdub, D., and Nizkorodov, S. A.: Secondary organic aerosol from atmospheric photooxidation of indole, Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, 2017.
Nicovich, J. M., Mazumder, S., Laine, P. L., Wine, P. H., Tang, Y., Bunkan,
A. J. C., and Nielsen, C. J.: An experimental and theoretical study of the
gas phase kinetics of atomic chlorine reactions with CH3NH2,
(CH3)2NH, and (CH3)3N, Phys. Chem. Chem. Phys., 17,
911–917, https://doi.org/10.1039/C4CP03801K, 2015.
Nielsen, C. J., Herrmann, H., and Weller, C.: Atmospheric chemistry and
environmental impact of the use of amines in carbon capture and storage
(CCS), Chem. Soc. Rev., 41, 6684–6704, https://doi.org/10.1039/C2CS35059A,
2012.
Onel, L., Blitz, M., Dryden, M., Thonger, L., and Seakins, P.: Branching
Ratios in Reactions of OH Radicals with Methylamine, Dimethylamine, and
Ethylamine, Environ. Sci. Technol., 48, 9935–9942,
https://doi.org/10.1021/es502398r, 2014a.
Onel, L., Dryden, M., Blitz, M. A., and Seakins, P. W.: Atmospheric
Oxidation of Piperazine by OH has a Low Potential to Form Carcinogenic
Compounds, Environ. Sci. Technol. Lett., 1, 367–371,
https://doi.org/10.1021/ez5002159, 2014b.
Praske, E., Otkjær, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B.
M., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric autoxidation is
increasingly important in urban and suburban North America, P. Natl.
Acad. Sci. USA, 115, 64, https://doi.org/10.1073/pnas.1715540115, 2018.
Reed, A. E., Weinstock, R. B., and Weinhold, F.: Natural population
analysis, J. Chem. Phys., 83, 735–746, https://doi.org/10.1063/1.449486,
1985.
Ren, Z. and da Silva, G.: Atmospheric Oxidation of Piperazine Initiated by
OH: A Theoretical Kinetics Investigation, ACS Earth Space Chem., 3,
2510–2516, https://doi.org/10.1021/acsearthspacechem.9b00227, 2019.
Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M.,
Vlasenko, A., Li, S.-M., Gilman, J., de Gouw, J., Bon, D. M., Wagner, N. L.,
Brown, S. S., and Thornton, J. A.: Nitryl Chloride and Molecular Chlorine in
the Coastal Marine Boundary Layer, Environ. Sci. Technol., 46, 10463–10470,
https://doi.org/10.1021/es204632r, 2012.
Rienstra-Kiracofe, J. C., Allen, W. D., and Schaefer, H. F.: The
C2H5 + O2 Reaction Mechanism: High-Level ab Initio
Characterizations, J. Phys. Chem. A, 104, 9823–9840,
https://doi.org/10.1021/jp001041k, 2000.
Robinson, P. J. and Holbrook, K. A.: Unimolecular Reactions, John Wiley
& Sons: New York, ISBN 0471728144, 1972.
Schade, G. W. and Crutzen, P. J.: Emission of aliphatic amines from animal
husbandry and their reactions: Potential source of N2O and HCN, J.
Atmos. Chem., 22, 319–346, https://doi.org/10.1007/BF00696641, 1995.
SenGupta, S., Indulkar, Y., Kumar, A., Dhanya, S., Naik, P. D., and Bajaj,
P. N.: Kinetics of Gas-Phase Reaction of OH with Morpholine: An Experimental
and Theoretical Study, J. Phys. Chem. A, 114, 7709–7715,
https://doi.org/10.1021/jp101464x, 2010.
Shen, J., Xie, H.-B., Elm, J., Ma, F., Chen, J., and Vehkamäki, H.:
Methanesulfonic Acid-driven New Particle Formation Enhanced by
Monoethanolamine: A Computational Study, Environ. Sci. Technol., 53,
14387–14397, https://doi.org/10.1021/acs.est.9b05306, 2019.
Shen, J., Elm, J., Xie, H.-B., Chen, J., Niu, J., and Vehkamäki, H.:
Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New
Particle Formation, Environ. Sci. Technol., 54, 13498–13508,
https://doi.org/10.1021/acs.est.0c05358, 2020.
Shiels, O. J., Kelly, P. D., Bright, C. C., Poad, B. L. J., Blanksby, S. J.,
da Silva, G., and Trevitt, A. J.: Reactivity Trends in the Gas-Phase
Addition of Acetylene to the N-Protonated Aryl Radical Cations of Pyridine,
Aniline, and Benzonitrile, J. Am. Soc. Mass. Spectrom., 32, 537–547,
https://doi.org/10.1021/jasms.0c00386, 2021.
Silva, P. J., Erupe, M. E., Price, D., Elias, J., G. J. Malloy, Q., Li, Q.,
Warren, B., and Cocker, D. R.: Trimethylamine as Precursor to Secondary
Organic Aerosol Formation via Nitrate Radical Reaction in the Atmosphere,
Environ. Sci. Technol., 42, 4689–4696, https://doi.org/10.1021/es703016v,
2008.
Tan, W., Zhu, L., Mikoviny, T., Nielsen, C. J., Wisthaler, A., D'Anna, B.,
Antonsen, S., Stenstrøm, Y., Farren, N. J., Hamilton, J. F., Boustead, G.
A., Brennan, A. D., Ingham, T., and Heard, D. E.: Experimental and
Theoretical Study of the OH-Initiated Degradation of Piperazine under
Simulated Atmospheric Conditions, J. Phys. Chem. A, 125, 411–422,
https://doi.org/10.1021/acs.jpca.0c10223, 2021.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J.,
Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook,
A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source
inferred from mid-continental reactive nitrogen chemistry, Nature, 464,
271–274, https://doi.org/10.1038/nature08905, 2010.
Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M.,
Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A.
B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price,
D., Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi,
S., Li, Q., Lamarque, J.-F., Kupc, A., Kjaergaard, H. G., Kinnison, D.,
Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M.,
Day, D. A., Cuevas, C. A., Campuzano-Jost, P., Burkholder, J., Bui, T. P.,
Brune, W. H., Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R., Apel,
E. C., and Ryerson, T. B.: Global airborne sampling reveals a previously
unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere,
P. Natl. Acad. Sci. USA, 117, 4505,
https://doi.org/10.1073/pnas.1919344117, 2020.
Wang, D. S. and Ruiz, L. H.: Secondary organic aerosol from chlorine-initiated oxidation of isoprene, Atmos. Chem. Phys., 17, 13491–13508, https://doi.org/10.5194/acp-17-13491-2017, 2017.
Wang, K., Wang, W. G., and Fan, C. C.: Reactions of C12-C14
N-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol
Formation, Environ. Sci. Technol., 56, 4859–4870,
https://doi.org/10.1021/acs.est.1c08958, 2022.
Wang, S. and Wang, L.: The atmospheric oxidation of dimethyl, diethyl, and
diisopropyl ethers. The role of the intramolecular hydrogen shift in peroxy
radicals, Phys. Chem. Chem. Phys., 18, 7707–7714,
https://doi.org/10.1039/C5CP07199B, 2016.
Wang, S., Wu, R., Berndt, T., Ehn, M., and Wang, L.: Formation of Highly
Oxidized Radicals and Multifunctional Products from the Atmospheric
Oxidation of Alkylbenzenes, Environ. Sci. Technol., 51, 8442–8449,
https://doi.org/10.1021/acs.est.7b02374, 2017.
Wang, S., Riva, M., Yan, C., Ehn, M., and Wang, L.: Primary Formation of
Highly Oxidized Multifunctional Products in the OH-Initiated Oxidation of
Isoprene: A Combined Theoretical and Experimental Study, Environ. Sci.
Technol., 52, 12255–12264, https://doi.org/10.1021/acs.est.8b02783, 2018.
Wu, R., Wang, S., and Wang, L.: New Mechanism for the Atmospheric Oxidation
of Dimethyl Sulfide. The Importance of Intramolecular Hydrogen Shift in a
CH3SCH2OO Radical, J. Phys. Chem. A, 119, 112–117,
https://doi.org/10.1021/jp511616j, 2015.
Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China, Atmos. Chem. Phys., 20, 6147–6158, https://doi.org/10.5194/acp-20-6147-2020, 2020.
Xie, H. B., Li, C., He, N., Wang, C., Zhang, S., and Chen, J. W.:
Atmospheric Chemical Reactions of Monoethanolamine Initiated by OH Radical:
Mechanistic and Kinetic Study, Environ. Sci. Technol., 48, 1700–1706,
https://doi.org/10.1021/es405110t, 2014.
Xie, H. B., Ma, F.F., Wang, Y., He, N., Yu, Q., and Chen, J. W.: Quantum
Chemical Study on ⚫Cl-Initiated Atmospheric Degradation of
Monoethanolamine, Environ. Sci. Technol., 49, 13246–13255,
https://doi.org/10.1021/acs.est.5b03324, 2015.
Xie, H. B., Ma, F.F., Yu, Q., He, N., and Chen, J. W.: Computational Study
of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds
Featuring NHx-π-Bond (x=1, 2) Structures, J. Phys. Chem. A,
121, 1657–1665, https://doi.org/10.1021/acs.jpca.6b11418, 2017.
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M., Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y.,
Qiu, P., Yang, X., Liu, Y., Wang, H., He, L., Huang, X., and Zhang, Y.: An
explicit study of local ozone budget and NOs-VOCs sensitivity in
Shenzhen China, Atmos. Environ., 224, 117304,
https://doi.org/10.1016/j.atmosenv.2020.117304, 2020.
Yu, F. and Luo, G.: Modeling of gaseous methylamines in the global atmosphere: impacts of oxidation and aerosol uptake, Atmos. Chem. Phys., 14, 12455–12464, https://doi.org/10.5194/acp-14-12455-2014, 2014.
Yu, Q., Xie, H. B., and Chen, J. W.: Atmospheric chemical reactions of
alternatives of polybrominated diphenyl ethers initiated by OH: A case study
on triphenyl phosphate, Sci. Total Environ., 571, 1105–1114,
https://doi.org/10.1016/j.scitotenv.2016.07.105, 2016.
Yu, Q., Xie, H. B., Li, T., Ma, F., Fu, Z., Wang, Z., Li, C., Fu, Z., Xia,
D., and Chen, J. W.: Atmospheric chemical reaction mechanism and kinetics of
1,2-bis(2,4,6-tribromophenoxy)ethane initiated by OH radical: a
computational study, RSC Adv., 7, 9484–9494,
https://doi.org/10.1039/C6RA26700A, 2017.
Yuan, B., Coggon, M. M., Koss, A. R., Warneke, C., Eilerman, S., Peischl, J., Aikin, K. C., Ryerson, T. B., and de Gouw, J. A.: Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources, Atmos. Chem. Phys., 17, 4945–4956, https://doi.org/10.5194/acp-17-4945-2017, 2017.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of Urban Fine Particulate Matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, Z., Lin, L., and Wang, L.: Atmospheric oxidation mechanism of
naphthalene initiated by OH radical. A theoretical study, Phys. Chem. Chem.
Phys., 14, 2645–2650, https://doi.org/10.1039/C2CP23271E, 2012.
Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc., 120, 215–241, https://doi.org/10.1007/s00214-007-0310-x, 2008.
Zito, P., Dötterl, S., and Sajeva, M.: Floral Volatiles in a
Sapromyiophilous Plant and Their Importance in Attracting House Fly
Pollinators, J. Chem. Ecolo., 41, 340–349,
https://doi.org/10.1007/s10886-015-0568-8, 2015.
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and...
Altmetrics
Final-revised paper
Preprint