Articles | Volume 22, issue 17
https://doi.org/10.5194/acp-22-11543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-11543-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study
Jingwen Xue
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Fangfang Ma
CORRESPONDING AUTHOR
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Jonas Elm
Department of Chemistry and iClimate, Aarhus University,
Langelandsgade 140, 8000 Aarhus C, Denmark
Jingwen Chen
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Hong-Bin Xie
CORRESPONDING AUTHOR
Key Laboratory of Industrial Ecology and Environmental Engineering
(Ministry of Education), School of Environmental Science and Technology,
Dalian University of Technology, Dalian 116024, China
Related authors
No articles found.
Ivo Neefjes, Yosef Knattrup, Haide Wu, Georg Baadsgaard Trolle, Jonas Elm, and Jakub Kubečka
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-30, https://doi.org/10.5194/ar-2025-30, 2025
Preprint under review for AR
Short summary
Short summary
We investigated how water vapor affects the earliest steps of atmospheric aerosol formation, a key process influencing clouds and climate. By benchmarking quantum-chemical methods, we identified reliable approaches for modeling hydrated molecular clusters of common atmospheric acids and bases. We show that humidity moderately stabilizes certain clusters but only modestly alters particle formation rates. These findings sharpen our understanding of clusters and their role in aerosol formation.
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Yosef Knattrup, Ivo Neefjes, Jakub Kubečka, and Jonas Elm
Aerosol Research, 3, 237–251, https://doi.org/10.5194/ar-3-237-2025, https://doi.org/10.5194/ar-3-237-2025, 2025
Short summary
Short summary
Aerosols, a large uncertainty in climate modeling, can be formed when gas vapors and particles begin sticking together. Traditionally, these particles are assumed to behave like hard spheres that only stick together upon head-on collisions. In reality, particles can attract each other over distances, leading to more frequent sticking events. We found that traditional models significantly undercount these events, with real sticking rates being up to 2.4 times higher.
Qiaojing Zhao, Fangfang Ma, Hui Zhao, Qian Xu, Rujing Yin, Hong-Bin Xie, Xin Wang, and Jingwen Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1662, https://doi.org/10.5194/egusphere-2025-1662, 2025
Short summary
Short summary
The scarcity of kinetic data for key aerosol aqueous-phase reactions contributes to large uncertainties in atmospheric models. We establish a computational strategy to rapidly predict acid-catalyzed hydrolysis kinetics of organic hydroperoxides, an aerosol constituent with high abundance. The kinetic parameters can be integrated into atmospheric models to improve simulations of the global hydrogen peroxide budget and secondary organic aerosol production.
Yosef Knattrup and Jonas Elm
Aerosol Research, 3, 125–137, https://doi.org/10.5194/ar-3-125-2025, https://doi.org/10.5194/ar-3-125-2025, 2025
Short summary
Short summary
Using quantum chemical methods, we studied the uptake of first-generation oxidation products onto freshly nucleated particles (FNPs). We find that pinic acid can condense on these small FNPs at realistic atmospheric conditions, thereby contributing to early particle growth. The mechanism involves two pinic acid molecules interacting with each other, showing that direct organic–organic interactions during co-condensation onto the particle contribute to the growth.
Galib Hasan, Haide Wu, Yosef Knattrup, and Jonas Elm
Aerosol Research, 3, 101–111, https://doi.org/10.5194/ar-3-101-2025, https://doi.org/10.5194/ar-3-101-2025, 2025
Short summary
Short summary
Aerosol formation is an important process for our global climate. However, there are high uncertainties associated with the formation of new aerosol particles. We present quantum chemical calculations of large atmospheric molecular clusters composed of sulfuric acid (SA), ammonia (AM), and dimethylamine (DMA). We find that mixed SA–AM–DMA systems cluster more efficiently for freshly nucleated particles compared to pure SA–AM and SA–DMA systems.
Haide Wu, Yosef Knattrup, Andreas Buchgraitz Jensen, and Jonas Elm
Aerosol Research, 2, 303–314, https://doi.org/10.5194/ar-2-303-2024, https://doi.org/10.5194/ar-2-303-2024, 2024
Short summary
Short summary
The exact point at which a given assembly of molecules represents an atmospheric molecular cluster or a particle remains ambiguous. Using quantum chemical methods, here we explore a cluster-to-particle transition point. Based on our results, we deduce a property-based criterion for defining freshly nucleated particles (FNPs) that act as a boundary between discrete cluster configurations and bulk particles.
Astrid Nørskov Pedersen, Yosef Knattrup, and Jonas Elm
Aerosol Research, 2, 123–134, https://doi.org/10.5194/ar-2-123-2024, https://doi.org/10.5194/ar-2-123-2024, 2024
Short summary
Short summary
Aerosol formation is an important process for our global climate. While inorganic species have been shown to be important for aerosol formation, there remains a large gap in our knowledge about the exact involvement of organics. We present a new quantum chemical procedure for screening relevant organics that for the first time allows us to obtain direct molecular-level insight into the organics involved in aerosol formation.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Bernadette Rosati, Sini Isokääntä, Sigurd Christiansen, Mads Mørk Jensen, Shamjad P. Moosakutty, Robin Wollesen de Jonge, Andreas Massling, Marianne Glasius, Jonas Elm, Annele Virtanen, and Merete Bilde
Atmos. Chem. Phys., 22, 13449–13466, https://doi.org/10.5194/acp-22-13449-2022, https://doi.org/10.5194/acp-22-13449-2022, 2022
Short summary
Short summary
Sulfate aerosols have a strong influence on climate. Due to the reduction in sulfur-based fossil fuels, natural sulfur emissions play an increasingly important role. Studies investigating the climate relevance of natural sulfur aerosols are scarce. We study the water uptake of such particles in the laboratory, demonstrating a high potential to take up water and form cloud droplets. During atmospheric transit, chemical processing affects the particles’ composition and thus their water uptake.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Robin Wollesen de Jonge, Jonas Elm, Bernadette Rosati, Sigurd Christiansen, Noora Hyttinen, Dana Lüdemann, Merete Bilde, and Pontus Roldin
Atmos. Chem. Phys., 21, 9955–9976, https://doi.org/10.5194/acp-21-9955-2021, https://doi.org/10.5194/acp-21-9955-2021, 2021
Short summary
Short summary
This study presents a detailed analysis of the OH-initiated oxidation of dimethyl sulfide (DMS) based on experiments performed in the Aarhus University Research on Aerosol (AURA) smog chamber and the gas- and particle-phase chemistry kinetic multilayer model (ADCHAM). We capture the formation, growth and chemical composition of aerosols in the chamber setup by an improved multiphase oxidation mechanism and utilize our results to reproduce the important role of DMS in the marine boundary layer.
Noora Hyttinen, Reyhaneh Heshmatnezhad, Jonas Elm, Theo Kurtén, and Nønne L. Prisle
Atmos. Chem. Phys., 20, 13131–13143, https://doi.org/10.5194/acp-20-13131-2020, https://doi.org/10.5194/acp-20-13131-2020, 2020
Short summary
Short summary
We present aqueous solubilities and activity coefficients of mono- and dicarboxylic acids (C1–C6 and C2–C8, respectively) estimated using the COSMOtherm program. In addition, we have calculated effective equilibrium constants of dimerization and hydration of the same acids in the condensed phase. We were also able to improve the agreement between experimental and estimated properties of monocarboxylic acids in aqueous solutions by including clustering reactions in COSMOtherm calculations.
Kasper Kristensen, Louise N. Jensen, Lauriane L. J. Quéléver, Sigurd Christiansen, Bernadette Rosati, Jonas Elm, Ricky Teiwes, Henrik B. Pedersen, Marianne Glasius, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 20, 12549–12567, https://doi.org/10.5194/acp-20-12549-2020, https://doi.org/10.5194/acp-20-12549-2020, 2020
Short summary
Short summary
Atmospheric particles are important in relation to human health and the global climate. As the global temperature changes, so may the atmospheric chemistry controlling the formation of particles from reactions of naturally emitted volatile organic compounds (VOCs). In the current work, we show how temperatures influence the formation and chemical composition of atmospheric particles from α-pinene: a biogenic VOC largely emitted in high-latitude environments such as the boreal forests.
Cited articles
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and
Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric
Chemistry: Supplement III. IUPAC Subcommittee on Gas Kinetic Data Evaluation
for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 18, 881–1097,
https://doi.org/10.1063/1.555832, 1989.
Atkinson, R., Tuazon, E. C., Arey, J., and Aschmann, S. M.: Atmospheric and
indoor chemistry of gas-phase indole, quinoline, and isoquinoline, Atmos.
Environ., 29, 3423–3432, https://doi.org/10.1016/1352-2310(95)00103-6, 1995.
Barker, J. R.: Multiple-well, multiple-path unimolecular reaction systems.
I. MultiWell computer program suite, Int. J. Chem. Kinet., 33, 232–245,
https://doi.org/10.1002/kin.1017, 2001.
Barker, J. R. and Ortiz, N. F.: Multiple-Well, multiple-path unimolecular
reaction systems. II. 2-methylhexyl free radicals, Int. J. Chem. Kinet., 33,
246–261, https://doi.org/10.1002/kin.1018, 2001.
Borduas, N., da Silva, G., Murphy, J. G., and Abbatt, J. P. D.: Experimental
and Theoretical Understanding of the Gas Phase Oxidation of Atmospheric
Amides with OH Radicals: Kinetics, Products, and Mechanisms, J. Phys. Chem.
A, 119, 4298–4308, https://doi.org/10.1021/jp503759f, 2015.
Borduas, N., Abbatt, J. P. D., Murphy, J. G., So, S., and da Silva, G.:
Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds
with OH Radicals, Environ. Sci. Technol., 50, 11723–11734,
https://doi.org/10.1021/acs.est.6b03797, 2016a.
Borduas, N., Murphy, J. G., Wang, C., da Silva, G., and Abbatt, J. P. D.:
Gas Phase Oxidation of Nicotine by OH Radicals: Kinetics, Mechanisms, and
Formation of HNCO, Environ. Sci. Technol. Lett., 3, 327–331,
https://doi.org/10.1021/acs.estlett.6b00231, 2016b.
Bunkan, A. J. C., Hetzler, J., Mikoviny, T., Wisthaler, A., Nielsen, C. J.,
and Olzmann, M.: The reactions of N-methylformamide and
N,N-dimethylformamide with OH and their photo-oxidation under atmospheric
conditions: experimental and theoretical studies, Phys. Chem. Chem. Phys.,
17, 7046–7059, https://doi.org/10.1039/C4CP05805D, 2015.
Bunkan, A. J. C., Mikoviny, T., Nielsen, C. J., Wisthaler, A., and Zhu, L.:
Experimental and Theoretical Study of the OH-Initiated Photo-oxidation of
Formamide, J. Phys. Chem. A, 120, 1222–1230,
https://doi.org/10.1021/acs.jpca.6b00032, 2016.
Cardoza, Y. J., Lait, C. G., Schmelz, E. A., Huang, J., and Tumlinson, J.
H.: Fungus-Induced Biochemical Changes in Peanut Plants and Their Effect on
Development of Beet Armyworm, Spodoptera Exigua Hübner (Lepidoptera:
Noctuidae) Larvae, Environ. Entomol., 32, 220–228,
https://doi.org/10.1603/0046-225X-32.1.220, 2003.
Chen, J., Jiang, S., Liu, Y.-R., Huang, T., Wang, C. Y., Miao, S. K., Wang,
Z. Q., Zhang, Y., and Huang, W.: Interaction of oxalic acid with
dimethylamine and its atmospheric implications, RSC Adv., 7, 6374–6388,
https://doi.org/10.1039/C6RA27945G, 2017.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of Organic Compounds in the Atmosphere, J.
Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207, 2013.
da Silva, G.: Formation of Nitrosamines and Alkyldiazohydroxides in the Gas
Phase: The CH3NH + NO Reaction Revisited, Environ. Sci. Technol., 47,
7766–7772, https://doi.org/10.1021/es401591n, 2013.
Ding, Z., Yi, Y., Wang, W., and Zhang, Q.: Atmospheric oxidation of indene
initiated by OH radical in the presence of O2 and NO: A mechanistic and
kinetic study, Chemosphere, 259, 127331,
https://doi.org/10.1016/j.chemosphere.2020.127331, 2020a.
Ding, Z., Yi, Y., Wang, W., and Zhang, Q.: Understanding the role of Cl and
NO3 radicals in initiating atmospheric oxidation of fluorene: A
mechanistic and kinetic study, Sci. Total Environ., 716, 136905,
https://doi.org/10.1016/j.scitotenv.2020.136905, 2020b.
Eckart, C.: The penetration of a potential barrier by electrons, Phys. Rev.,
35, 1303–1309, https://doi.org/10.1103/PhysRev.35.1303, 1930.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V.-M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.
Faxon, C. B. and Allen, D. T.: Chlorine chemistry in urban atmospheres: a
review, Environ. Chem., 10, 221–233, https://doi.org/10.1071/en13026, 2013.
Fu, Z., Xie, H. B., Elm, J., Guo, X., Fu, Z., and Chen, J.: Formation of
Low-Volatile Products and Unexpected High Formaldehyde Yield from the
Atmospheric Oxidation of Methylsiloxanes, Environ. Sci. Technol., 54,
7136–7145, https://doi.org/10.1021/acs.est.0c01090, 2020.
Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. A
review, Atmos. Environ., 45, 524–546,
https://doi.org/10.1016/j.atmosenv.2010.10.012, 2011.
Gentner, D. R., Ormeño, E., Fares, S., Ford, T. B., Weber, R., Park, J.-H., Brioude, J., Angevine, W. M., Karlik, J. F., and Goldstein, A. H.: Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality, Atmos. Chem. Phys., 14, 5393–5413, https://doi.org/10.5194/acp-14-5393-2014, 2014.
Gilbert, R. G. and Smith, S. C: Theory of Unimolecular and Recombination Reactions, Blackwell Scientific, Carlton, Australia, ISBN-10 0632027495, 1990.
Glowacki, D. R., Liang, C.-H., Morley, C., Pilling, M. J., and Robertson, S.
H.: MESMER: An Open-Source Master Equation Solver for Multi-Energy Well
Reactions, J. Phys. Chem. A, 116, 9545–9560,
https://doi.org/10.1021/jp3051033, 2012.
Guo, X., Ma, F., Liu, C., Niu, J., He, N., Chen, J., and Xie, H. B.:
Atmospheric oxidation mechanism and kinetics of isoprene initiated by
chlorine radicals: A computational study, Sci. Total Environ., 712, 136330,
https://doi.org/10.1016/j.scitotenv.2019.136330, 2020.
Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M.,
Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in the
Troposphere, Science, 324, 1702–1704,
https://doi.org/10.1126/science.1164566, 2009.
Holbrook, K. A, Pilling, M. J., Robertson, S. H., and Robinson, P. J.:
Unimolecular Reactions, 2nd edn., Wiley, New York, ISBN 0471922684, 1996.
Jahn, L. G., Wang, D. S., Dhulipala, S. V., and Hildebrandt Ruiz, L.: Gas-phase
chlorine radical oxidation of alkanes: Effects of structural branching,
NOx, and relative humidity observed during environmental chamber
experiments, J. Phys. Chem. A, 125, 7303–7317,
https://doi.org/10.1021/acs.jpca.1c03516, 2021.
Ji, Y., Zhao, J., Terazono, H., Misawa, K., Levitt, N. P., Li, Y., Lin, Y.,
Peng, J., Wang, Y., Duan, L., Pan, B., Zhang, F., Feng, X., An, T.,
Marrero-Ortiz, W., Secrest, J., Zhang, A. L., Shibuya, K., Molina, M. J.,
and Zhang, R.: Reassessing the atmospheric oxidation mechanism of toluene,
P. Natl. Acad. Sci. USA, 114, 8169, https://doi.org/10.1073/pnas.1705463114, 2017.
Ji, Y., Zheng, J., Qin, D., Li, Y., Gao, Y., Yao, M., Chen, X., Li, G., An,
T., and Zhang, R.: OH-Initiated Oxidation of Acetylacetone: Implications for
Ozone and Secondary Organic Aerosol Formation, Environ. Sci. Technol., 52,
11169–11177, https://doi.org/10.1021/acs.est.8b03972, 2018.
Ji, Y. M., Wang, H. H., Gao, Y. P., Li, G. Y., and An, T. C.: A theoretical model on the formation mechanism and kinetics of highly toxic air pollutants from halogenated formaldehydes reacted with halogen atoms, Atmos. Chem. Phys., 13, 11277–11286, https://doi.org/10.5194/acp-13-11277-2013, 2013.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban
flux measurements reveal a large pool of oxygenated volatile organic
compound emissions, P. Natl. Acad. Sci. USA, 115, 1186,
https://doi.org/10.1073/pnas.1714715115, 2018.
Khare, P. and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18, 5391–5413, https://doi.org/10.5194/acp-18-5391-2018, 2018.
Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of
Nitrogen-Containing Organic Compounds in Biomass Burning Aerosols Using
High-Resolution Mass Spectrometry, Environ. Sci. Technol., 43, 3764–3771,
https://doi.org/10.1021/es803456n, 2009.
Le Breton, M., Hallquist, Å. M., Pathak, R. K., Simpson, D., Wang, Y., Johansson, J., Zheng, J., Yang, Y., Shang, D., Wang, H., Liu, Q., Chan, C., Wang, T., Bannan, T. J., Priestley, M., Percival, C. J., Shallcross, D. E., Lu, K., Guo, S., Hu, M., and Hallquist, M.: Chlorine oxidation of VOCs at a semi-rural site in Beijing: significant chlorine liberation from ClNO2 and subsequent gas- and particle-phase Cl–VOC production, Atmos. Chem. Phys., 18, 13013–13030, https://doi.org/10.5194/acp-18-13013-2018, 2018.
Lewis Alastair, C.: The changing face of urban air pollution, Science, 359,
744–745, https://doi.org/10.1126/science.aar4925, 2018.
Li, J., Zhang, N., Wang, P., Choi, M., Ying, Q., Guo, S., Lu, K., Qiu, X.,
Wang, S., Hu, M., Zhang, Y., and Hu, J.: Impacts of chlorine chemistry and
anthropogenic emissions on secondary pollutants in the Yangtze river delta
region, Environ. Pollut., 287, 117624,
https://doi.org/10.1016/j.envpol.2021.117624, 2021.
Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.
Lin, Y., Ji, Y., Li, Y., Secrest, J., Xu, W., Xu, F., Wang, Y., An, T., and Zhang, R.: Interaction between succinic acid and sulfuric acid–base clusters, Atmos. Chem. Phys., 19, 8003–8019, https://doi.org/10.5194/acp-19-8003-2019, 2019.
Ma, F. F., Ding, Z. Z., Elm, J., Xie, H. B., Yu, Q., Liu, C., Li, C., Fu, Z.,
Zhang, L., and Chen, J.: Atmospheric Oxidation of Piperazine Initiated by
⚫Cl: Unexpected High Nitrosamine Yield, Environ. Sci. Technol.,
52, 9801–9809, https://doi.org/10.1021/acs.est.8b02510, 2018a.
Ma, F. F., Xie, H. B., and Chen, J.: Benchmarking of DFT functionals for the
kinetics and mechanisms of atmospheric addition reactions of OH radicals
with phenyl and substituted phenyl-based organic pollutants, Int. J. Quantum
Chem., 118, e25533, https://doi.org/10.1002/qua.25533, 2018b.
Ma, F. F., Xie, H. B., Elm, J., Shen, J., Chen, J., and Vehkamäki, H.:
Piperazine Enhancing Sulfuric Acid-Based New Particle Formation:
Implications for the Atmospheric Fate of Piperazine, Environ. Sci. Technol.,
53, 8785–8795, https://doi.org/10.1021/acs.est.9b02117, 2019.
Ma, F. F., Guo, X. R., Xia, D. M., Xie, H. B., Wang, Y., Elm, J., Chen, J.,
and Niu, J.: Atmospheric Chemistry of Allylic Radicals from Isoprene: A
Successive Cyclization-Driven Autoxidation Mechanism, Environ. Sci.
Technol., 55, 4399–4409, https://doi.org/10.1021/acs.est.0c07925, 2021a.
Ma, F. F., Xie, H.-B., Li, M., Wang, S., Zhang, R., and Chen, J.:
Autoxidation mechanism for atmospheric oxidation of tertiary amines:
Implications for secondary organic aerosol formation, Chemosphere, 273,
129207, https://doi.org/10.1016/j.chemosphere.2020.129207, 2021b.
Ma, Q., Meng, N., Li, Y., and Wang, J.: Occurrence, impacts, and microbial
transformation of 3-methylindole (skatole): A critical review, J. Hazard.
Mater., 416, 126181, https://doi.org/10.1016/j.jhazmat.2021.126181, 2021.
MacLeod, M., Scheringer, M., Podey, H., Jones, K. C., and Hungerbühler,
K.: The Origin and Significance of Short-Term Variability of Semivolatile
Contaminants in Air, Environ. Sci. Technol., 41, 3249–3253,
https://doi.org/10.1021/es062135w, 2007.
McKee, M. L., Nicolaides, A., and Radom, L.: A Theoretical Study of Chlorine
Atom and Methyl Radical Addition to Nitrogen Bases: Why Do Cl Atoms Form
Two-Center-Three-Electron Bonds Whereas CH3 Radicals Form
Two-Center-Two-Electron Bonds, J. Am. Chem. Soc., 118, 10571–10576,
https://doi.org/10.1021/ja9613973, 1996.
Misztal, P. K., Hewitt, C. N., Wildt, J., Blande, J. D., Eller, A. S. D.,
Fares, S., Gentner, D. R., Gilman, J. B., Graus, M., Greenberg, J.,
Guenther, A. B., Hansel, A., Harley, P., Huang, M., Jardine, K., Karl, T.,
Kaser, L., Keutsch, F. N., Kiendler-Scharr, A., Kleist, E., Lerner, B. M.,
Li, T., Mak, J., Nölscher, A. C., Schnitzhofer, R., Sinha, V., Thornton,
B., Warneke, C., Wegener, F., Werner, C., Williams, J., Worton, D. R.,
Yassaa, N., and Goldstein, A. H.: Atmospheric benzenoid emissions from
plants rival those from fossil fuels, Sci. Rep.-UK, 5, 12064,
https://doi.org/10.1038/srep12064, 2015.
Montgomery, J. A., Frisch, M. J., Ochterski, J. W., and Petersson, G. A.: A
complete basis set model chemistry. VI. Use of density functional geometries
and frequencies, J. Chem. Phys., 110, 2822–2827,
https://doi.org/10.1063/1.477924, 1999.
Montoya-Aguilera, J., Horne, J. R., Hinks, M. L., Fleming, L. T., Perraud, V., Lin, P., Laskin, A., Laskin, J., Dabdub, D., and Nizkorodov, S. A.: Secondary organic aerosol from atmospheric photooxidation of indole, Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, 2017.
Nicovich, J. M., Mazumder, S., Laine, P. L., Wine, P. H., Tang, Y., Bunkan,
A. J. C., and Nielsen, C. J.: An experimental and theoretical study of the
gas phase kinetics of atomic chlorine reactions with CH3NH2,
(CH3)2NH, and (CH3)3N, Phys. Chem. Chem. Phys., 17,
911–917, https://doi.org/10.1039/C4CP03801K, 2015.
Nielsen, C. J., Herrmann, H., and Weller, C.: Atmospheric chemistry and
environmental impact of the use of amines in carbon capture and storage
(CCS), Chem. Soc. Rev., 41, 6684–6704, https://doi.org/10.1039/C2CS35059A,
2012.
Onel, L., Blitz, M., Dryden, M., Thonger, L., and Seakins, P.: Branching
Ratios in Reactions of OH Radicals with Methylamine, Dimethylamine, and
Ethylamine, Environ. Sci. Technol., 48, 9935–9942,
https://doi.org/10.1021/es502398r, 2014a.
Onel, L., Dryden, M., Blitz, M. A., and Seakins, P. W.: Atmospheric
Oxidation of Piperazine by OH has a Low Potential to Form Carcinogenic
Compounds, Environ. Sci. Technol. Lett., 1, 367–371,
https://doi.org/10.1021/ez5002159, 2014b.
Praske, E., Otkjær, R. V., Crounse, J. D., Hethcox, J. C., Stoltz, B.
M., Kjaergaard, H. G., and Wennberg, P. O.: Atmospheric autoxidation is
increasingly important in urban and suburban North America, P. Natl.
Acad. Sci. USA, 115, 64, https://doi.org/10.1073/pnas.1715540115, 2018.
Reed, A. E., Weinstock, R. B., and Weinhold, F.: Natural population
analysis, J. Chem. Phys., 83, 735–746, https://doi.org/10.1063/1.449486,
1985.
Ren, Z. and da Silva, G.: Atmospheric Oxidation of Piperazine Initiated by
OH: A Theoretical Kinetics Investigation, ACS Earth Space Chem., 3,
2510–2516, https://doi.org/10.1021/acsearthspacechem.9b00227, 2019.
Riedel, T. P., Bertram, T. H., Crisp, T. A., Williams, E. J., Lerner, B. M.,
Vlasenko, A., Li, S.-M., Gilman, J., de Gouw, J., Bon, D. M., Wagner, N. L.,
Brown, S. S., and Thornton, J. A.: Nitryl Chloride and Molecular Chlorine in
the Coastal Marine Boundary Layer, Environ. Sci. Technol., 46, 10463–10470,
https://doi.org/10.1021/es204632r, 2012.
Rienstra-Kiracofe, J. C., Allen, W. D., and Schaefer, H. F.: The
C2H5 + O2 Reaction Mechanism: High-Level ab Initio
Characterizations, J. Phys. Chem. A, 104, 9823–9840,
https://doi.org/10.1021/jp001041k, 2000.
Robinson, P. J. and Holbrook, K. A.: Unimolecular Reactions, John Wiley
& Sons: New York, ISBN 0471728144, 1972.
Schade, G. W. and Crutzen, P. J.: Emission of aliphatic amines from animal
husbandry and their reactions: Potential source of N2O and HCN, J.
Atmos. Chem., 22, 319–346, https://doi.org/10.1007/BF00696641, 1995.
SenGupta, S., Indulkar, Y., Kumar, A., Dhanya, S., Naik, P. D., and Bajaj,
P. N.: Kinetics of Gas-Phase Reaction of OH with Morpholine: An Experimental
and Theoretical Study, J. Phys. Chem. A, 114, 7709–7715,
https://doi.org/10.1021/jp101464x, 2010.
Shen, J., Xie, H.-B., Elm, J., Ma, F., Chen, J., and Vehkamäki, H.:
Methanesulfonic Acid-driven New Particle Formation Enhanced by
Monoethanolamine: A Computational Study, Environ. Sci. Technol., 53,
14387–14397, https://doi.org/10.1021/acs.est.9b05306, 2019.
Shen, J., Elm, J., Xie, H.-B., Chen, J., Niu, J., and Vehkamäki, H.:
Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New
Particle Formation, Environ. Sci. Technol., 54, 13498–13508,
https://doi.org/10.1021/acs.est.0c05358, 2020.
Shiels, O. J., Kelly, P. D., Bright, C. C., Poad, B. L. J., Blanksby, S. J.,
da Silva, G., and Trevitt, A. J.: Reactivity Trends in the Gas-Phase
Addition of Acetylene to the N-Protonated Aryl Radical Cations of Pyridine,
Aniline, and Benzonitrile, J. Am. Soc. Mass. Spectrom., 32, 537–547,
https://doi.org/10.1021/jasms.0c00386, 2021.
Silva, P. J., Erupe, M. E., Price, D., Elias, J., G. J. Malloy, Q., Li, Q.,
Warren, B., and Cocker, D. R.: Trimethylamine as Precursor to Secondary
Organic Aerosol Formation via Nitrate Radical Reaction in the Atmosphere,
Environ. Sci. Technol., 42, 4689–4696, https://doi.org/10.1021/es703016v,
2008.
Tan, W., Zhu, L., Mikoviny, T., Nielsen, C. J., Wisthaler, A., D'Anna, B.,
Antonsen, S., Stenstrøm, Y., Farren, N. J., Hamilton, J. F., Boustead, G.
A., Brennan, A. D., Ingham, T., and Heard, D. E.: Experimental and
Theoretical Study of the OH-Initiated Degradation of Piperazine under
Simulated Atmospheric Conditions, J. Phys. Chem. A, 125, 411–422,
https://doi.org/10.1021/acs.jpca.0c10223, 2021.
Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J.,
Holloway, J. S., Dubé, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook,
A. M., Alexander, B., and Brown, S. S.: A large atomic chlorine source
inferred from mid-continental reactive nitrogen chemistry, Nature, 464,
271–274, https://doi.org/10.1038/nature08905, 2010.
Veres, P. R., Neuman, J. A., Bertram, T. H., Assaf, E., Wolfe, G. M.,
Williamson, C. J., Weinzierl, B., Tilmes, S., Thompson, C. R., Thames, A.
B., Schroder, J. C., Saiz-Lopez, A., Rollins, A. W., Roberts, J. M., Price,
D., Peischl, J., Nault, B. A., Møller, K. H., Miller, D. O., Meinardi,
S., Li, Q., Lamarque, J.-F., Kupc, A., Kjaergaard, H. G., Kinnison, D.,
Jimenez, J. L., Jernigan, C. M., Hornbrook, R. S., Hills, A., Dollner, M.,
Day, D. A., Cuevas, C. A., Campuzano-Jost, P., Burkholder, J., Bui, T. P.,
Brune, W. H., Brown, S. S., Brock, C. A., Bourgeois, I., Blake, D. R., Apel,
E. C., and Ryerson, T. B.: Global airborne sampling reveals a previously
unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere,
P. Natl. Acad. Sci. USA, 117, 4505,
https://doi.org/10.1073/pnas.1919344117, 2020.
Wang, D. S. and Ruiz, L. H.: Secondary organic aerosol from chlorine-initiated oxidation of isoprene, Atmos. Chem. Phys., 17, 13491–13508, https://doi.org/10.5194/acp-17-13491-2017, 2017.
Wang, K., Wang, W. G., and Fan, C. C.: Reactions of C12-C14
N-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol
Formation, Environ. Sci. Technol., 56, 4859–4870,
https://doi.org/10.1021/acs.est.1c08958, 2022.
Wang, S. and Wang, L.: The atmospheric oxidation of dimethyl, diethyl, and
diisopropyl ethers. The role of the intramolecular hydrogen shift in peroxy
radicals, Phys. Chem. Chem. Phys., 18, 7707–7714,
https://doi.org/10.1039/C5CP07199B, 2016.
Wang, S., Wu, R., Berndt, T., Ehn, M., and Wang, L.: Formation of Highly
Oxidized Radicals and Multifunctional Products from the Atmospheric
Oxidation of Alkylbenzenes, Environ. Sci. Technol., 51, 8442–8449,
https://doi.org/10.1021/acs.est.7b02374, 2017.
Wang, S., Riva, M., Yan, C., Ehn, M., and Wang, L.: Primary Formation of
Highly Oxidized Multifunctional Products in the OH-Initiated Oxidation of
Isoprene: A Combined Theoretical and Experimental Study, Environ. Sci.
Technol., 52, 12255–12264, https://doi.org/10.1021/acs.est.8b02783, 2018.
Wu, R., Wang, S., and Wang, L.: New Mechanism for the Atmospheric Oxidation
of Dimethyl Sulfide. The Importance of Intramolecular Hydrogen Shift in a
CH3SCH2OO Radical, J. Phys. Chem. A, 119, 112–117,
https://doi.org/10.1021/jp511616j, 2015.
Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z., Nie, W., Ding, A., and Wang, T.: Significant production of ClNO2 and possible source of Cl2 from N2O5 uptake at a suburban site in eastern China, Atmos. Chem. Phys., 20, 6147–6158, https://doi.org/10.5194/acp-20-6147-2020, 2020.
Xie, H. B., Li, C., He, N., Wang, C., Zhang, S., and Chen, J. W.:
Atmospheric Chemical Reactions of Monoethanolamine Initiated by OH Radical:
Mechanistic and Kinetic Study, Environ. Sci. Technol., 48, 1700–1706,
https://doi.org/10.1021/es405110t, 2014.
Xie, H. B., Ma, F.F., Wang, Y., He, N., Yu, Q., and Chen, J. W.: Quantum
Chemical Study on ⚫Cl-Initiated Atmospheric Degradation of
Monoethanolamine, Environ. Sci. Technol., 49, 13246–13255,
https://doi.org/10.1021/acs.est.5b03324, 2015.
Xie, H. B., Ma, F.F., Yu, Q., He, N., and Chen, J. W.: Computational Study
of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds
Featuring NHx-π-Bond (x=1, 2) Structures, J. Phys. Chem. A,
121, 1657–1665, https://doi.org/10.1021/acs.jpca.6b11418, 2017.
Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C., Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M., Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary radical: evaluation of methods to understand its role in initiation of oxidative cycles, Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
Yu, D., Tan, Z., Lu, K., Ma, X., Li, X., Chen, S., Zhu, B., Lin, L., Li, Y.,
Qiu, P., Yang, X., Liu, Y., Wang, H., He, L., Huang, X., and Zhang, Y.: An
explicit study of local ozone budget and NOs-VOCs sensitivity in
Shenzhen China, Atmos. Environ., 224, 117304,
https://doi.org/10.1016/j.atmosenv.2020.117304, 2020.
Yu, F. and Luo, G.: Modeling of gaseous methylamines in the global atmosphere: impacts of oxidation and aerosol uptake, Atmos. Chem. Phys., 14, 12455–12464, https://doi.org/10.5194/acp-14-12455-2014, 2014.
Yu, Q., Xie, H. B., and Chen, J. W.: Atmospheric chemical reactions of
alternatives of polybrominated diphenyl ethers initiated by OH: A case study
on triphenyl phosphate, Sci. Total Environ., 571, 1105–1114,
https://doi.org/10.1016/j.scitotenv.2016.07.105, 2016.
Yu, Q., Xie, H. B., Li, T., Ma, F., Fu, Z., Wang, Z., Li, C., Fu, Z., Xia,
D., and Chen, J. W.: Atmospheric chemical reaction mechanism and kinetics of
1,2-bis(2,4,6-tribromophenoxy)ethane initiated by OH radical: a
computational study, RSC Adv., 7, 9484–9494,
https://doi.org/10.1039/C6RA26700A, 2017.
Yuan, B., Coggon, M. M., Koss, A. R., Warneke, C., Eilerman, S., Peischl, J., Aikin, K. C., Ryerson, T. B., and de Gouw, J. A.: Emissions of volatile organic compounds (VOCs) from concentrated animal feeding operations (CAFOs): chemical compositions and separation of sources, Atmos. Chem. Phys., 17, 4945–4956, https://doi.org/10.5194/acp-17-4945-2017, 2017.
Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W.,
Hu, M., and Wang, Y.: Formation of Urban Fine Particulate Matter, Chem.
Rev., 115, 3803–3855, https://doi.org/10.1021/acs.chemrev.5b00067, 2015.
Zhang, Z., Lin, L., and Wang, L.: Atmospheric oxidation mechanism of
naphthalene initiated by OH radical. A theoretical study, Phys. Chem. Chem.
Phys., 14, 2645–2650, https://doi.org/10.1039/C2CP23271E, 2012.
Zhao, Y. and Truhlar, D. G.: The M06 suite of density functionals for main
group thermochemistry, thermochemical kinetics, noncovalent interactions,
excited states, and transition elements: two new functionals and systematic
testing of four M06-class functionals and 12 other functionals, Theor. Chem.
Acc., 120, 215–241, https://doi.org/10.1007/s00214-007-0310-x, 2008.
Zito, P., Dötterl, S., and Sajeva, M.: Floral Volatiles in a
Sapromyiophilous Plant and Their Importance in Attracting House Fly
Pollinators, J. Chem. Ecolo., 41, 340–349,
https://doi.org/10.1007/s10886-015-0568-8, 2015.
Short summary
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and hydroperoxide products, showing a varying mechanism from previously reported amines reactions. This study reveals carcinogenic nitrosamines cannot be formed in indole oxidation reactions despite radicals formed from -NH- H abstraction. The results are important to understand the atmospheric impact of indole oxidation and extend current understanding on the atmospheric chemistry of organic nitrogen compounds.
·OH/·Cl initiated indole reactions mainly form organonitrates, alkoxy radicals and...
Altmetrics
Final-revised paper
Preprint