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Tunneling effects 25 

For the reactions involving H-abstraction or H-shift, tunneling effects could influence their reaction rate constants and 

branching ratios of products. To probe the tunneling effects, reaction rate constants (k) of bimolecular H-abstraction pathways 

and unimolecular H-shift pathways involved in the key reaction pathways and branching ratios () of important species 

(intermediates (IM1-7, IM2-5 and IM2-6), products (P2-10, P1-7-4-1), organonitrates (and alkoxy radicals, NO-P3 and NO-P4), 

hydroperoxide (HO2-P3, and HO2-P4)) without tunneling effects were calculated at 298 K and 1 atm. The calculated data are 30 

shown in Table S1. It can be noted that all the values of k without the tunneling effects are at least one (up to three) order of 

magnitude lower than the corresponding values with tunneling effects, indicating that tunneling effects can significantly 

increase k values of the important reaction pathways. In addition, the tunneling effects have various effects on the branching 

ratios of important species. The tunneling effects increase the yields of P2-10, and P1-7-4-1, almost have no effect on the yields of 

IM1-7, IM2-6, NO-P4 and HO2-P4 and reduce the yields of IM2-5, NO-P3 and HO2-P3.  35 

 

Table S1. Calculated reaction rate constants (k) of important unimolecular H-shift/bimolecular H-abstraction pathways and 

branching ratios (Γ) of main products with and without considering tunneling effects at 298 K and 1 atm . 

Pathways 
k 

Species 
 

          Tun* NoTun#        Tun* NoTun# 

R1 → P1-10 
1.7 × 10-15 

cm3 molecule-1 s-1 

1.1 × 10-16 

cm3 molecule-1 s-1 

IM1-7 77.4% 77.9% 

IM2-5 31.4% 34.3% 

R2 → P2-10 
4.5 × 10-11 

cm3 molecule-1 s-1 

8.7 × 10-12 

cm3 molecule-1 s-1 

IM2-6 45.5% 50.1% 

P2-10 23.1% 15.6% 

IM1-7-4OO-s→ IM1-7-4OO-OH-s 1.2 × 10-2 s-1 5.5 × 10-3 s-1 

P1-7-4-1 6.4% 3.1% 

NO-P3 67.3% 70.6% 

IM2-5-6OO-a→ IM2-5-6OO-C5H-a 7.6 × 10-4 s-1 2.3 × 10-7 s-1 

HO2-P3 24.9% 26.1% 

NO-P4 72.4% 73.0% 

   HO2-P4 26.8% 27.0% 

*Tunneling effects were taken into account when calculating the reaction rate constants.  
#Tunneling effects were not taken into account when calculating the reaction rate constants. 40 
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Table S2. Values of T1 diagnostics for the intermediates and transition states involved in the key reaction pathways in 

the CCSD(T)/6-31+G(d') calculations within the CBS-QB3 scheme. 

Species T1 diagnostics Species T1 diagnostics 

TS1-7 0.039 IM1-7 0.033  

TS2-5 0.033 IM2-5 0.031  

TS2-6 0.034 IM2-6 0.031  

TS2-10 0.028 C8H6N 0.039  

TS3-2 0.038 IM1-7-4OO-s 0.020  

TS3-2' 0.037 IM1-7-4OO-a 0.020  

TS3-2-4 0.037 IM1-7-4OO-NH-s 0.031  

TS3-2-7 0.027 IM1-7-4OO-OH-s 0.035  

TS4-3 0.035 IM2-5-6OO-s 0.020  

TS4-3' 0.036 IM2-5-6OO-a 0.020  

TS4-3'-7 0.032 IM2-5-6OO-C5H-a 0.029  

TS5-2 0.037 IM2-6-5OO-s 0.020  

TS5-2' 0.038 IM2-6-5OO-a 0.020  

TS5-2'-1 0.031 IM2-6-52OO-a 0.023  

TS6-2 0.036 C8H6N-4OO-s 0.021  

TS6-2' 0.036 C8H6N-4OO-a 0.021  

TS6-2-3 0.043 C8H6N-43OO-s 0.036  

TS6-2'-3 0.043 C8H6N-43OO-a 0.036  

 45 
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Table S3. Polarizabilities () and the first ionization potentials (I) used in the long-range transition state theory. 

Species /a0
3 I/(eV) 

C8H7N (indole) 105.62* 7.74* 

·C8H6N (P1-10/P2-10) 106.58* 8.08* 

·C8H6N (P1-11/P2-11) 104.79* 8.29* 

·C8H6N (P1-12/P2-12) 104.90* 8.04* 

·C8H6N (P1-13/P2-13) 104.49* 7.68* 

·C8H6N (P1-14/P2-14) 103.25* 8.13* 

·C8H6N (P1-15/P2-15) 103.47* 7.80* 

·C8H6N (P1-16/P2-16) 104.00* 7.62* 

·OH 8.26# 15.24# 

H2O' 10.60# 14.71# 

·Cl 14.71# 12.97# 

HCl 16.97#  12.74# 

*  and I were calculated at BLYP/def2-QZVPD and CBS-QB3//M06-2X/6-31+G(d,p)  

level of theory, respectively, which have been used in our previous studies.1-4 50 
# Obtained from the NIST database 5 

 

 

 

 55 

Table S4. Lennard-Jones parameters of the intermediates for various reactions used in the MultiWell or MESMER 

simulations. 

Reactions  /(Å)  /(K) 

Indole + ·OH 

Indole + ·Cl 

IM1-7 + O2 

IM2-5 + O2 

IM2-6 + O2 

6.4 

6.5 

6.6 

6.7 

6.7 

685 

619 

739 

673 

673 

C8H6N + O2 6.4 635 
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Table S5. NBO charge distribution for all the pre-reactive complexes of the indole + ·Cl reaction. 60 

Species Atoms Number Natural Charge 

Indole N 1 -0.596  

 

C 2 0.143  

C 3 -0.109  

C 4 -0.327  

C 5 -0.274  

C 6 -0.222  

C 7 -0.043  

C 8 -0.255  

C 9 -0.276  

H 10 0.453  

H 11 0.259  

H 12 0.249  

H 13 0.250  

H 14 0.248  

H 15 0.250  

H 16 0.250  

RC2-5 N 1 -0.563  

 

C 2 0.173  

C 3 -0.127  

C 4 -0.304  

C 5 -0.241  

C 6 -0.141  

C 7 -0.040  

C 8 -0.185  

C 9 -0.286  

H 10 0.466  

H 11 0.265  

H 12 0.294  

H 13 0.256  

H 14 0.256  

H 15 0.266  
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H 16 0.261  

Cl 17 -0.350  

RC2-6 N 1 -0.576  

 

C 2 0.126  

C 3 -0.087  

C 4 -0.302  

C 5 -0.201  

C 6 -0.199  

C 7 -0.020  

C 8 -0.273  

C 9 -0.193  

H 10 0.459  

H 11 0.270  

H 12 0.254  

H 13 0.293  

H 14 0.255  

H 15 0.260  

H 16 0.267  

Cl 17 -0.334  

RC2-10 N 1 -0.524  

 

C 2 0.140  

C 3 -0.099  

C 4 -0.260  

C 5 -0.240  

C 6 -0.215  

C 7 -0.042  

C 8 -0.246  

C 9 -0.252  

H 10 0.484  

H 11 0.267  

H 12 0.263  

H 13 0.257  

H 14 0.265  
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H 15 0.257  

H 16 0.256  

Cl 17 -0.310  

RC2-11 N 1 -0.578  

 

C 2 0.165  

C 3 -0.122  

C 4 -0.221  

C 5 -0.269  

C 6 -0.193  

C 7 0.041  

C 8 -0.228  

C 9 -0.268  

H 10 0.465  

H 11 0.288  

H 12 0.257  

H 13 0.260  

H 14 0.281  

H 15 0.257  

H 16 0.257  

Cl 17 -0.391  

RC2-12 N 1 -0.563  

 

C 2 0.173  

C 3 -0.127  

C 4 -0.304  

C 5 -0.241  

C 6 -0.141  

C 7 -0.040  

C 8 -0.185  

C 9 -0.286  

H 10 0.466  

H 11 0.265  

H 12 0.294  

H 13 0.256  
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H 14 0.256  

H 15 0.266  

H 16 0.261  

Cl 17 -0.350  

RC2-13 N 1 -0.576  

 

C 2 0.126  

C 3 -0.087  

C 4 -0.302  

C 5 -0.201  

C 6 -0.199  

C 7 -0.020  

C 8 -0.273  

C 9 -0.193  

H 10 0.459  

H 11 0.270  

H 12 0.254  

H 13 0.293  

H 14 0.255  

H 15 0.260  

H 16 0.267  

Cl 17 -0.334  

RC2-14 N 1 -0.578  

 

C 2 0.165  

C 3 -0.122  

C 4 -0.221  

C 5 -0.269  

C 6 -0.193  

C 7 0.041  

C 8 -0.228  

C 9 -0.268  

H 10 0.465  

H 11 0.288  

H 12 0.257  
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H 13 0.260  

H 14 0.281  

H 15 0.257  

H 16 0.257  

Cl 17 -0.391  

RC2-15 N 1 -0.563  

 

C 2 0.173  

C 3 -0.127  

C 4 -0.304  

C 5 -0.241  

C 6 -0.141  

C 7 -0.040  

C 8 -0.185  

C 9 -0.286  

H 10 0.466  

H 11 0.265  

H 12 0.294  

H 13 0.256  

H 14 0.256  

H 15 0.266  

H 16 0.261  

Cl 17 -0.350  

RC2-16 N 1 -0.579  

 

C 2 0.123  

C 3 -0.068  

C 4 -0.323  

C 5 -0.197  

C 6 -0.213  

C 7 -0.006  

 C 8 -0.226  

 C 9 -0.242  

 H 10 0.462  

 H 11 0.266  
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 H 12 0.267  

 H 13 0.258  

 H 14 0.255  

 H 15 0.289  

 H 16 0.264  

 Cl 17 -0.331  

 

  



S12 

 

Table S6. Calculated reaction rate constants (k) at 298 K and over the pressure range from 0.1 to 1.0 atm of the main 

reaction pathways for the indole + OH/Cl reactions 

Pathways 
k 

0.1 atm 0.4 atm 0.7 atm 1.0 atm 

Indole + ·OH 
7.90 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

Indole + ·Cl 
2.91 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

IM1-7 + O2 
6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

IM2-5 + O2 
6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

IM2-6 + O2 
6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

C8H6N + O2 
6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

IM1-7-4OO-s→ 

IM1-7-4OO-OH-s 
1.22 × 10-2 s-1 1.22 × 10-2 s-1 1.22 × 10-2 s-1 1.22 × 10-2 s-1 

IM2-5-6OO-a→ 

IM2-5-6OO-C5H-a 
7.65 × 10-4 s-1 7.65 × 10-4 s-1 7.65 × 10-4 s-1 7.65 × 10-4 s-1 

IM2-6-5OO-a→ 

IM2-6-52OO-a 
3.60 × 10-7 s-1 3.60 × 10-7 s-1 3.60 × 10-7 s-1 3.60 × 10-7 s-1 

C8H6N-4OO-a/s→ 

C8H6N-43OO-a/s 
8.77 × 10-9 s-1 8.77 × 10-9 s-1 8.77 × 10-9 s-1 8.77 × 10-9 s-1 

 65 
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Table S7. Calculated reaction rate constants (k) at 298 K and over the energy transfer parameters from 50 to 250 cm-1 

of the main reaction pathways for the indole + OH/Cl reactions 

Pathways 
k 

ΔEd = 50 cm-1 ΔEd = 100 cm-1 ΔEd = 150 cm-1 ΔEd = 200 cm-1 ΔEd = 250 cm-1 

Indole+·OH 
7.89 × 10-11 

cm3 molecule-1 s-1 

7.89 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

7.90 × 10-11 

cm3 molecule-1 s-1 

Indole+·Cl 
2.90 × 10-10 

cm3 molecule-1 s-1 

2.90 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

2.91 × 10-10 

cm3 molecule-1 s-1 

IM1-7 + O2 
6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 cm3 

molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

6.12 × 10-12 

cm3 molecule-1 s-1 

IM2-5 + O2 
6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

6.15 × 10-12 

cm3 molecule-1 s-1 

IM2-6 + O2 
6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

6.10 × 10-12 

cm3 molecule-1 s-1 

C8H6N + O2 
6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

6.13 × 10-12 

cm3 molecule-1 s-1 

IM1-7-4OO-s→ 

IM1-7-4OO-OH-s 
1.22 × 10-2 s-1 1.22 × 10-2 s-1 1.22 × 10-2 s-1 1.22 × 10-2 s-1 1.22 × 10-2 s-1 

IM2-5-6OO-a→ 

IM2-5-6OO-C5H-a 
7.65 × 10-4 s-1 7.65 × 10-4 s-1 7.65 × 10-4 s-1 7.65 × 10-4 s-1 7.65 × 10-4 s-1 

IM2-6-5OO-a→ 

IM2-6-52OO-a 
3.60 × 10-7 s-1 3.60 × 10-7 s-1 3.60 × 10-7 s-1 3.60 × 10-7 s-1 3.60 × 10-7 s-1 

C8H6N-4OO-a/s→ 

C8H6N-43OO-a/s 
8.77 × 10-9 s-1 8.77 × 10-9 s-1 8.77 × 10-9 s-1 8.77 × 10-9 s-1 8.77 × 10-9 s-1 

 70 
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Table S8. Calculated branching ratios (Γ) at 298 K and over the pressure range from 0.1 to 1.0 atm of the main reaction 

pathways for the indole + OH/Cl reactions 

Species 
Γ 

0.1 atm 0.4 atm 0.7 atm 1.0 atm 

IM1-7 77.4% 77.4% 77.4% 77.4% 

IM2-5 31.4% 31.4% 31.4% 31.4% 

IM2-6 45.5% 45.5% 45.5% 45.5% 

P2-10 23.1% 23.1% 23.1% 23.1% 

P1-7-4-1 6.6% 6.5% 6.5% 6.5% 

NO-P3 67.3% 67.3% 67.3% 67.3% 

HO2-P3 24.9% 24.9% 24.9% 24.9% 

NO-P4 72.4% 72.4% 72.4% 72.4% 

HO2-P4 26.8% 26.8% 26.8% 26.8% 

NO-P5 72.7% 72.7% 72.7% 72.7% 

HO2-P5 26.9% 26.9% 26.9% 26.9% 

NO-P6 73.0% 73.0% 73.0% 73.0% 

HO2-P6 27.0% 27.0% 27.0% 27.0% 
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Table S9. Calculated branching ratios (Γ) at 298 K and over the energy transfer parameters range from 50 to 250 cm-

1 of the main reaction pathways for the indole + OH/Cl reactions 

Species 
Γ 

ΔEd = 50 cm-1 ΔEd = 100 cm-1 ΔEd = 150 cm-1 ΔEd = 200 cm-1 ΔEd = 250 cm-1 

IM1-7 77.4% 77.4% 77.4% 77.4% 77.4% 

IM2-5 31.4% 31.4% 31.4% 31.4% 31.4% 

IM2-6 45.5% 45.5% 45.5% 45.5% 45.5% 

P2-10 23.1% 23.1% 23.1% 23.1% 23.1% 

P1-7-4-1 6.5% 6.5% 6.5% 6.5% 6.5% 

NO-P3 67.3% 67.3% 67.3% 67.3% 67.3% 

HO2-P3 24.9% 24.9% 24.9% 24.9% 24.9% 

NO-P4 72.4% 72.4% 72.4% 72.4% 72.4% 

HO2-P4 26.8% 26.8% 26.8% 26.8% 26.8% 

NO-P5 72.7% 72.7% 72.7% 72.7% 72.7% 

HO2-P5 26.9% 26.9% 26.9% 26.9% 26.9% 

NO-P6 73.0% 73.0% 73.0% 73.0% 73.0% 

HO2-P6 27.0% 27.0% 27.0% 27.0% 27.0% 
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Table S10. Calculated spin distribution based on the Mulliken population analysis for main intermediates involved in 

the indole + ·OH/·Cl reactions. 

Species Atoms Number Mulliken atomic spin densities 

IM1-7 N 1 0.038  

 

C 2 0.146  

C 3 -0.222  

C 4 0.729  

C 5 -0.111  

C 6 0.287  

C 7 -0.039  

C 8 0.278  

C 9 -0.107  

H 10 -0.002  

H 11 -0.031  

H 12 0.003  

H 13 -0.011  

H 14 0.027  

H 15 -0.013  

H 16 0.003  

O 17 0.021  

H 18 0.003  

IM2-5 N 1 0.044  

 

C 2 0.200  

C 3 -0.186  

C 4 0.103  

C 5 -0.061  

C 6 0.573  

C 7 -0.055  

C 8 0.461  

C 9 -0.230  

H 10 -0.003  

H 11 -0.003  

H 12 0.023  
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H 13 -0.024  

H 14 0.002  

H 15 -0.022  

H 16 0.005  

Cl 17 0.171  

IM2-6 N 1 0.037  

 

C 2 -0.217  

C 3 0.235  

C 4 -0.041  

C 5 0.612  

C 6 -0.098  

C 7 0.146  

C 8 -0.261  

C 9 0.481  

H 10 -0.002  

H 11 0.001  

H 12 -0.025  

H 13 0.024  

H 14 -0.007  

H 15 0.006  

H 16 -0.022  

Cl 17 0.130  

C8H6N N 1 0.256  

 

C 2 -0.021  

C 3 -0.147  

C 4 0.690  

C 5 -0.018  

C 6 0.270  

C 7 -0.101  

C 8 0.187  

 C 9 -0.072  

 H 10 -0.027  

 H 11 0.000  
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 H 12 -0.009  

 H 13 0.000  

 H 14 -0.009  

 H 15 0.001  

  



S19 

 

 

Figure S1. Calculated reaction rate constants (k) at 1 atm and over the temperature range from 230 to 330 K for the 85 

indole + ·OH (A) and indole + ·Cl (B) reactions.  
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Figure S2. Calculated branching ratios (Γ values) at 1 atm and over the temperature range from 230 to 330 K for the 

indole + ·OH (A) and indole + ·Cl (B) reactions. 
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