Articles | Volume 22, issue 15
https://doi.org/10.5194/acp-22-10099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-10099-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atomistic and coarse-grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries
Golnaz Roudsari
CORRESPONDING AUTHOR
Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Olli H. Pakarinen
Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Bernhard Reischl
Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Hanna Vehkamäki
Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
Related authors
Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti
Atmos. Chem. Phys., 25, 11317–11332, https://doi.org/10.5194/acp-25-11317-2025, https://doi.org/10.5194/acp-25-11317-2025, 2025
Short summary
Short summary
The mechanisms of ice nucleation at temperatures below 235 K have remained unclear for the past century. We suggest that ice nucleation is caused by the freezing of water adsorbed on aerosol surfaces. To test this hypothesis, we derived theoretical equations to predict the exact atmospheric conditions under which ice nucleation occurs. Our predictions agree well with experiments. The new theory thus provides a basis for an improved description of ice nucleation in the atmosphere.
Ari Laaksonen, Golnaz Roudsari, Ana A. Piedehierro, and André Welti
Atmos. Chem. Phys., 25, 11317–11332, https://doi.org/10.5194/acp-25-11317-2025, https://doi.org/10.5194/acp-25-11317-2025, 2025
Short summary
Short summary
The mechanisms of ice nucleation at temperatures below 235 K have remained unclear for the past century. We suggest that ice nucleation is caused by the freezing of water adsorbed on aerosol surfaces. To test this hypothesis, we derived theoretical equations to predict the exact atmospheric conditions under which ice nucleation occurs. Our predictions agree well with experiments. The new theory thus provides a basis for an improved description of ice nucleation in the atmosphere.
Valtteri Tikkanen, Huan Yang, Hanna Vehkamäki, and Bernhard Reischl
EGUsphere, https://doi.org/10.5194/egusphere-2025-507, https://doi.org/10.5194/egusphere-2025-507, 2025
Short summary
Short summary
Collisions of neutral molecules and clusters is the prevalent pathway in atmospheric new particle formation. In heavily polluted urban areas, where clusters are formed rapidly and in large number, cluster-cluster collisions also become relevant. We calculate cluster-cluster collision rates from atomistic molecular dynamics simulations and an interacting hard sphere model. Not accounting for long-range attractive interactions underestimates collision and particle formation rates significantly.
Huan Yang, Ivo Neefjes, Valtteri Tikkanen, Jakub Kubečka, Theo Kurtén, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 23, 5993–6009, https://doi.org/10.5194/acp-23-5993-2023, https://doi.org/10.5194/acp-23-5993-2023, 2023
Short summary
Short summary
We present a new analytical model for collision rates between molecules and clusters of arbitrary sizes, accounting for long-range interactions. The model is verified against atomistic simulations of typical acid–base clusters participating in atmospheric new particle formation (NPF). Compared to non-interacting models, accounting for long-range interactions leads to 2–3 times higher collision rates for small clusters, indicating the necessity of including such interactions in NPF modeling.
Ivo Neefjes, Roope Halonen, Hanna Vehkamäki, and Bernhard Reischl
Atmos. Chem. Phys., 22, 11155–11172, https://doi.org/10.5194/acp-22-11155-2022, https://doi.org/10.5194/acp-22-11155-2022, 2022
Short summary
Short summary
Collisions between ionic and dipolar molecules and clusters facilitate the formation of atmospheric aerosol particles, which affect global climate and air quality. We compared often-used classical approaches for calculating ion–dipole collision rates with robust atomistic computer simulations. While classical approaches work for simple ions and dipoles only, our modeling approach can also efficiently calculate reasonable collision properties for more complex systems.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Shahzad Gani, Lukas Kohl, Rima Baalbaki, Federico Bianchi, Taina M. Ruuskanen, Olli-Pekka Siira, Pauli Paasonen, and Hanna Vehkamäki
Geosci. Commun., 4, 507–516, https://doi.org/10.5194/gc-4-507-2021, https://doi.org/10.5194/gc-4-507-2021, 2021
Short summary
Short summary
In this article, we present authorship guidelines which also include a novel authorship form along with the documentation of the formulation process for a multidisciplinary and interdisciplinary center with more than 250 researchers. Our practical approach promotes fair authorship practices and, by focusing on clear, transparent, and timely communication, helps avoid late-stage authorship conflict.
Emma Lumiaro, Milica Todorović, Theo Kurten, Hanna Vehkamäki, and Patrick Rinke
Atmos. Chem. Phys., 21, 13227–13246, https://doi.org/10.5194/acp-21-13227-2021, https://doi.org/10.5194/acp-21-13227-2021, 2021
Short summary
Short summary
The study of climate change relies on climate models, which require an understanding of aerosol formation. We train a machine-learning model to predict the partitioning coefficients of atmospheric molecules, which govern condensation into aerosols. The model can make instant predictions based on molecular structures with accuracy surpassing that of standard computational methods. This will allow the screening of low-volatility molecules that contribute most to aerosol formation.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Cited articles
Abascal, J. L. F., Sanz, E., Fernández, R. G., and Vega, C.: A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice, J. Chem. Phys., 122, 234511, https://doi.org/10.1063/1.1931662, 2005. a, b, c
Berendsen, H. J. C., van der Spoel, D., and van Drunen, R.: GROMACS: A Message-passing Parallel Molecular Dynamics Implementation, Comput. Phys. Commun., 91, 43–56, https://doi.org/10.1016/0010-4655(95)00042-E, 1995. a
Campbell, J. M., Meldrum, F. C., and Christenson, H. K.: Is Ice Nucleation from Supercooled Water Insensitive to Surface Roughness, J. Phys. Chem. C, 119, 1164–1169, https://doi.org/10.1021/jp5113729, 2015. a, b, c
Campbell, J. M., Meldrum, F. C., and Christenson, H. K.: Observing the formation of ice and organic crystals in active sites, P. Natl. Acad. Sci. USA, 114, 810–815, https://doi.org/10.1073/pnas.1617717114, 2017. a, b
Cao, B., Xu, E., and Li, T.: Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores, ACS Nano, 13, 4712–4719, https://doi.org/doi:10.1021/acsnano.9b01014, 2019. a, b, c
Christenson, H. K.: Two-step crystal nucleation via capillary condensation, Cryst. Eng. Comm., 15, 2030–2039, https://doi.org/10.1039/C3CE26887J, 2013. a
Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R., and Sands, D. C.: Ubiquity of Biological Ice Nucleators in Snowfall, Science, 319, 1214–1214, https://doi.org/10.1126/science.1149757, 2008. a
Cox, S. J., Kathmann, S. M., Slater, B., and Michaelides, A.: Molecular Simulations of Heterogeneous Ice Nucleation. I. Controlling Ice Nucleation Through Surface Hydrophilicity, J. Chem. Phys., 142, 184704, https://doi.org/10.1063/1.4919714, 2015. a
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Perez Sirkin, Y. A., Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., and Kanji, Z. A.: Pore condensation and freezing is responsible for ice formation below water saturation for porous particles, P. Natl. Acad. Sci. USA, 116, 8184–8189, https://doi.org/10.1073/pnas.1813647116, 2019. a
Djikaev, Y. S., Tabazadeh, A., Hamill, P., and Reiss, H.: Thermodynamic Conditions for the Surface-Stimulated Crystallization of Atmospheric Droplets, J. Phys. Chem. A, 106, 10247–10253, https://doi.org/10.1021/jp021044s, 2002. a
Donadio, D., Raiteri, P., and Parrinello, M.: Topological defects and bulk melting of hexagonal ice, J. Phys. Chem. B, 109, 5421–5424, https://doi.org/10.1021/jp050690z, 2005. a
Espinosa, J. R., Navarro, C., Sanz, E., Valeriani, C., and Vega, C.: On the time required to freeze water, J. Chem. Phys., 145, 211922, https://doi.org/10.1063/1.4965427, 2016a. a
Espinosa, J. R., Vega, C., and Sanz, E.: Ice–Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW Models As Obtained from the Mold Integration Technique, J. Phys. Chem. C, 120, 8068–8075, https://doi.org/10.1021/acs.jpcc.5b11221, 2016b. a
Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G.: A smooth particle mesh Ewald method, J. Chem. Phys., 103, 8577–8593, https://doi.org/10.1063/1.470117, 1995. a
Fernandez, R. G., Abascal, J. L. F., and Vega, C.: The melting point of ice I-h for common water models calculated from direct coexistence of the solid-liquid interface, J. Chem. Phys., 124, 144506, https://doi.org/10.1063/1.2183308, 2006. a
Glatz, B. and Sarupria, S.: The Surface Charge Distribution Affects the Ice Nucleating Efficiency of Silver Iodide, J. Chem. Phys., 145, 211924, https://doi.org/10.1063/1.4966018, 2016. a, b
Guoying, B., Dong, G., Zhang, L., Xin, Z., and Jianjun, W.: Probing the critical nucleus size for ice formation with graphene oxide nanosheets, Nature, 576, 437–441, https://doi.org/10.1038/s41586-019-1827-6, 2019. a
Hale, B. N. and Kiefer, J.: Studies of H2O on beta-AgI Surfaces – An Effective Pair Potential Model, J. Chem. Phys., 73, 923–933, https://doi.org/10.1063/1.440211, 1980. a
Hawker, R. E., Miltenberger, A. K., Wilkinson, J. M., Hill, A. A., Shipway, B. J., Cui, Z., Cotton, R. J., Carslaw, K. S., Field, P. R., and Murray, B. J.: The temperature dependence of ice-nucleating particle concentrations affects the radiative properties of tropical convective cloud systems, Atmos. Chem. Phys., 21, 5439–5461, https://doi.org/10.5194/acp-21-5439-2021, 2021. a
Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M.: LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem., 18, 1463–1472, https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H, 1997. a
Hiranuma, N., Hoffmann, N., Kiselev, A., Dreyer, A., Zhang, K., Kulkarni, G., Koop, T., and Möhler, O.: Influence of surface morphology on the immersion mode ice nucleation efficiency of hematite particles, Atmos. Chem. Phys., 14, 2315–2324, https://doi.org/10.5194/acp-14-2315-2014, 2014. a, b
Holden, M. A., Whale, T. F., Tarn, M. D., O'Sullivan, D., Walshaw, R. D., Murray, B. J., Meldrum, F. C., and Christenson, H. K.: High-speed imaging of ice nucleation in water proves the existence of active sites, Sci. Adv., 5, eaav4316, https://doi.org/10.1126/sciadv.aav4316, 2019. a, b, c
Holden, M. A., Campbell, J. M., Meldrum, F. C., Murray, B. J., and Christenson, H. K.: Active sites for ice nucleation differ depending on nucleation mode, P. Natl. Acad. Sci. USA, 118, e2022859118, https://doi.org/10.1073/pnas.2022859118, 2021. a, b
Hoover, W. G.: Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A, 31, 1695–1697, https://doi.org/10.1103/PhysRevA.31.1695, 1985. a
Hudait, A., Qiu, S., Lupi, L., and Molinero, V.: Free energy contributions and structural characterization of stacking disordered ices, Phys. Chem. Chem. Phys., 18, 9544–9553, https://doi.org/10.1039/C6CP00915H, 2016. a, b
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017. a
Kastelowitz, N. and Molinero, V.: Ice–Liquid Oscillations in Nanoconfined Water, ACS Nano, 12, 8234–8239, https://doi.org/10.1021/acsnano.8b03403, 2018. a
Kiselev, A., Bachmann, F., Pedevilla, P., Cox, S. J., Michaelides, A., Gerthsen, D., and Leisner, T.: Active sites in heterogeneous ice nucleation – the example of K-rich feldspars, Science, 355, 367–371, https://doi.org/10.1126/science.aai8034, 2017. a, b, c
Koop, T.: Crystals creeping out of cracks, P. Natl. Acad. Sci. USA, 114, 797–799, https://doi.org/10.1073/pnas.1620084114, 2017. a
Li, C., Tao, R., Luo, S., Gao, X., Zhang, K., and Li, Z.: Enhancing and Impeding Heterogeneous Ice Nucleation through Nanogrooves, J. Phys. Chem. C, 122, 25992–25998, https://doi.org/10.1021/acs.jpcc.8b07779, 2018. a, b, c
Limmer, D. T. and Chandler, D.: Phase diagram of supercooled water confined to hydrophilic nanopores, J. Chem. Phys., 137, 044509, https://doi.org/10.1063/1.4737907, 2012. a
Ling, M. L., Wex, H., Grawe, S., Jakobsson, J., Löndahl, J., Hartmann, S., Finster, K., Boesen, T., and Šantl Temkiv, T.: Effects of Ice Nucleation Protein Repeat Number and Oligomerization Level on Ice Nucleation Activity, J. Geophys. Res.-Atmos., 123, 1802–1810, https://doi.org/10.1002/2017JD027307, 2018. a
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014. a
Marcolli, C., Nagare, B., Welti, A., and Lohmann, U.: Ice nucleation efficiency of AgI: review and new insights, Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016, 2016. a
Molinero, V. and Moore, E. B.: Water Modeled As an Intermediate Element between Carbon and Silicon, J. Phys. Chem. B, 113, 4008–4016, https://doi.org/10.1021/jp805227c, 2009. a, b
Moore, E. B., de la Llave, E., Welke, K., Scherlis, D. A., and Molinero, V.: Freezing, melting and structure of ice in a hydrophilic nanopore, Phys. Chem. Chem. Phys., 12, 4124–4134, https://doi.org/10.1039/B919724A, 2010. a
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519–6554, https://doi.org/10.1039/C2CS35200A, 2012. a
Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81, 511–519, https://doi.org/10.1063/1.447334, 1984. a
opakarin: opakarin/lich-test: (Version vApr2021), Zenodo [code], https://doi.org/10.5281/zenodo.6937012, 2022. a
Page, A. J. and Sear, R. P.: Heterogeneous Nucleation in and out of Pores, Phys. Rev. Lett., 97, 065701, https://doi.org/10.1103/PhysRevLett.97.065701, 2006. a
Page, A. J. and Sear, R. P.: Crystallization Controlled by the Geometry of a Surface, J. Am. Chem. Soc., 131, 17550–17551, https://doi.org/10.1021/ja9085512, 2009. a, b
Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1–19, https://doi.org/10.1006/jcph.1995.1039, 1995. a
Prerna, Goswami, R., Metya, A. K., Shevkunov, S. V., and Singh, J. K.: Study of ice nucleation on silver iodide surface with defects, Mol. Phys., 117, 3651–3663, https://doi.org/10.1080/00268976.2019.1657599, 2019. a
Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation, 2nd edn., Springer, Dordrecht, https://doi.org/10.1007/978-0-306-48100-0, 2010. a
Roudsari, G.: Atomistic and coarse grained simulations reveal increased ice nucleation activity on silver iodide surfaces in slit and wedge geometries –
Simulation data, Fairdata [data set], https://doi.org/10.23729/d841cfd5-eef9-4ae4-a820-50becf91ec97, 2022. a
Roudsari, G., Reischl, B., Pakarinen, O. H., and Vehkamäki, H.: Atomistic Simulation of Ice Nucleation on Silver Iodide (0001) Surfaces with Defects, J. Phys. Chem. C, 124, 436–445, https://doi.org/10.1021/acs.jpcc.9b08502, 2020. a, b, c, d
Sayer, T. and Cox, S. J.: Stabilization of AgI's polar surfaces by the aqueous environment, and its implications for ice formation, Phys. Chem. Chem. Phys., 21, 14546–14555, https://doi.org/10.1039/C9CP02193K, 2019. a, b
Sayer, T. and Cox, S. J.: Macroscopic surface charges from microscopic simulations, J. Chem. Phys., 153, 164709, https://doi.org/10.1063/5.0022596, 2020. a
Shevkunov, S. V.: Structure of Water Adsorbed in Slit-shaped Pores of Silver Iodide Crystal, Comput. Theor. Chem., 1084, 1–16, https://doi.org/10.1016/j.comptc.2016.03.014, 2016. a
Soni, A. and Patey, G. N.: How Microscopic Features of Mineral Surfaces Critically Influence Heterogeneous Ice Nucleation, J. Phys. Chem. C, 125, 10723–10737, https://doi.org/10.1021/acs.jpcc.1c01740, 2021. a
Sosso, G. C., Chen, J., Cox, S. J., Fitzner, M., Pedevilla, P., Zen, A., and Michaelides, A.: Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations, Chem. Rev., 116, 7078–7116, https://doi.org/10.1021/acs.chemrev.5b00744, 2016. a, b
Tabazadeh, A., Djikaev, Y. S., and Reiss, H.: Surface crystallization of supercooled water in clouds, P. Natl. Acad. Sci. USA, 99, 15873–15878, https://doi.org/10.1073/pnas.252640699, 2002. a
Turnbull, D.: Kinetics of Heterogeneous Nucleation, J. Chem. Phys., 18, 198–203, https://doi.org/10.1063/1.1747588, 1950. a
van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., and Berendsen, H. J.: GROMACS: Fast, Flexible, and Free, J. Comput. Chem., 26, 1701–1718, https://doi.org/10.1002/jcc.20291, 2005. a
Vonnegut, B.: The Nucleation of Ice Formation by Silver Iodide, J. Appl. Phys., 18, 593–595, https://doi.org/10.1063/1.1697813, 1947. a
Zhang, X.-X., Chen, M., and Fu, M.: Impact of surface nanostructure on ice nucleation, J. Chem. Phys., 141, 124709, https://doi.org/10.1063/1.4896149, 2014. a, b
Zhang, Z., Ying, Y., Xu, M., Zhang, C., Rao, Z., Ke, S., Zhou, Y., Huang, H., and Fei, L.: Atomic Steps Induce the Aligned Growth of Ice Crystals on Graphite Surfaces, Nano Lett., 20, 8112–8119, https://doi.org/10.1021/acs.nanolett.0c03132, 2020. a
Zielke, S. A., Bertram, A. K., and Patey, G. N.: Simulations of Ice Nucleation by Model AgI Disks and Plates, J. Phys. Chem. B, 120, 2291–2299, https://doi.org/10.1021/acs.jpcb.5b06605, 2016. a, b, c
Zobrist, B., Koop, T., Luo, B., Marcolli, C., and Peter, T.: Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer, J. Phys. Chem. C, 111, 2149–2155, https://doi.org/10.1021/jp066080w, 2007. a
Short summary
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in slit and wedge geometries at low supercooling which serve as a model of irregularities on real atmospheric aerosol particle surfaces. The revealed microscopic ice nucleation mechanisms in confined geometries strongly support the experimental evidence for the importance of surface features such as cracks or pits functioning as active sites for ice nucleation in the atmosphere.
We use atomistic simulations to study heterogeneous ice nucleation on silver iodide surfaces in...
Altmetrics
Final-revised paper
Preprint