Articles | Volume 21, issue 8
https://doi.org/10.5194/acp-21-5847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-5847-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, China
Da Gao
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
College of Geographic Sciences, Fujian Normal University, Fuzhou
350007, China
Department of Geography and Planning, University of Toronto, Toronto, M5S 3G3, Canada
Tijian Wang
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Chaoqun Ma
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
now at:
Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany
Haokun Bai
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Xing Chen
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Mengmeng Li
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Bingliang Zhuang
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Shu Li
School of Atmospheric Sciences, Joint Center for Atmospheric Radar
Research of CMA/NJU, CMA-NJU Joint Laboratory for Climate Prediction
Studies, Jiangsu Collaborative Innovation Center for Climate Change, Nanjing
University, Nanjing 210023, China
Related authors
No articles found.
Haoran Zhang, Chengchun Shi, Chuanyou Ying, Shengheng Weng, Erling Ni, Lanbu Zhao, Peiheng Yang, Keqin Tang, Xueyu Zhou, Chuanhua Ren, Tengyu Liu, Mengmeng Li, Nan Li, and Xin Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2630, https://doi.org/10.5194/egusphere-2025-2630, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study reports a unique diurnal pattern of nitrous acid (HONO), featuring higher concentrations around noon, based on one-month measurements in coastal Fujian, southeast China. Using an improved chemical transport model, we successfully reproduced the observed HONO levels and temporal variations. Further process analyses and sensitivity experiments quantified the formation mechanisms of HONO in coastal areas and shed light on its impact on the formation of OH radicals and ozone.
Mengzhu Xi, Min Xie, Yi Luo, Danyang Ma, Lingyun Feng, Shitong Chen, and Shuxian Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2466, https://doi.org/10.5194/egusphere-2025-2466, 2025
Short summary
Short summary
Tropical cyclones have a significant impact on ozone in coastal areas by affecting atmospheric circulation and meteorological conditions. We have studied the impact and future trends of climate change in the Yangtze River Delta region and found that the intensification of climate change will exacerbate the impact of TC on O3 in the Yangtze River Delta, requiring strengthened monitoring and early warning.
Danyang Ma, Min Xie, Huan He, Tijian Wang, Mengzhu Xi, Lingyun Feng, Shuxian Zhang, and Shitong Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-10, https://doi.org/10.5194/egusphere-2025-10, 2025
Short summary
Short summary
The PM2.5 concentration in China underwent significant changes in 2013. We examined the underlying causes from three perspectives: anthropogenic pollutant emissions, meteorological conditions, and CO2 concentration variations. Our study highlighted the importance of considering the role of CO2 on vegetation when predicting PM2.5 concentrations and developing corresponding control strategies.
Hua Lu, Min Xie, Nan Wang, Bojun Liu, Jinyue Jiang, Bingliang Zhuang, Jianfeng Yang, Kunqin Lv, and Danyang Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-598, https://doi.org/10.5194/egusphere-2025-598, 2025
Short summary
Short summary
Fires are important sources of air pollution in many regions. This study isolates fire-specific PM2.5 from observations, showing its increasing proportion in recent years. Our findings indicate that fire-specific PM2.5 disproportionately affects impoverished populations in Asia Pacific. Furthermore, we suggest that, under future climate change, fire-specific PM2.5 will likely continue rising. This highlights the need for interventions to reduce fire-related air pollution and its health impacts.
Xin Zeng, Tijian Wang, Congwu Huang, Bingliang Zhuang, Shu Li, Mengmeng Li, Min Xie, Qian Zhang, and Nanhong Xie
EGUsphere, https://doi.org/10.5194/egusphere-2025-608, https://doi.org/10.5194/egusphere-2025-608, 2025
Short summary
Short summary
In this study, we enhanced the regional climate-chemistry-ecology model to reveal the seasonal and spatial variations of N2O levels. The lowest concentration was recorded in June (334.01 ppb), while the highest occurred in December (335.42 ppb). Certain regions, such as the North China Plain and the Ganges Basin, exhibited higher nitrous oxide levels. We also gained deeper insights into the complex interactions between N2O emissions and atmospheric processes.
Beiyao Xu, Steven Dobbie, Huiyi Yang, Lianxin Yang, Yu Jiang, Andrew Challinor, Karina Williams, Yunxia Wang, and Tijian Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-4077, https://doi.org/10.5194/egusphere-2024-4077, 2025
Short summary
Short summary
Ozone (O3) pollution harms rice production and threatens food security. To understand these impacts, we calibrated a crop model using unique data from experiments where rice was grown in open fields under controlled O3 exposure (free air). This is the first time such data has been used to improve a model’s ability to predict how rice responds to O3 pollution. Our work provides a more accurate tool to study O3’s effects and guide strategies to protect agriculture.
Roeland Van Malderen, Zhou Zang, Kai-Lan Chang, Robin Björklund, Owen R. Cooper, Jane Liu, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, Audrey Gaudel, David W. Tarasick, Herman G. J. Smit, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Isamu Morino, Glen McConville, Katrin Müller, Isao Murata, Justus Notholt, Ankie Piters, Maxime Prignon, Richard Querel, Vincenzo Rizi, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3745, https://doi.org/10.5194/egusphere-2024-3745, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and an air pollutant, whose distribution and time variability is mainly governed by anthropogenic emissions and dynamics. In this paper, we assess regional trends of tropospheric ozone column amounts, based on two different approaches of merging or synthesizing ground-based observations and their trends within specific regions. Our findings clearly demonstrate regional trend differences, but also consistently higher pre- than post-COVID trends.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Jiye Leng, Jing M. Chen, Wenyu Li, Xiangzhong Luo, Mingzhu Xu, Jane Liu, Rong Wang, Cheryl Rogers, Bolun Li, and Yulin Yan
Earth Syst. Sci. Data, 16, 1283–1300, https://doi.org/10.5194/essd-16-1283-2024, https://doi.org/10.5194/essd-16-1283-2024, 2024
Short summary
Short summary
We produced a long-term global two-leaf gross primary productivity (GPP) and evapotranspiration (ET) dataset at the hourly time step by integrating a diagnostic process-based model with dynamic parameterizations. The new dataset provides us with a unique opportunity to study carbon and water fluxes at sub-daily time scales and advance our understanding of ecosystem functions in response to transient environmental changes.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Hua Lu, Min Xie, Wei Zhao, Bojun Liu, Tijian Wang, and Bingliang Zhuang
Atmos. Meas. Tech., 17, 167–179, https://doi.org/10.5194/amt-17-167-2024, https://doi.org/10.5194/amt-17-167-2024, 2024
Short summary
Short summary
Observations of vertical wind in regions with complex terrain are essential, but they are always sparse and have poor representation. Data verification and quality control are conducted on the wind profile radar and Aeolus wind products in this study, trying to compensate for the limitations of wind field observations. The results shed light on the comprehensive applications of multi-source wind profile data in complicated terrain regions with sparse ground-based wind observations.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Yangzhihao Zhan, Min Xie, Wei Zhao, Tijian Wang, Da Gao, Pulong Chen, Jun Tian, Kuanguang Zhu, Shu Li, Bingliang Zhuang, Mengmeng Li, Yi Luo, and Runqi Zhao
Atmos. Chem. Phys., 23, 9837–9852, https://doi.org/10.5194/acp-23-9837-2023, https://doi.org/10.5194/acp-23-9837-2023, 2023
Short summary
Short summary
Although the main source contribution of pollution is secondary inorganic aerosols in Nanjing, health risks mainly come from industry sources and vehicle emissions. Therefore, the development of megacities should pay more attention to the health burden of vehicle emissions, coal combustion, and industrial processes. This study provides new insight into assessing the relationship between source apportionment and health risks and can provide valuable insight into air pollution strategies.
Danyang Ma, Tijian Wang, Hao Wu, Yawei Qu, Jian Liu, Jane Liu, Shu Li, Bingliang Zhuang, Mengmeng Li, and Min Xie
Atmos. Chem. Phys., 23, 6525–6544, https://doi.org/10.5194/acp-23-6525-2023, https://doi.org/10.5194/acp-23-6525-2023, 2023
Short summary
Short summary
Increasing surface ozone (O3) concentrations have long been a significant environmental issue in China, despite the Clean Air Action Plan launched in 2013. Most previous research ignores the contributions of CO2 variations. Our study comprehensively analyzed O3 variation across China from various perspectives and highlighted the importance of considering CO2 variations when designing long-term O3 control policies, especially in high-vegetation-coverage areas.
Chenchao Zhan, Min Xie, Hua Lu, Bojun Liu, Zheng Wu, Tijian Wang, Bingliang Zhuang, Mengmeng Li, and Shu Li
Atmos. Chem. Phys., 23, 771–788, https://doi.org/10.5194/acp-23-771-2023, https://doi.org/10.5194/acp-23-771-2023, 2023
Short summary
Short summary
With the development of urbanization, urban land use and anthropogenic
emissions increase, affecting urban air quality and, in turn, the health risks associated with air pollutants. In this study, we systematically evaluate the impacts of urbanization on air quality and the corresponding health risks in a highly urbanized city with severe air pollution and complex terrain. This work focuses on the health risks caused by urbanization and can provide valuable insight for air pollution strategies.
Shiyue Zhang, Gang Zeng, Tijian Wang, Xiaoye Yang, and Vedaste Iyakaremye
Atmos. Chem. Phys., 22, 16017–16030, https://doi.org/10.5194/acp-22-16017-2022, https://doi.org/10.5194/acp-22-16017-2022, 2022
Short summary
Short summary
Severe haze days in eastern China (HDEC) are affected by the atmospheric circulation variations on a synoptic scale, while the dominant atmospheric circulation patterns influencing HDEC and the differences between them are still unclear. This study obtains three dominant circulation types that could lead to severe HDEC and investigates the differences between them. The results provide a basis for establishing applicable haze prediction and management policies.
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
Atmos. Chem. Phys., 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, https://doi.org/10.5194/acp-22-8221-2022, 2022
Short summary
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
Chenchao Zhan and Min Xie
Atmos. Chem. Phys., 22, 1351–1371, https://doi.org/10.5194/acp-22-1351-2022, https://doi.org/10.5194/acp-22-1351-2022, 2022
Short summary
Short summary
The changes of land use and anthropogenic heat (AH) derived from urbanization can affect meteorology and in turn O3 evolution. In this study, we briefly describe the general features of O3 pollution in the Yangtze River Delta (YRD) based on in situ observational data. Then, the impacts of land use and anthropogenic heat on O3 via changing the meteorological factors and local circulations are investigated in this region using the WRF-Chem model.
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Mengmeng Li, Zihan Zhang, Quan Yao, Tijian Wang, Min Xie, Shu Li, Bingliang Zhuang, and Yong Han
Atmos. Chem. Phys., 21, 15135–15152, https://doi.org/10.5194/acp-21-15135-2021, https://doi.org/10.5194/acp-21-15135-2021, 2021
Short summary
Short summary
We establish the nonlinear responses between nitrate and NOx in China. Reduction of NOx results in linearly lower nitrate in summer–autumn whereas an increase of winter nitrate until an inflexion point at 40–50 % reduction due to the excess oxidants. NH3 and VOCs are effective in controlling nitrate pollution, whereas decreasing the SO2 and NOx emissions may have counterintuitive effects on nitrate aerosols. This paper helps understand the nonlinear aerosol and photochemistry feedback.
Yawei Qu, Apostolos Voulgarakis, Tijian Wang, Matthew Kasoar, Chris Wells, Cheng Yuan, Sunil Varma, and Laura Mansfield
Atmos. Chem. Phys., 21, 5705–5718, https://doi.org/10.5194/acp-21-5705-2021, https://doi.org/10.5194/acp-21-5705-2021, 2021
Short summary
Short summary
The meteorological effect of aerosols on tropospheric ozone is investigated using global atmospheric modelling. We found that aerosol-induced meteorological effects act to reduce modelled ozone concentrations over China, which brings the simulation closer to observed levels. Our work sheds light on understudied processes affecting the levels of tropospheric gaseous pollutants and provides a basis for evaluating such processes using a combination of observations and model sensitivity experiments.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Chenchao Zhan, Min Xie, Chongwu Huang, Jane Liu, Tijian Wang, Meng Xu, Chaoqun Ma, Jianwei Yu, Yumeng Jiao, Mengmeng Li, Shu Li, Bingliang Zhuang, Ming Zhao, and Dongyang Nie
Atmos. Chem. Phys., 20, 13781–13799, https://doi.org/10.5194/acp-20-13781-2020, https://doi.org/10.5194/acp-20-13781-2020, 2020
Short summary
Short summary
The Yangtze River Delta (YRD) region has been suffering from severe ozone (O3) pollution in recent years. Synoptic systems, like typhoons, can have a significant effect on O3 episodes. However, research on landfall typhoons affecting O3 in the YRD is limited. This work aims to reveal the main processes of landfall typhoons affecting surface O3 and estimate health impacts of O3 during the study period in the YRD, which can be useful for taking reasonable pollution control measures in this area.
Han Han, Yue Wu, Jane Liu, Tianliang Zhao, Bingliang Zhuang, Honglei Wang, Yichen Li, Huimin Chen, Ye Zhu, Hongnian Liu, Qin'geng Wang, Shu Li, Tijian Wang, Min Xie, and Mengmeng Li
Atmos. Chem. Phys., 20, 13591–13610, https://doi.org/10.5194/acp-20-13591-2020, https://doi.org/10.5194/acp-20-13591-2020, 2020
Short summary
Short summary
Combining simulations from a global chemical transport model and a trajectory model, we find that black carbon aerosols from South Asia and East Asia contribute 77 % of the surface black carbon in the Tibetan Plateau. The Asian monsoon largely modulates inter-annual transport of black carbon from non-local regions to the Tibetan Plateau surface in most seasons, while inter-annual fire activities in South Asia influence black carbon concentration over the Tibetan Plateau surface mainly in spring.
Cited articles
Barnes, E. A. and Fiore, A. M.: Surface ozone variability and the jet
position: Implications for projecting future air quality, Geophys. Res. Lett.,
40, 2839–2844, https://doi.org/10.1002/grl.50411, 2013.
Cooper, O. R., Schultz, M. G., Schroder, S., Chang, K. L., Gaudel, A.,
Benitez, G. C., Cuevas, E., Frohlich, M., Galbally, I. E., Molloy, S.,
Kubistin, D., Lu, X., McClure-Begley, A., Nedelec, P., O'Brien, J., Oltmans,
S. J., Petropavlovskikh, I., Ries, L., Senik, I., Sjoberg, K., Solberg, S.,
Spain, G. T., Spangl, W., Steinbacher, M., Tarasick, D., Thouret, V., and
Xu, X. B.: Multi-decadal surface ozone trends at globally distributed remote
locations, Elementa-Sci. Anthrop., 8, 23, https://doi.org/10.1525/Elementa.420, 2020.
Day, D. B., Xiang, J., and Mo, J.: Association of ozone exposure with
cardiorespiratory pathophysiologic mechanisms in healthy adults, Jama Intern. Med., 177, 1400–1400,
https://doi.org/10.1001/jamainternmed.2017.4605, 2017.
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., MacKenzie, I. A.,
Collins, W. J., Fiore, A. M., Stevenson, D. S., Dentener, F. J., Schultz, M.
G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change
on surface ozone and intercontinental ozone pollution: A multi-model study,
J. Geophys. Res.-Atmos., 118, 3744–3763, https://doi.org/10.1002/jgrd.50266, 2013.
Eskridge, R. E., Ku, J. Y., Rao, S. T., Porter, P. S., and Zurbenko, I. G.:
Separating different scales of motion in time series of meteorological
variables, B. Am. Meteorol. Soc., 78, 1473–1483, https://doi.org/10.1175/1520-0477(1997)078<1473:Sdsomi>2.0.Co;2, 1997.
Fiore, A. M., Jacob, D. J., Mathur, R., and Martin, R. V.: Application of
empirical orthogonal functions to evaluate ozone simulations with regional
and global models, J. Geophys. Res.-Atmos., 108, 4431,
https://doi.org/10.1029/2002jd003151, 2003.
Gao, D., Xie, M., Chen, X., Wang, T. J., Liu, J., Xu, Q., Mu, X. Y., Chen, F., Li, S., Zhuang, B. L., Li, M. M., Zhao, M., and Ren, J. Y.: Systematic classification of circulation patterns and integrated analysis of their effects on different ozone pollution levels in the Yangtze River Delta Region, China, Atmos. Environ., 242, 117760, https://doi.org/10.1016/j.atmosenv.2020.117760, 2020.
Gao, W., Tie, X. X., Xu, J. M., Huang, R. J., Mao, X. Q., Zhou, G. Q., and
Chang, L. Y.: Long-term trend of O3 in a mega City (Shanghai), China:
Characteristics, causes, and interactions with precursors, Sci. Total
Environ., 603, 425–433, https://doi.org/10.1016/j.scitotenv.2017.06.099, 2017.
Han, H., Liu, J., Shu, L., Wang, T., and Yuan, H.: Local and synoptic meteorological influences on daily variability in summertime surface ozone in eastern China, Atmos. Chem. Phys., 20, 203–222, https://doi.org/10.5194/acp-20-203-2020, 2020.
Hegarty, J., Mao, H., and Talbot, R.: Synoptic controls on summertime
surface ozone in the northeastern United States, J. Geophys. Res.-Atmos., 112,
D14306, https://doi.org/10.1029/2006jd008170, 2007.
Hou, X. W., Zhu, B., Kumar, K. R., and Lu, W.: Inter-annual variability in
fine particulate matter pollution over China during 2013-2018: Role of
meteorology, Atmos. Environ., 214, 116842, https://doi.org/10.1016/j.atmosenv.2019.116842,
2019.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski,
D., Shi, Y. L., Calle, E., and Thun, M.: Long-Term Ozone Exposure and
Mortality., New Engl. J. Med., 360, 1085–1095, https://doi.org/10.1056/Nejmoa0803894, 2009.
Leibensperger, E. M., Mickley, L. J., and Jacob, D. J.: Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change, Atmos. Chem. Phys., 8, 7075–7086, https://doi.org/10.5194/acp-8-7075-2008, 2008.
Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.:
Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China,
P. Natl. Acad. Sci. USA, 116, 422–427, 2019.
Liu, J., Wang, L., Li, M., Liao, Z., Sun, Y., Song, T., Gao, W., Wang, Y., Li, Y., Ji, D., Hu, B., Kerminen, V.-M., Wang, Y., and Kulmala, M.: Quantifying the impact of synoptic circulation patterns on ozone variability in northern China from April to October 2013–2017, Atmos. Chem. Phys., 19, 14477–14492, https://doi.org/10.5194/acp-19-14477-2019, 2019.
Lu, X., Hong, J. Y., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X. B.,
Wang, T., Gao, M., Zhao, Y. H., and Zhang, Y. H.: Severe Surface Ozone
Pollution in China: A Global Perspective, Environ. Sci. Tech. Lett., 5, 487–494,
https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Lu, X., Zhang, L., Wang, X. L., Gao, M., Li, K., Zhang, Y. Z., Yue, X., and
Zhang, Y. H.: Rapid Increases in Warm-Season Surface Ozone and Resulting
Health Impact in China Since 2013, Environ. Sci. Tech. Lett., 7, 240–247,
https://doi.org/10.1021/acs.estlett.0c00171, 2020.
Milanchus, M. L., Rao, S. T., and Zurbenko, I. G.: Evaluating the
effectiveness of ozone management efforts in the presence of meteorological
variability, J. Air Waste Manage., 48, 201–215, https://doi.org/10.1080/10473289.1998.10463673, 1998.
Papanastasiou, D. K., Melas, D., Bartzanas, T., and Kittas, C.: Estimation
of Ozone Trend in Central Greece, Based on Meteorologically Adjusted Time
Series, Environ. Model. Assess., 17, 353–361, https://doi.org/10.1007/s10666-011-9299-6, 2012.
Philipp, A., Beck, C., Huth, R., and Jacobeit, J.: Development and
comparison of circulation type classifications using the COST 733 dataset
and software, Int. J. Climatol., 36, 2673–2691, https://doi.org/10.1002/joc.3920, 2016.
Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K.,
and Poupkou, A.: Enhanced surface ozone during the heat wave of 2013 in
Yangtze River Delta region, China, Sci. Total Environ., 603, 807–816,
https://doi.org/10.1016/j.scitotenv.2017.03.056, 2017.
Rao, S. T. and Zurbenko, I. G.: Detecting And Tracking Changes In Ozone
Air-Quality, J. Air Waste Manage., 44, 1089–1092, https://doi.org/10.1080/10473289.1994.10467303, 1994.
Santurtun, A., Gonzalez-Hidalgo, J. C., Sanchez-Lorenzo, A., and
Zarrabeitia, M. T.: Surface ozone concentration trends and its relationship
with weather types in Spain (2001–2010), Atmos. Environ., 101, 10–22,
https://doi.org/10.1016/j.atmosenv.2014.11.005, 2015.
Shu, L., Xie, M., Wang, T., Gao, D., Chen, P., Han, Y., Li, S., Zhuang, B., and Li, M.: Integrated studies of a regional ozone pollution synthetically affected by subtropical high and typhoon system in the Yangtze River Delta region, China, Atmos. Chem. Phys., 16, 15801–15819, https://doi.org/10.5194/acp-16-15801-2016, 2016.
Shu, L., Xie, M., Gao, D., Wang, T., Fang, D., Liu, Q., Huang, A., and Peng, L.: Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China, Atmos. Chem. Phys., 17, 12871–12891, https://doi.org/10.5194/acp-17-12871-2017, 2017.
Shu, L., Wang, T., Han, H., Xie, M., Chen, P., Li, M., and Wu, H.: Summertime
ozone pollution in the Yangtze River Delta of eastern China during 2013–2017:
Synoptic impacts and source apportionment, Environ. Pollut., 257, 113631, https://doi.org/10.1016/j.envpol.2019.113631, 2020.
Wang, B. and Fan, Z.: Choice of south Asian summer monsoon indices, B. Am.
Meteorol. Soc., 80, 629–638, https://doi.org/10.1175/1520-0477(1999)080<0629:Cosasm>2.0.Co;2, 1999.
Wang, B., Wu, Z. W., Li, J. P., Liu, J., Chang, C. P., Ding, Y. H., and Wu,
G. X.: How to measure the strength of the East Asian summer monsoon, J.
Climate, 21, 4449–4463, https://doi.org/10.1175/2008JCLI2183.1, 2008.
Wang, T., Xue, L. K., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total Environ., 575,
1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wise, E. K. and Comrie, A. C.: Extending the Kolmogorov-Zurbenko filter:
Application to ozone, particulate matter, and meteorological trends, J. Air
Waste Manage., 55, 1208–1216, https://doi.org/10.1080/10473289.2005.10464718, 2005.
Xie, M., Zhu, K. G., Wang, T. J., Yang, H. M., Zhuang, B. L., Li, S., Li, M.
G., Zhu, X. S., and Ouyang, Y.: Application of photochemical indicators to
evaluate ozone nonlinear chemistry and pollution control countermeasure in
China, Atmos. Environ., 99, 466–473, https://doi.org/10.1016/j.atmosenv.2014.10.013, 2014.
Xie, M., Liao, J., Wang, T., Zhu, K., Zhuang, B., Han, Y., Li, M., and Li, S.: Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China, Atmos. Chem. Phys., 16, 6071–6089, https://doi.org/10.5194/acp-16-6071-2016, 2016a.
Xie, M., Zhu, K., Wang, T., Chen, P., Han, Y., Li, S., Zhuang, B., and Shu,
L.: Temporal characterization and regional contribution to O3 and NOx at an
urban and a suburban site in Nanjing, China, Sci. Total
Environ., 551–552, 533–545, https://doi.org/10.1016/j.scitotenv.2016.02.047, 2016b.
Xie, M., Shu, L., Wang, T.-j., Liu, Q., Gao, D., Li, S., Zhuang, B.-l., Han,
Y., Li, M.-M., and Chen, P.-l.: Natural emissions under future climate
condition and their effects on surface ozone in the Yangtze River Delta
region, China, Atmos. Environ., 150, 162–180,
https://doi.org/10.1016/j.atmosenv.2016.11.053, 2017.
Yang, L., Luo, H., Yuan, Z., Zheng, J., Huang, Z., Li, C., Lin, X., Louie, P. K. K., Chen, D., and Bian, Y.: Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy, Atmos. Chem. Phys., 19, 12901–12916, https://doi.org/10.5194/acp-19-12901-2019, 2019.
Yang, Y., Liao, H., and Li, J.: Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China, Atmos. Chem. Phys., 14, 6867–6879, https://doi.org/10.5194/acp-14-6867-2014, 2014.
Yarnal, B.: Synoptic Climatology in Environmental Analysis A Primer, Journal
of Preventive Medicine Information, 347, 170–180, 1993.
Yin, Z., Cao, B., and Wang, H.: Dominant patterns of summer ozone pollution in eastern China and associated atmospheric circulations, Atmos. Chem. Phys., 19, 13933–13943, https://doi.org/10.5194/acp-19-13933-2019, 2019.
Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.: Ozone and haze pollution weakens net primary productivity in China, Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, 2017.
Zhang, J., Gao, Y., Luo, K., Leung, L. R., Zhang, Y., Wang, K., and Fan, J.: Impacts of compound extreme weather events on ozone in the present and future, Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, 2018.
Zhao, Z. J. and Wang, Y. X.: Influence of the West Pacific subtropical high
on surface ozone daily variability in summertime over eastern China, Atmos.
Environ., 170, 197–204, 2017.
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
O3 has been increasing in recent years over the Yangtze River Delta region of China and is...
Altmetrics
Final-revised paper
Preprint