Articles | Volume 21, issue 6
Atmos. Chem. Phys., 21, 4285–4318, 2021
Atmos. Chem. Phys., 21, 4285–4318, 2021

Research article 22 Mar 2021

Research article | 22 Mar 2021

The behavior of high-CAPE (convective available potential energy) summer convection in large-domain large-eddy simulations with ICON

Harald Rybka et al.

Related authors

Superparameterised cloud effects in the EMAC general circulation model (v2.50) – influences of model configuration
Harald Rybka and Holger Tost
Geosci. Model Dev., 13, 2671–2694,,, 2020
Short summary
Uncertainties in future climate predictions due to convection parameterisations
H. Rybka and H. Tost
Atmos. Chem. Phys., 14, 5561–5576,,, 2014

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol–cloud interactions: the representation of heterogeneous ice activation in cloud models
Bernd Kärcher and Claudia Marcolli
Atmos. Chem. Phys., 21, 15213–15220,,, 2021
Short summary
Sensitivity of precipitation formation to secondary ice production in winter orographic mixed-phase clouds
Zane Dedekind, Annika Lauber, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 15115–15134,,, 2021
Short summary
Environmental sensitivities of shallow-cumulus dilution – Part 2: Vertical wind profile
Sonja Drueke, Daniel J. Kirshbaum, and Pavlos Kollias
Atmos. Chem. Phys., 21, 14039–14058,,, 2021
Short summary
Supersaturation, buoyancy, and deep convection dynamics
Wojciech W. Grabowski and Hugh Morrison
Atmos. Chem. Phys., 21, 13997–14018,,, 2021
Short summary
Statistical properties of a stochastic model of eddy hopping
Izumi Saito, Takeshi Watanabe, and Toshiyuki Gotoh
Atmos. Chem. Phys., 21, 13119–13130,,, 2021
Short summary

Cited articles

Arakawa, A. and Wu, C.-M.: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I, J. Atmos. Sci., 70, 1977–1992,, 2013. a
Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res.-Atmos., 114, D00A23,, 2009. a
Baldauf, M., Seifert, A., Förstner, J., Majewski, D., Raschendorfer, M., and Reinhardt, T.: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities, Mon. Weather Rev., 139, 3887–3905,, 2011. a, b
Barlakas, V., Deneke, H., and Macke, A.: The sub-adiabatic model as a concept for evaluating the representation and radiative effects of low-level clouds in a high-resolution atmospheric model, Atmos. Chem. Phys., 20, 303–322,, 2020. a
Baum, B. A., Yang, P., Heymsfield, A. J., Schmitt, C. G., Xie, Y., Bansemer, A., Hu, Y.-X., and Zhang, Z.: Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteorol. Climatol., 50, 1037–1056,, 2011. a
Short summary
Estimating the impact of convection on the upper-tropospheric water budget remains a problem for models employing resolutions of several kilometers or more. A sub-kilometer high-resolution model is used to study summertime convection. The results suggest mostly close agreement with ground- and satellite-based observational data while slightly overestimating total frozen water path and anvil lifetime. The simulations are well suited to supplying information for parameterization development.
Final-revised paper