Articles | Volume 21, issue 4
https://doi.org/10.5194/acp-21-2781-2021
https://doi.org/10.5194/acp-21-2781-2021
Research article
 | 
24 Feb 2021
Research article |  | 24 Feb 2021

The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America

Melissa L. Breeden, Amy H. Butler, John R. Albers, Michael Sprenger, and Andrew O'Neil Langford

Related authors

The response of the North Pacific jet and stratosphere-to-troposphere transport of ozone over western North America to RCP8.5 climate forcing
Dillon Elsbury, Amy H. Butler, John R. Albers, Melissa L. Breeden, and Andrew O'Neil Langford
Atmos. Chem. Phys., 23, 5101–5117, https://doi.org/10.5194/acp-23-5101-2023,https://doi.org/10.5194/acp-23-5101-2023, 2023
Short summary
The evolution of precipitation and warm conveyor belts during the central southwest Asia wet season
Melissa Leah Breeden, Andrew Hoell, John Robert Albers, and Kimberly Slinski
EGUsphere, https://doi.org/10.5194/egusphere-2023-388,https://doi.org/10.5194/egusphere-2023-388, 2023
Short summary
Subseasonal precipitation forecasts of opportunity over central southwest Asia
Melissa L. Breeden, John R. Albers, and Andrew Hoell
Weather Clim. Dynam., 3, 1183–1197, https://doi.org/10.5194/wcd-3-1183-2022,https://doi.org/10.5194/wcd-3-1183-2022, 2022
Short summary
Dynamics of ENSO-driven stratosphere-to-troposphere transport of ozone over North America
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys., 22, 13035–13048, https://doi.org/10.5194/acp-22-13035-2022,https://doi.org/10.5194/acp-22-13035-2022, 2022
Short summary
Subseasonal prediction of springtime Pacific–North American transport using upper-level wind forecasts
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021,https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Divergent convective outflow in large-eddy simulations
Edward Groot and Holger Tost
Atmos. Chem. Phys., 23, 6065–6081, https://doi.org/10.5194/acp-23-6065-2023,https://doi.org/10.5194/acp-23-6065-2023, 2023
Short summary
Modulation of daily PM2.5 concentrations over China in winter by large-scale circulation and climate change
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023,https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Trajectory enhancement of low-earth orbiter thermodynamic retrievals to predict convection: a simulation experiment
Mark T. Richardson, Brian H. Kahn, and Peter Kalmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-97,https://doi.org/10.5194/egusphere-2023-97, 2023
Short summary
Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023,https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary
Daytime along-valley winds in the Himalayas as simulated by the Weather Research and Forecasting (WRF) model
Johannes Mikkola, Victoria A. Sinclair, Marja Bister, and Federico Bianchi
Atmos. Chem. Phys., 23, 821–842, https://doi.org/10.5194/acp-23-821-2023,https://doi.org/10.5194/acp-23-821-2023, 2023
Short summary

Cited articles

Albers, J. R., Perlwitz, J., Butler, A. H., Birner, T., Kiladis, G. N., Lawrence, Z. D., and Dias, J.: Mechanisms governing interannual variability of stratosphere-to-troposphere ozone transport, J. Geophys. Res.-Atmos., 123, 234–260, https://doi.org/10.1002/2017JD026890, 2018. 
Athanasiadis, P. J., Wallace, J. M., and Wettstein, J. J.: Patterns of winter- time jet stream variability and their relation to the storm tracks, J. Atmos. Sci., 67, 1361–1381, https://doi.org/10.1175/2009JAS3270.1, 2010. 
Breeden, M. L., Hoover, B. T., Newman, M., and Vimont D. J.: Optimal North Pacific Blocking Precursors and their Deterministic Subseasonal Evolution during Boreal Winter, Mon. Weather Rev., 148, 739–761, https://doi.org/10.1175/MWR-D-19-0273.1, 2020. 
Breeden, M. L. and Martin J. E.: Analyzing the onset of an extreme North Pacific Jet Retraction using Piecewise Tendency Diagnosis, Q. J. R. Meteor. Soc., 144, 1895–1913, https://doi.org/10.1002/qj.3388, 2018. 
Christenson, C. E., Martin, J. E., and Handlos Z. J.: A synoptic-climatology of Northern Hemisphere, cold season polar and subtropical jet superposition events, J. Climate, 30, 7231–7246, 2017. 
Download
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Altmetrics
Final-revised paper
Preprint