Research article
24 Feb 2021
Research article
| 24 Feb 2021
The spring transition of the North Pacific jet and its relation to deep stratosphere-to-troposphere mass transport over western North America
Melissa L. Breeden et al.
Related authors
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-276, https://doi.org/10.5194/acp-2022-276, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño-Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards during are assessed.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Lukas Jansing, Lukas Papritz, Bruno Dürr, Daniel Gerstgrasser, and Michael Sprenger
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-24, https://doi.org/10.5194/wcd-2022-24, 2022
Preprint under review for WCD
Short summary
Short summary
This study presents a five-year climatology of three main Foehn types and three Deep Foehn subtypes. The main types differ in the large-scale and Alpine-scale weather conditions, the subtypes in terms of the amount and extent of precipitation on the Alpine south side. They are found to strongly affect the local meteorological characteristics at Altdorf. The study concludes by setting the new classification into a historic context.
John R. Albers, Amy H. Butler, Andrew O. Langford, Dillon Elsbury, and Melissa L. Breeden
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-276, https://doi.org/10.5194/acp-2022-276, 2022
Preprint under review for ACP
Short summary
Short summary
Ozone transported from the stratosphere contributes to background ozone concentrations in the free troposphere and to surface ozone exceedance events that affect human health. The physical processes whereby the El Niño-Southern Oscillation (ENSO) modulates North American stratosphere-to-troposphere ozone transport during spring are documented, and the usefulness of ENSO for predicting ozone events that may cause exceedances in surface air quality standards during are assessed.
Jan Clemens, Felix Ploeger, Paul Konopka, Raphael Portmann, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 22, 3841–3860, https://doi.org/10.5194/acp-22-3841-2022, https://doi.org/10.5194/acp-22-3841-2022, 2022
Short summary
Short summary
Highly polluted air flows from the surface to higher levels of the atmosphere during the Asian summer monsoon. At high levels, the air is trapped within eddies. Here, we study how air masses can leave the eddy within its cutoff, how they distribute, and how their chemical composition changes. We found evidence for transport from the eddy to higher latitudes over the North Pacific and even Alaska. During transport, trace gas concentrations within cutoffs changed gradually, showing steady mixing.
Jörg Wieder, Claudia Mignani, Mario Schär, Lucie Roth, Michael Sprenger, Jan Henneberger, Ulrike Lohmann, Cyril Brunner, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 3111–3130, https://doi.org/10.5194/acp-22-3111-2022, https://doi.org/10.5194/acp-22-3111-2022, 2022
Short summary
Short summary
We investigate the variation in ice-nucleating particles (INPs) relevant for primary ice formation in mixed-phased clouds over the Alps based on simultaneous in situ observations at a mountaintop and a nearby high valley (1060 m height difference). In most cases, advection from the surrounding lower regions was responsible for changes in INP concentration, causing a diurnal cycle at the mountaintop. Our study underlines the importance of the planetary boundary layer as an INP reserve.
Lukas Bösiger, Michael Sprenger, Maxi Boettcher, Hanna Joos, and Tobias Günther
Geosci. Model Dev., 15, 1079–1096, https://doi.org/10.5194/gmd-15-1079-2022, https://doi.org/10.5194/gmd-15-1079-2022, 2022
Short summary
Short summary
Jet streams are coherent air flows that interact with atmospheric structures such as warm conveyor belts (WCBs) and the tropopause. Individually, these structures have a significant impact on the weather evolution. A first step towards a deeper understanding of the meteorological processes is to extract jet stream core lines, for which we develop a novel feature extraction algorithm. Based on the line geometry, we automatically detect and visualize potential interactions between WCBs and jets.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
Philippe Besson, Luise J. Fischer, Sebastian Schemm, and Michael Sprenger
Weather Clim. Dynam., 2, 991–1009, https://doi.org/10.5194/wcd-2-991-2021, https://doi.org/10.5194/wcd-2-991-2021, 2021
Short summary
Short summary
The strongest cyclone intensification is associated with a strong dry-dynamical forcing. Moreover, strong forcing and strong intensification correspond to a tendency for poleward cyclone propagation, which occurs in distinct regions in the Northern Hemisphere. There is a clear spatial pattern in the occurrence of certain forcing combinations. This implies a fundamental relationship between dry-dynamical processes and the intensification as well as the propagation of extratropical cyclones.
Raphael Portmann, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 507–534, https://doi.org/10.5194/wcd-2-507-2021, https://doi.org/10.5194/wcd-2-507-2021, 2021
Short summary
Short summary
We explore the three-dimensional life cycle of cyclonic structures
(so-called PV cutoffs) near the tropopause. PV cutoffs are frequent weather systems in the extratropics that lead to high-impact weather. However, many unknowns exist regarding their evolution. We present a new method to track PV cutoffs as 3D objects in reanalysis data by following air parcels along the flow. We study the climatological life cycles of PV cutoffs in detail and propose a classification into three types.
John R. Albers, Amy H. Butler, Melissa L. Breeden, Andrew O. Langford, and George N. Kiladis
Weather Clim. Dynam., 2, 433–452, https://doi.org/10.5194/wcd-2-433-2021, https://doi.org/10.5194/wcd-2-433-2021, 2021
Short summary
Short summary
Weather variability controls the transport of ozone from the stratosphere to the Earth’s surface and water vapor from oceanic source regions to continental land masses. Forecasting these types of transport has high societal value because of the negative impacts of ozone on human health and the role of water vapor in governing precipitation variability. We use upper-level wind forecasts to assess the potential for predicting ozone and water vapor transport 3–6 weeks ahead of time.
Michael A. Barnes, Thando Ndarana, Michael Sprenger, and Willem A. Landman
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-24, https://doi.org/10.5194/wcd-2021-24, 2021
Revised manuscript has not been submitted
Short summary
Short summary
Stratospheric air can at times intrude into the troposphere and is associated with cyclonic development throughout the atmosphere and at the surface. Through a highly idealised, systematic approach, the effect different intrusion characteristics have on surface cyclones are investigated. The proximity of stratospheric intrusions surface is shown to be the main contributing factor to the development of associated surface cyclones, confirming the results of recent cut-off low climatologies.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 2, 71–88, https://doi.org/10.5194/wcd-2-71-2021, https://doi.org/10.5194/wcd-2-71-2021, 2021
Short summary
Short summary
In this study we identify the wettest seasons globally and address their meteorological characteristics. We show that in different regions the wettest seasons occur in different times of the year and result from either unusually high frequencies of wet days and/or daily extremes. These high frequencies can be largely attributed to four specific weather systems, especially cyclones. Our analysis uses a thoroughly explained, novel methodology that could also be applied to climate models.
Claudia Mignani, Jörg Wieder, Michael A. Sprenger, Zamin A. Kanji, Jan Henneberger, Christine Alewell, and Franz Conen
Atmos. Chem. Phys., 21, 657–664, https://doi.org/10.5194/acp-21-657-2021, https://doi.org/10.5194/acp-21-657-2021, 2021
Short summary
Short summary
Most precipitation above land starts with ice in clouds. It is promoted by extremely rare particles. Some ice-nucleating particles (INPs) cause cloud droplets to already freeze above −15°C, a temperature at which many clouds begin to snow. We found that the abundance of such INPs among other particles of similar size is highest in precipitating air masses and lowest when air carries desert dust. This brings us closer to understanding the interactions between land, clouds, and precipitation.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Raphael Portmann, Juan Jesús González-Alemán, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, https://doi.org/10.5194/wcd-1-597-2020, 2020
Short summary
Short summary
In September 2018 an intense Mediterranean cyclone with structural similarities to a hurricane, a so-called medicane, caused severe damage in Greece. Its development was uncertain, even just a few days in advance. The reason for this was uncertainties in the jet stream over the North Atlantic 3 d prior to cyclogenesis that propagated into the Mediterranean. They led to an uncertain position of the upper-level disturbance and, as a result, of the position and thermal structure of the cyclone.
Hanin Binder, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 577–595, https://doi.org/10.5194/wcd-1-577-2020, https://doi.org/10.5194/wcd-1-577-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important cloud- and
precipitation-producing airstreams in extratropical cyclones. By combining satellite observations with model data from a new reanalysis dataset, this study provides detailed observational insight into the vertical cloud structure of WCBs. We find that the reanalyses essentially capture the observed cloud pattern, but the observations reveal mesoscale structures not resolved by the temporally and spatially much coarser-resolution model data.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Sebastian Schemm, Stefan Rüdisühli, and Michael Sprenger
Weather Clim. Dynam., 1, 459–479, https://doi.org/10.5194/wcd-1-459-2020, https://doi.org/10.5194/wcd-1-459-2020, 2020
Short summary
Short summary
Troughs and ridges are ubiquitous flow features in the upper troposphere and are centerpiece elements of weather and climate research. A novel method is introduced to identify and track the life cycle of troughs and ridges and their orientation. The aim is to close the existing gap between methods that detect the initiation phase and methods that detect the decaying phase of Rossby wave development. Global climatologies, the influence of ENSO and Lagrangian characteristics are discussed.
Li Zhang, Meiyun Lin, Andrew O. Langford, Larry W. Horowitz, Christoph J. Senff, Elizabeth Klovenski, Yuxuan Wang, Raul J. Alvarez II, Irina Petropavlovskikh, Patrick Cullis, Chance W. Sterling, Jeff Peischl, Thomas B. Ryerson, Steven S. Brown, Zachary C. J. Decker, Guillaume Kirgis, and Stephen Conley
Atmos. Chem. Phys., 20, 10379–10400, https://doi.org/10.5194/acp-20-10379-2020, https://doi.org/10.5194/acp-20-10379-2020, 2020
Short summary
Short summary
Measuring and quantifying the sources of elevated springtime ozone in the southwestern US is challenging but relevant to the implications for control policy. Here we use intensive field measurements and two global models to study ozone sources in the region. We find that ozone from the stratosphere, wildfires, and Asia is an important source of high-ozone events in the region. Our analysis also helps understand the uncertainties in ozone simulations with individual models.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Annika Oertel, Maxi Boettcher, Hanna Joos, Michael Sprenger, and Heini Wernli
Weather Clim. Dynam., 1, 127–153, https://doi.org/10.5194/wcd-1-127-2020, https://doi.org/10.5194/wcd-1-127-2020, 2020
Short summary
Short summary
Warm conveyor belts (WCBs) are important, mainly stratiform cloud forming airstreams in extratropical cyclones that can include embedded convection. This WCB case study systematically compares the characteristics of convective vs. slantwise ascent of the WCB. We find that embedded convection leads to regions of significantly stronger precipitation. Moreover, it strongly modifies the potential vorticity distribution in the lower and upper troposphere, where its also influences the waveguide.
Matthias Röthlisberger, Michael Sprenger, Emmanouil Flaounas, Urs Beyerle, and Heini Wernli
Weather Clim. Dynam., 1, 45–62, https://doi.org/10.5194/wcd-1-45-2020, https://doi.org/10.5194/wcd-1-45-2020, 2020
Short summary
Short summary
In this study we quantify how much the coldest, middle and hottest third of all days during extremely hot summers contribute to their respective seasonal mean anomaly. This
extreme-summer substructurevaries substantially across the Northern Hemisphere and is directly related to the local physical drivers of extreme summers. Furthermore, comparing re-analysis (i.e. measurement-based) and climate model extreme-summer substructures reveals a remarkable level of agreement.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Bojan Škerlak, Stephan Pfahl, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 19, 6535–6549, https://doi.org/10.5194/acp-19-6535-2019, https://doi.org/10.5194/acp-19-6535-2019, 2019
Short summary
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Andrew O. Langford, Raul J. Alvarez II, Guillaume Kirgis, Christoph J. Senff, Dani Caputi, Stephen A. Conley, Ian C. Faloona, Laura T. Iraci, Josette E. Marrero, Mimi E. McNamara, Ju-Mee Ryoo, and Emma L. Yates
Atmos. Meas. Tech., 12, 1889–1904, https://doi.org/10.5194/amt-12-1889-2019, https://doi.org/10.5194/amt-12-1889-2019, 2019
Short summary
Short summary
Lidar, aircraft, and surface measurements of ozone made during the 2016 California Baseline Ozone Transport Study (CABOTS) are compared to assess their validity and verify their suitability for investigations into the contributions of stratosphere-to-troposphere transport, Asian pollution, and wildfires to summertime surface ozone concentrations in the San Joaquin Valley of California. Our analysis shows that the lidar and aircraft measurements agree, on average, to within ±5 ppbv.
Thierry Leblanc, Mark A. Brewer, Patrick S. Wang, Maria Jose Granados-Muñoz, Kevin B. Strawbridge, Michael Travis, Bernard Firanski, John T. Sullivan, Thomas J. McGee, Grant K. Sumnicht, Laurence W. Twigg, Timothy A. Berkoff, William Carrion, Guillaume Gronoff, Ali Aknan, Gao Chen, Raul J. Alvarez, Andrew O. Langford, Christoph J. Senff, Guillaume Kirgis, Matthew S. Johnson, Shi Kuang, and Michael J. Newchurch
Atmos. Meas. Tech., 11, 6137–6162, https://doi.org/10.5194/amt-11-6137-2018, https://doi.org/10.5194/amt-11-6137-2018, 2018
Short summary
Short summary
This article reviews the capability of five ozone lidars from the North American TOLNet lidar network. These ground-based laser remote-sensing instruments typically measure ozone in the troposphere with a precision of 5 % and vertical and time resolutions of 100 m and 10 min, respectively. Understanding ozone variability at high spatiotemporal scales is essential for monitoring air quality, human health, and climate. The article shows that the TOLNet lidars are very well suited for this purpose.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Lihua Wang, Michael J. Newchurch, Raul J. Alvarez II, Timothy A. Berkoff, Steven S. Brown, William Carrion, Russell J. De Young, Bryan J. Johnson, Rene Ganoe, Guillaume Gronoff, Guillaume Kirgis, Shi Kuang, Andrew O. Langford, Thierry Leblanc, Erin E. McDuffie, Thomas J. McGee, Denis Pliutau, Christoph J. Senff, John T. Sullivan, Grant Sumnicht, Laurence W. Twigg, and Andrew J. Weinheimer
Atmos. Meas. Tech., 10, 3865–3876, https://doi.org/10.5194/amt-10-3865-2017, https://doi.org/10.5194/amt-10-3865-2017, 2017
Short summary
Short summary
Intercomparisons have been made between three TOLNet ozone lidars and between the lidars and other ozone instruments during the 2014 DISCOVER-AQ and FRAPPÉ campaigns in Colorado. Overall, the TOLNet lidars are capable of measuring 5 min tropospheric ozone variations with accuracy better than ±15 % in terms of their vertical resolving capability and better than ±5 % in terms of their column average measurement. These results indicate very good measurement accuracy for the three TOLNet lidars.
Davide Putero, Paolo Cristofanelli, Michael Sprenger, Bojan Škerlak, Laura Tositti, and Paolo Bonasoni
Atmos. Chem. Phys., 16, 14203–14217, https://doi.org/10.5194/acp-16-14203-2016, https://doi.org/10.5194/acp-16-14203-2016, 2016
Short summary
Short summary
The aim of this paper is to present STEFLUX, a tool to obtain a fast-computing identification of the stratospheric intrusion (SI) events occurring at a specific location and during a specified time window. STEFLUX results are compared to the SI observations at two high-mountain WMO/GAW global stations in Nepal and Italy, representative of two hot spots for climate change. Furthermore, the climatology of SI at the two stations is assessed, and the impact of several climate factors investigated.
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
Short summary
We investigate the contribution of tropopause folds in the summertime tropospheric ozone pool over the eastern Mediterranean and the Middle East. For this purpose we use the EMAC atmospheric chemistry–climate model and a fold identification algorithm. A clear increase of ozone is found in the middle troposphere due to fold activity. The interannual variability of near-surface ozone over the eastern Mediterranean is related to that of both tropopause folds and ozone in the free troposphere.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Florian Berkes, Peter Hoor, Heiko Bozem, Daniel Kunkel, Michael Sprenger, and Stephan Henne
Atmos. Chem. Phys., 16, 6011–6025, https://doi.org/10.5194/acp-16-6011-2016, https://doi.org/10.5194/acp-16-6011-2016, 2016
Short summary
Short summary
We presented airborne measurements of CO2 and O3 across the entrainment zone over a semi-remote environment in southwestern Germany in late summer 2011 .
For the first time CO2 and O3 were used as tracer to identify mixing through this transport barrier. We demonstrated that the tracer--tracer correlation of CO2 and O3 is a powerful tool to identify entrainment and mixing.
K.-E. Min, R. A. Washenfelder, W. P. Dubé, A. O. Langford, P. M. Edwards, K. J. Zarzana, J. Stutz, K. Lu, F. Rohrer, Y. Zhang, and S. S. Brown
Atmos. Meas. Tech., 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, https://doi.org/10.5194/amt-9-423-2016, 2016
Short summary
Short summary
We have developed a two-channel broadband cavity enhanced absorption spectrometer for field measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide, and water. We have successfully deployed this instrument during two aircraft and two ground-based field campaigns. The demonstrated precision (2σ) for retrievals of CHOCHO, HONO, and NO2 are 34, 350, and 80 parts per trillion (pptv) in 5 s, with accuracy of 5.8, 9.0 and 5.0 %.
P. Reutter, B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 15, 10939–10953, https://doi.org/10.5194/acp-15-10939-2015, https://doi.org/10.5194/acp-15-10939-2015, 2015
Short summary
Short summary
In this manuscript, we investigate the exchange of air masses across the dynamical tropopause (stratosphere-troposphere exchange, STE) in the vicinity of North Atlantic cyclones. By using two 6-hourly resolved ERA-Interim climatologies of STE and cyclones from 1979 to 2011, we are able to directly compute the amount of STE in the vicinity of every individual cyclone in this time period. This enables us to provide a robust and consistent quantification of STE near North Atlantic cyclones.
M. Sprenger and H. Wernli
Geosci. Model Dev., 8, 2569–2586, https://doi.org/10.5194/gmd-8-2569-2015, https://doi.org/10.5194/gmd-8-2569-2015, 2015
R. Ahmadov, S. McKeen, M. Trainer, R. Banta, A. Brewer, S. Brown, P. M. Edwards, J. A. de Gouw, G. J. Frost, J. Gilman, D. Helmig, B. Johnson, A. Karion, A. Koss, A. Langford, B. Lerner, J. Olson, S. Oltmans, J. Peischl, G. Pétron, Y. Pichugina, J. M. Roberts, T. Ryerson, R. Schnell, C. Senff, C. Sweeney, C. Thompson, P. R. Veres, C. Warneke, R. Wild, E. J. Williams, B. Yuan, and R. Zamora
Atmos. Chem. Phys., 15, 411–429, https://doi.org/10.5194/acp-15-411-2015, https://doi.org/10.5194/acp-15-411-2015, 2015
Short summary
Short summary
High 2013 wintertime O3 pollution events associated with oil/gas production within the Uinta Basin are studied using a 3D model. It's able quantitatively to reproduce these events using emission estimates of O3 precursors based on ambient measurements (top-down approach), but unable to reproduce them using a recent bottom-up emission inventory for the oil/gas industry. The role of various physical and meteorological processes, chemical species and pathways contributing to high O3 are quantified.
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
B. Škerlak, M. Sprenger, and H. Wernli
Atmos. Chem. Phys., 14, 913–937, https://doi.org/10.5194/acp-14-913-2014, https://doi.org/10.5194/acp-14-913-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization
Revising the definition of anthropogenic heat flux from buildings: role of human activities and building storage heat flux
An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses
Distinct evolutions of haze pollution from winter to the following spring over the North China Plain: role of the North Atlantic sea surface temperature anomalies
The foehn effect during easterly flow over Svalbard
Effect of rainfall-induced diabatic heating over southern China on the formation of wintertime haze on the North China Plain
Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings
Lightning-ignited wildfires and long continuing current lightning in the Mediterranean Basin: preferential meteorological conditions
Identifying source regions of air masses sampled at the tropical high-altitude site of Chacaltaya using WRF-FLEXPART and cluster analysis
Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019
Future projections of daily hazy and clear weather conditions over the North China Plain using a Perturbed Parameter Ensemble
Modelling spatiotemporal variations of the canopy layer urban heat island in Beijing at the neighbourhood scale
Dispersion of particulate matter (PM2.5) from wood combustion for residential heating: optimization of mitigation actions based on large-eddy simulations
Measurement report: Effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain
The effect of forced change and unforced variability in heat waves, temperature extremes, and associated population risk in a CO2-warmed world
Convective self–aggregation in a mean flow
The potential for geostationary remote sensing of NO2 to improve weather prediction
The Sun's Role for Decadal Climate Predictability in the North Atlantic
Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
Parameterizing the vertical downward dispersion of ship exhaust gas in the near field
Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions
Very long-period oscillations in the atmosphere (0–110 km)
Identification of molecular cluster evaporation rates, cluster formation enthalpies and entropies by Monte Carlo method
The “urban meteorology island”: a multi-model ensemble analysis
Validation of reanalysis Southern Ocean atmosphere trends using sea ice data
Revisiting the trend in the occurrences of the “warm Arctic–cold Eurasian continent” temperature pattern
A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations
Ceilometers as planetary boundary layer height detectors and a corrective tool for COSMO and IFS models
Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions
Confinement of air in the Asian monsoon anticyclone and pathways of convective air to the stratosphere during the summer season
On the climate sensitivity and historical warming evolution in recent coupled model ensembles
Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling
Hadley cell expansion in CMIP6 models
Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline
Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data
Characterization of the air–sea exchange mechanisms during a Mediterranean heavy precipitation event using realistic sea state modelling
Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean
A very high-resolution assessment and modelling of urban air quality
Surface temperature response to the major volcanic eruptions in multiple reanalysis data sets
Role of eyewall and rainband eddy forcing in tropical cyclone intensification
A double ITCZ phenomenology of wind errors in the equatorial Atlantic in seasonal forecasts with ECMWF models
Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG
Quantifying the contribution of anthropogenic influence to the East Asian winter monsoon in 1960–2012
Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory
Large-scale dynamics of tropical cyclone formation associated with ITCZ breakdown
A numerical process study on the rapid transport of stratospheric air down to the surface over western North America and the Tibetan Plateau
Global tropopause altitudes in radiosondes and reanalyses
Heat transport pathways into the Arctic and their connections to surface air temperatures
Piyush Srivastava, Ian M. Brooks, John Prytherch, Dominic J. Salisbury, Andrew D. Elvidge, Ian A. Renfrew, and Margaret J. Yelland
Atmos. Chem. Phys., 22, 4763–4778, https://doi.org/10.5194/acp-22-4763-2022, https://doi.org/10.5194/acp-22-4763-2022, 2022
Short summary
Short summary
The parameterization of surface turbulent fluxes over sea ice remains a weak point in weather forecast and climate models. Recent theoretical developments have introduced more extensive physics but these descriptions are poorly constrained due to a lack of observation data. Here we utilize a large dataset of measurements of turbulent fluxes over sea ice to tune the state-of-the-art parameterization of wind stress, and compare it with a previous scheme.
Yiqing Liu, Zhiwen Luo, and Sue Grimmond
Atmos. Chem. Phys., 22, 4721–4735, https://doi.org/10.5194/acp-22-4721-2022, https://doi.org/10.5194/acp-22-4721-2022, 2022
Short summary
Short summary
Anthropogenic heat emission from buildings is important for atmospheric modelling in cities. The current building anthropogenic heat flux is simplified by building energy consumption. Our research proposes a novel approach to determine ‘real’ building anthropogenic heat emission from the changes in energy balance fluxes between occupied and unoccupied buildings. We hope to provide new insights into future parameterisations of building anthropogenic heat flux in urban climate models.
Lars Hoffmann and Reinhold Spang
Atmos. Chem. Phys., 22, 4019–4046, https://doi.org/10.5194/acp-22-4019-2022, https://doi.org/10.5194/acp-22-4019-2022, 2022
Short summary
Short summary
We present an intercomparison of 2009–2018 lapse rate tropopause characteristics as derived from ECMWF's ERA5 and ERA-Interim reanalyses. Large-scale features are similar, but ERA5 shows notably larger variability, which we mainly attribute to UTLS temperature fluctuations due to gravity waves being better resolved by ECMWF's IFS forecast model. Following evaluation with radiosondes and GPS data, we conclude ERA5 will be a more suitable asset for tropopause-related studies in future work.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Anna A. Shestakova, Dmitry G. Chechin, Christof Lüpkes, Jörg Hartmann, and Marion Maturilli
Atmos. Chem. Phys., 22, 1529–1548, https://doi.org/10.5194/acp-22-1529-2022, https://doi.org/10.5194/acp-22-1529-2022, 2022
Short summary
Short summary
This article presents a comprehensive analysis of the easterly orographic wind episode which occurred over Svalbard on 30–31 May 2017. This wind caused a significant temperature rise on the lee side of the mountains and greatly intensified the snowmelt. This episode was investigated on the basis of measurements collected during the ACLOUD/PASCAL field campaigns with the help of numerical modeling.
Xiadong An, Lifang Sheng, Chun Li, Wen Chen, Yulian Tang, and Jingliang Huangfu
Atmos. Chem. Phys., 22, 725–738, https://doi.org/10.5194/acp-22-725-2022, https://doi.org/10.5194/acp-22-725-2022, 2022
Short summary
Short summary
The North China Plain (NCP) suffered many periods of haze in winter during 1985–2015, related to the rainfall-induced diabatic heating over southern China. The haze over the NCP is modulated by an anomalous anticyclone caused by the Rossby wave and a north–south circulation (NSC) induced mainly by diabatic heating. As a Rossby wave source, rainfall-induced diabatic heating supports waves and finally strengthens the anticyclone over the NCP. These changes favor haze over the NCP.
Chenrui Diao, Yangyang Xu, and Shang-Ping Xie
Atmos. Chem. Phys., 21, 18499–18518, https://doi.org/10.5194/acp-21-18499-2021, https://doi.org/10.5194/acp-21-18499-2021, 2021
Short summary
Short summary
Anthropogenic aerosol (AA) emission has shown a zonal redistribution since the 1980s, with a decline in the Western Hemisphere (WH) high latitudes and an increase in the Eastern Hemisphere (EH) low latitudes. This study compares the role of zonally asymmetric forcings affecting the climate. The WH aerosol reduction dominates the poleward shift of the Hadley cell and the North Pacific warming, while the EH AA forcing is largely confined to the emission domain and induces local cooling responses.
Francisco J. Pérez-Invernón, Heidi Huntrieser, Sergio Soler, Francisco J. Gordillo-Vázquez, Nicolau Pineda, Javier Navarro-González, Víctor Reglero, Joan Montanyà, Oscar van der Velde, and Nikos Koutsias
Atmos. Chem. Phys., 21, 17529–17557, https://doi.org/10.5194/acp-21-17529-2021, https://doi.org/10.5194/acp-21-17529-2021, 2021
Short summary
Short summary
Lightning-ignited fires tend to occur in remote areas and can spread significantly before suppression. Long continuing current (LCC) lightning, preferably taking place in dry thunderstorms, is believed to be the main precursor of lightning-ignited fires. We analyze fire databases of lightning-ignited fires in the Mediterranean basin and report the shared meteorological conditions of fire- and LCC-lightning-producing thunderstorms. These results can be useful to improve fire forecasting methods.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Antonio Capponi, Natalie J. Harvey, Helen F. Dacre, Keith Beven, Cameron Saint, Cathie A. Wells, and Mike R. James
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-858, https://doi.org/10.5194/acp-2021-858, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Forecasts of the dispersal of volcanic ash in the atmosphere are hampered by uncertainties in parameters associated with the eruption plume. Uncertainty quantification is vital for making robust flight-planning decisions. We present a method aiming to use satellite data to refine a series of simulations of volcanic ash dispersion and quantify these uncertainties. We show how we can improve forecasts accuracy and potentially reduce the regions of high risk of volcanic ash relevant to aviation.
Shipra Jain, Ruth M. Doherty, David Sexton, Steven Turnock, Chaofan Li, Zixuan Jia, Zongbo Shi, and Lin Pei
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-826, https://doi.org/10.5194/acp-2021-826, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
We provide a range of future projections of winter haze and clear conditions over the North China Plain (NCP) using multiple simulations from a climate model for the high-emission scenario (RCP8.5). The frequency of haze conducive weather is likely to increase whereas the frequency of clear weather is likely to decrease in future. The total number of hazy days for a given winter can be as much as ~3.5 times higher than the number of clear days over the NCP.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 21, 12463–12477, https://doi.org/10.5194/acp-21-12463-2021, https://doi.org/10.5194/acp-21-12463-2021, 2021
Short summary
Short summary
House heating by wood-burning stoves is cozy and needed in boreal cities, e.g., Bergen, Norway. But smoke (aerosols) from stoves may reduce urban air quality. It can be transported over long distance excessively polluting some neighborhoods. Who will suffer the most? Our modelling study looks at urban pollution in unprecedented meter-sized details tracing smoke pathways and turbulent dispersion in a typical city. We prototype effective policy scenarios to mitigate urban air quality problems.
Piotr Sekuła, Anita Bokwa, Jakub Bartyzel, Bogdan Bochenek, Łukasz Chmura, Michał Gałkowski, and Mirosław Zimnoch
Atmos. Chem. Phys., 21, 12113–12139, https://doi.org/10.5194/acp-21-12113-2021, https://doi.org/10.5194/acp-21-12113-2021, 2021
Short summary
Short summary
The wind shear generated on a local scale by the diversified relief’s impact can be a factor which significantly modifies the spatial pattern of PM10 concentration. The vertical profile of PM10 over a city located in a large valley during the events with high surface-level PM10 concentrations may show a sudden decrease with height not only due to the increase in wind speed, but also due to the change in wind direction alone. Vertical aerosanitary urban zones can be distinguished.
Jangho Lee, Jeffrey C. Mast, and Andrew E. Dessler
Atmos. Chem. Phys., 21, 11889–11904, https://doi.org/10.5194/acp-21-11889-2021, https://doi.org/10.5194/acp-21-11889-2021, 2021
Short summary
Short summary
This paper investigates the impact of global warming on heat and humidity extremes. There are three major findings in this study. We quantify how unforced variability in the climate impacts can lead to large variations where heat waves occur, we find that all heat extremes increase as the climate warms, especially between 1.5 and 2.0 °C of the average global warming, and we show that the economic inequity of facing extreme heat will worsen in a warmer world.
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys., 21, 10337–10345, https://doi.org/10.5194/acp-21-10337-2021, https://doi.org/10.5194/acp-21-10337-2021, 2021
Short summary
Short summary
We analyze the behavior of organized convection in a large-scale flow by imposing a mean flow to idealized simulations. In the mean flow, organized convection initially propagates slower than the mean wind speed and becomes stationary. The initial upstream and downstream difference in surface fluxes becomes symmetric as the surface momentum flux acts as a drag, resulting in the stationarity. Meanwhile, the surface enthalpy flux has a minor role in the propagation of the convection.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-241, https://doi.org/10.5194/acp-2021-241, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry climate model dataset, we investigate the solar surface signal in the North Atlantic and European region, and find that changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate.
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997, https://doi.org/10.5194/acp-21-6985-2021, https://doi.org/10.5194/acp-21-6985-2021, 2021
Short summary
Short summary
We find that simulated stratospheric sulfate geoengineering could lead to warmer Eurasian winters alongside a drier Mediterranean and wetting to the north. These effects occur due to the strengthening of the Northern Hemisphere stratospheric polar vortex, which shifts the North Atlantic Oscillation to a more positive phase. We find the effects in our simulations to be much more significant than the wintertime effects of large tropical volcanic eruptions which inject much less sulfate aerosol.
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951, https://doi.org/10.5194/acp-21-5935-2021, https://doi.org/10.5194/acp-21-5935-2021, 2021
Short summary
Short summary
This work aims to describe the physical distribution of ship exhaust gases in the near field, e.g., inside of a harbor. Results were calculated with a mathematical model for different meteorological and technical conditions. It has been shown that large vessels like cruise ships have a significant effect of up to 55 % downward movement of exhaust gas, as they can disturb the ground near wind circulation. This needs to be considered in urban air pollution studies.
Taufiq Hassan, Robert J. Allen, Wei Liu, and Cynthia A. Randles
Atmos. Chem. Phys., 21, 5821–5846, https://doi.org/10.5194/acp-21-5821-2021, https://doi.org/10.5194/acp-21-5821-2021, 2021
Short summary
Short summary
State-of-the-art climate models yield robust, externally forced changes in the Atlantic meridional overturning circulation (AMOC), the bulk of which are due to anthropogenic aerosol perturbations to net surface shortwave radiation and sea surface temperature. AMOC-related feedbacks act to reinforce this aerosol-forced response, largely due to changes in sea surface salinity (and hence sea surface density), with temperature- and cloud-related feedbacks acting to mute the initial response.
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778, https://doi.org/10.5194/acp-21-4759-2021, https://doi.org/10.5194/acp-21-4759-2021, 2021
Short summary
Short summary
Sensitivities of forecasts of the Madden–Julian oscillation (MJO) to various different configurations of the physics are examined with the global model of ECMWF's Integrated Forecasting System (IFS). The motivation for the study was to simulate the MJO as a nonlinear free wave. To emulate free dynamics in the IFS,
various momentum dissipation terms (
friction) as well as diabatic heating were selectively turned off over the tropics for the range of the latitudes from 20° S to 20° N.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021, https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Short summary
Atmospheric oscillations with periods of up to several 100 years exist at altitudes up to 110 km. They are also seen in computer models (GCMs) of the atmospheric. They are often attributed to external influences from the sun, from the oceans, or from atmospheric constituents. This is difficult to verify as the atmosphere cannot be manipulated in an experiment. However, a GCM can be changed arbitrarily. Doing so, we find that long-period oscillations may be excited internally in the atmosphere.
Anna Shcherbacheva, Tracey Balehowsky, Jakub Kubečka, Tinja Olenius, Tapio Helin, Heikki Haario, Marko Laine, Theo Kurtén, and Hanna Vehkamäki
Atmos. Chem. Phys., 20, 15867–15906, https://doi.org/10.5194/acp-20-15867-2020, https://doi.org/10.5194/acp-20-15867-2020, 2020
Short summary
Short summary
Atmospheric new particle formation and cluster growth to aerosol particles is an important field of research, in particular due to the climate change phenomenon. Evaporation rates are very difficult to account for but they are important to explain the formation and growth of particles. Different quantum chemistry (QC) methods produce substantially different values for the evaporation rates. We propose a novel approach for inferring evaporation rates of clusters from available measurements.
Jan Karlický, Peter Huszár, Tereza Nováková, Michal Belda, Filip Švábik, Jana Ďoubalová, and Tomáš Halenka
Atmos. Chem. Phys., 20, 15061–15077, https://doi.org/10.5194/acp-20-15061-2020, https://doi.org/10.5194/acp-20-15061-2020, 2020
Short summary
Short summary
Cities are characterized by their impact on various meteorological variables. Our study aims to generalize these modifications into a single phenomenon – the urban meteorology island (UMI). A wide ensemble of Weather Research and Forecasting (WRF) and Regional Climate Model (RegCM) simulations investigated urban-induced modifications as individual UMI components. Significant changes are found in most of the discussed meteorological variables with a strong impact of specific model simulations.
William R. Hobbs, Andrew R. Klekociuk, and Yuhang Pan
Atmos. Chem. Phys., 20, 14757–14768, https://doi.org/10.5194/acp-20-14757-2020, https://doi.org/10.5194/acp-20-14757-2020, 2020
Short summary
Short summary
Reanalysis products are an invaluable tool for representing variability and long-term trends in regions with limited in situ data. However, validation of these products is difficult because of that lack of station data. Here we present a novel assessment of eight reanalyses over the polar Southern Ocean, leveraging the close relationship between trends in sea ice cover and surface air temperature, that provides clear guidance on the most reliable product for Antarctic research.
Lejiang Yu, Shiyuan Zhong, Cuijuan Sui, and Bo Sun
Atmos. Chem. Phys., 20, 13753–13770, https://doi.org/10.5194/acp-20-13753-2020, https://doi.org/10.5194/acp-20-13753-2020, 2020
Short summary
Short summary
The recent increasing trend of "warm Arctic, cold continents" has attracted much attention, but it remains debatable as to what forces are behind this phenomenon. Sea surface temperature (SST) over the central North Pacific and the North Atlantic oceans influences the trend. On an interdecadal timescale, the recent increase in the occurrences of the warm Arctic–cold Eurasia pattern is a fragment of the interdecadal variability of SST over the Atlantic Ocean and over the central Pacific Ocean.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Leenes Uzan, Smadar Egert, Pavel Khain, Yoav Levi, Elyakom Vadislavsky, and Pinhas Alpert
Atmos. Chem. Phys., 20, 12177–12192, https://doi.org/10.5194/acp-20-12177-2020, https://doi.org/10.5194/acp-20-12177-2020, 2020
Short summary
Short summary
Detection of the planetary boundary layer (PBL) height is crucial to various fields, from air pollution assessment to weather prediction. We examined the diurnal summer PBL height by eight ceilometers in Israel, radiosonde profiles, the global IFS, and regional COSMO models. Our analysis utilized the bulk Richardson number method, the parcel method, and the wavelet covariance transform method. A novel correction tool to improve model results against in-situ ceilometer measurements is introduced.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Bernard Legras and Silvia Bucci
Atmos. Chem. Phys., 20, 11045–11064, https://doi.org/10.5194/acp-20-11045-2020, https://doi.org/10.5194/acp-20-11045-2020, 2020
Short summary
Short summary
The Asian monsoon is the most active region bringing surface compounds by convection to the stratosphere during summer. We study the transport pathways and the trapping within the upper-layer anticyclonic circulation. Above 15 km, the confinement can be represented by a uniform ascent over continental Asia of about 200 m per day and a uniform loss to other regions with a characteristic time of 2 weeks. We rule out the presence of a
chimneyproposed in previous studies over the Tibetan Plateau.
Clare Marie Flynn and Thorsten Mauritsen
Atmos. Chem. Phys., 20, 7829–7842, https://doi.org/10.5194/acp-20-7829-2020, https://doi.org/10.5194/acp-20-7829-2020, 2020
Short summary
Short summary
The range of climate sensitivity of models participating in CMIP6 has increased relative to models participating in CMIP5 due to decreases in the total feedback parameter. This is caused by increases in the shortwave all-sky and clear-sky feedbacks, particularly over the Southern Ocean. These shifts between CMIP6 and CMIP5 did not arise by chance. Both CMIP5 and CMIP6 models are found to exhibit aerosol forcing that is too strong, causing too much cooling relative to observations.
Marie-Noëlle Bouin and Cindy Lebeaupin Brossier
Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, https://doi.org/10.5194/acp-20-6861-2020, 2020
Short summary
Short summary
A coupled, kilometre-scale simulation of a medicane is used to assess the impact of the ocean feedback and role of surface fluxes. Sea surface temperature (SST) drop is much weaker than for tropical cyclones, resulting in no impact on the cyclone. Surface fluxes depend mainly on wind and SST for evaporation and on air temperature for sensible heat. Processes in the Mediterranean, like advection of continental air, rain evaporation and dry air intrusion, play a role in cyclone development.
Kevin M. Grise and Sean M. Davis
Atmos. Chem. Phys., 20, 5249–5268, https://doi.org/10.5194/acp-20-5249-2020, https://doi.org/10.5194/acp-20-5249-2020, 2020
Short summary
Short summary
As Earth's climate warms, the tropical overturning circulation (Hadley circulation) is projected to expand, potentially pushing subtropical dry zones further poleward. This study examines projections of the Hadley circulation from the latest generation of computer models and finds several notable differences from older models. For example, the Northern Hemisphere circulation has expanded northward at a greater rate in recent decades than would be expected from increasing greenhouse gases alone.
Yufei Zou, Yuhang Wang, Zuowei Xie, Hailong Wang, and Philip J. Rasch
Atmos. Chem. Phys., 20, 4999–5017, https://doi.org/10.5194/acp-20-4999-2020, https://doi.org/10.5194/acp-20-4999-2020, 2020
Short summary
Short summary
We analyze the relationship between winter air stagnation and pollution extremes over eastern China and preceding Arctic sea ice loss based on climate modeling and dynamic diagnoses. We find significant increases in both the probability and intensity of air stagnation extremes in the modeling result driven by regional sea ice and sea surface temperature changes over the Pacific sector of the Arctic. We reveal the considerable impact of the Arctic climate change on mid-latitude weather extremes.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
César Sauvage, Cindy Lebeaupin Brossier, Marie-Noëlle Bouin, and Véronique Ducrocq
Atmos. Chem. Phys., 20, 1675–1699, https://doi.org/10.5194/acp-20-1675-2020, https://doi.org/10.5194/acp-20-1675-2020, 2020
Short summary
Short summary
Air–sea exchanges during Mediterranean heavy precipitation events are key and their representation must be improved for high-resolution weather forecasts. This study investigates the mechanisms acting at the air–sea interface during a case that occurred in southern France. To focus on the impact of sea state, we developed and used an original coupled air–wave model. Results show modifications of the forecast for the air–sea fluxes, the near-surface wind and the location of precipitation.
Michal T. Filus, Elliot L. Atlas, Maria A. Navarro, Elena Meneguz, David Thomson, Matthew J. Ashfold, Lucy J. Carpenter, Stephen J. Andrews, and Neil R. P. Harris
Atmos. Chem. Phys., 20, 1163–1181, https://doi.org/10.5194/acp-20-1163-2020, https://doi.org/10.5194/acp-20-1163-2020, 2020
Short summary
Short summary
The effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important unknown in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model.
Tobias Wolf, Lasse H. Pettersson, and Igor Esau
Atmos. Chem. Phys., 20, 625–647, https://doi.org/10.5194/acp-20-625-2020, https://doi.org/10.5194/acp-20-625-2020, 2020
Short summary
Short summary
Exceedances of legal thresholds for urban air pollution are of wide concern. We demonstrate the usefulness of very high-resolution modelling for the assessment of air pollution in the urban space on the example of Bergen, Norway. Vulnerability maps highlight areas with high pollutant loading and pathways for pollutant dispersion. This supports the understanding of urban air pollution beyond existing, scarce monitoring networks and possibly the mitigation of impacts on the local population.
Masatomo Fujiwara, Patrick Martineau, and Jonathon S. Wright
Atmos. Chem. Phys., 20, 345–374, https://doi.org/10.5194/acp-20-345-2020, https://doi.org/10.5194/acp-20-345-2020, 2020
Short summary
Short summary
The global response of surface air temperature (SST) to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 is investigated using 11 global atmospheric reanalysis data sets. Multiple linear regression is applied, with a set of climatic indices orthogonalized, and the residuals are investigated. It is found that careful treatment of tropical SST variability is necessary to evaluate the surface response to volcanic eruptions in observations and reanalyses.
Ping Zhu, Bryce Tyner, Jun A. Zhang, Eric Aligo, Sundararaman Gopalakrishnan, Frank D. Marks, Avichal Mehra, and Vijay Tallapragada
Atmos. Chem. Phys., 19, 14289–14310, https://doi.org/10.5194/acp-19-14289-2019, https://doi.org/10.5194/acp-19-14289-2019, 2019
Short summary
Short summary
Producing timely and accurate intensity forecasts of tropical cyclones (TCs) continues to be one of the most difficult challenges in numerical weather prediction. The difficulty stems from the fact that TC intensification is not only modulated by environmental conditions but also largely depends on TC internal dynamics. The study shows that asymmetric eyewall and rainband eddy forcing above the boundary layer plays an important role in spinning up a TC vortex including rapid intensification.
Jonathan K. P. Shonk, Teferi D. Demissie, and Thomas Toniazzo
Atmos. Chem. Phys., 19, 11383–11399, https://doi.org/10.5194/acp-19-11383-2019, https://doi.org/10.5194/acp-19-11383-2019, 2019
Short summary
Short summary
Modern climate models are affected by systematic biases that harm their ability to produce reliable seasonal forecasts and climate projections. In this study, we investigate causes of biases in wind patterns over the tropical Atlantic during northern spring in three related models. We find that the wind biases are associated with an increase in excess rainfall and convergence in the tropical western Atlantic at the start of April, leading to the redirection of trade winds away from the Equator.
Xinxu Zhao, Julia Marshall, Stephan Hachinger, Christoph Gerbig, Matthias Frey, Frank Hase, and Jia Chen
Atmos. Chem. Phys., 19, 11279–11302, https://doi.org/10.5194/acp-19-11279-2019, https://doi.org/10.5194/acp-19-11279-2019, 2019
Short summary
Short summary
The Weather Research and Forecasting model (WRF), coupled with greenhouse gas (GHG) modules (WRF-GHG), is considered to be a suitable basis for precise GHG transport analysis in urban areas, especially when combined with differential column methodology (DCM). DCM is an effective method not only for comparing models to observations independently of biases caused, for example, by initial conditions, but also for detecting and understanding sources of GHG emissions quantitatively in urban areas.
Xin Hao, Shengping He, Huijun Wang, and Tingting Han
Atmos. Chem. Phys., 19, 9903–9911, https://doi.org/10.5194/acp-19-9903-2019, https://doi.org/10.5194/acp-19-9903-2019, 2019
Short summary
Short summary
The East Asian winter monsoon (EAWM) can be greatly influenced by many factors that can be classified as anthropogenic forcing and natural forcing. Our results show that the increasing anthropogenic emissions in the past decades may have contributed to the weakening of the EAWM, the frequency of occurrence of strong EAWM may have decreased by 45 % due to the anthropogenic forcing, and the anthropogenic forcing is a dominant contributor to the occurrence of a weak EAWM.
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8425–8470, https://doi.org/10.5194/acp-19-8425-2019, https://doi.org/10.5194/acp-19-8425-2019, 2019
Short summary
Short summary
The Amazon Tall Tower Observatory (ATTO) has been established to monitor the rain forest's biosphere–atmosphere exchange, which experiences the combined pressures from human-made deforestation and progressing climate change. This work is meant to be a reference study, which characterizes various geospatial properties of the ATTO footprint region and shows how the human-made transformation of Amazonia may impact future atmospheric observations at ATTO.
Quan Wang, Chanh Kieu, and The-Anh Vu
Atmos. Chem. Phys., 19, 8383–8397, https://doi.org/10.5194/acp-19-8383-2019, https://doi.org/10.5194/acp-19-8383-2019, 2019
Short summary
Short summary
This study presents an analytical model to study large-scale tropical cyclone (TC) formation that can help us understand the maximum capacity of the Earth's atmosphere to produce TCs. Using a barotropic model for the intertropical convergence zone and recent advances in nonlinear dynamical transition, it is found that the Earth's atmosphere can support a limited number of TCs at any given time (<12) in the current climate, thus providing new theoretical insights into the TC formation process.
Bojan Škerlak, Stephan Pfahl, Michael Sprenger, and Heini Wernli
Atmos. Chem. Phys., 19, 6535–6549, https://doi.org/10.5194/acp-19-6535-2019, https://doi.org/10.5194/acp-19-6535-2019, 2019
Short summary
Short summary
Upper-level fronts are often associated with the rapid transport of stratospheric air to the lower troposphere, leading to significantly enhanced ozone concentrations. This paper considers the multi-scale nature that is needed to bring stratospheric air down to the surface. The final transport step to the surface can be related to frontal zones and the associated vertical winds or to near-horizontal tracer transport followed by entrainment into a growing planetary boundary layer.
Tao Xian and Cameron R. Homeyer
Atmos. Chem. Phys., 19, 5661–5678, https://doi.org/10.5194/acp-19-5661-2019, https://doi.org/10.5194/acp-19-5661-2019, 2019
Short summary
Short summary
Global characteristics and trends in the tropopause (the boundary between troposphere and stratosphere) over a 35-year period (1981–2015) are evaluated using both observations and models. The use of two coordinate systems reveals previously undiagnosed changes in the tropopause altitude within the tropics and extratropics and these results have important implications for studies of climate and atmospheric composition (especially that related to stratosphere–troposphere exchange).
Daniel Mewes and Christoph Jacobi
Atmos. Chem. Phys., 19, 3927–3937, https://doi.org/10.5194/acp-19-3927-2019, https://doi.org/10.5194/acp-19-3927-2019, 2019
Short summary
Short summary
Horizontal moist static energy (MSE) transport patterns were extracted from reanalysis data using an artificial neuronal network for the winter months. The results show that during the last 30 years transport pathways that favour MSE transport through the North Atlantic are getting more frequent. This North Atlantic pathway is connected to positive temperature anomalies over the central Arctic, which implies a connection between Arctic amplification and the change in horizontal heat transport.
Cited articles
Albers, J. R., Perlwitz, J., Butler, A. H., Birner, T., Kiladis, G. N.,
Lawrence, Z. D., and Dias, J.: Mechanisms governing interannual variability
of stratosphere-to-troposphere ozone transport, J. Geophys.
Res.-Atmos., 123, 234–260, https://doi.org/10.1002/2017JD026890,
2018.
Athanasiadis, P. J., Wallace, J. M., and Wettstein, J. J.: Patterns of winter- time jet stream variability and their relation to the storm tracks, J. Atmos. Sci., 67, 1361–1381, https://doi.org/10.1175/2009JAS3270.1, 2010.
Breeden, M. L., Hoover, B. T., Newman, M., and Vimont D. J.: Optimal North
Pacific Blocking Precursors and their Deterministic Subseasonal Evolution
during Boreal Winter, Mon. Weather Rev., 148, 739–761, https://doi.org/10.1175/MWR-D-19-0273.1, 2020.
Breeden, M. L. and Martin J. E.: Analyzing the onset of an extreme North
Pacific Jet Retraction using Piecewise Tendency Diagnosis, Q. J. R.
Meteor. Soc., 144, 1895–1913, https://doi.org/10.1002/qj.3388, 2018.
Christenson, C. E., Martin, J. E., and Handlos Z. J.: A synoptic-climatology
of Northern Hemisphere, cold season polar and subtropical jet superposition
events, J. Climate, 30, 7231–7246, 2017.
Danielsen, E. F.: Project Springfield Report, Tech. Rep. 1517, 110 pp.,
Defense At. Supp. Agency, Washington, D. C., 1964.
Danielsen, E. F.: Stratospheric-tropospheric exchange based on
radioactivity, ozone and potential vorticity, J. Atmos. Sci., 25, 502–518,
1968.
Dee, D. P., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. R.
Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Eichelberger, S. J. and Hartmann, D. L.: Zonal jet structure and the leading
mode of variability, J. Clim., 20, 5149–5163, 2007.
ETH Zürich:
Feature-based ERA-Interim Climatologies: available at: http://eraiclim.ethz.ch/, last access: 10 January 2019.
Fleming, E. L., Lim, G.-H., and Wallace, J. M.: Differences between the
spring and autumn circulation of the Northern Hemisphere, J. Atmos. Sci.,
44, 1266–1286, 1987.
García-Herrera, R., Calvo, N., Garcia, R., and Giorgetta, M.: Propagation
of ENSO temperature signals into the middle atmosphere: A comparison of two
general circulation models and ERA-40 reanalysis data, J.
Geophys. Res., 111, D06101, https://doi.org/10.1029/2005JD006061,
2006.
Homeyer, C. R. and Bowman, K. P.: Rossby wave breaking and transport between
the tropics and extratropics above the subtropical jet, J.
Atmos. Sci., 70, 607–626, 2013.
Hoskins, B. J., James, I. N., and White G. H.: The Shape, Propagation and
Mean-Flow Interaction of Large-Scale Weather Systems, J. Atmos. Sci., 40,
1595–1612, https://doi.org/10.1175/1520-0469(1983)040<
1595:TSPAMF>2.0.CO;2, 1983.
Hoskins, B. J., McIntyre, M. E., and Robertson, A. W.: On the use and
significance of isentropic potential vorticity maps, Q. J. R. Meteorol.
Soc., 111, 877–946, https://doi.org/10.1002/qj.49711147002, 1985.
Hoskins, B. J. and Ambrizzi T.: Rossby wave propagation on a realistic
longitudinally varying flow, J. Atmos. Sci., 50, 1661–1671,
https://doi.org/10.1175/1520-0469(1993)050,1661:RWPOAR.2.0.CO;2, 1993.
Hoskins, B. J. and Hodges, K. I.: The Annual Cycle of Northern Hemisphere
Storm Tracks. Part II: Regional Detail, J. Climate, 32, 1761–1775, 2019.
Jaffe, S.C., Martin, J.E., Vimont, D.J., and Lorenz, D.J.: A
synoptic-climatology of episodic, sub-seasonal retractions of the Pacific
jet, Journal of Climate, 24, 2846–2860, 2011.
Keyser, D. and Shapiro, M. A.: A review of the structure and dynamics of
upper-level frontal zones, Mon. Weather Rev., 114, 452–499,
https://doi.org/10.1175/1520- 0493(1986)114<0452:AROTSA>2.0.CO;2, 1986.
Knowland, K. E., Ott, L. E., Duncan, B. N., and Wargan, K.: Stratospheric
intrusion-influenced ozone air quality exceedances investigated in the NASA
MERRA-2 reanalysis, Geophys. Res. Lett., 44, 10691–10701,
https://doi.org/10.1002/2017GL074532, 2017.
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., et
al.: The JRA-55 reanalysis: General specifications and basic
characteristics. Journal of the Meteorological Society of Japan. Ser. II,
93, 5–48. https://doi.org/10.2151/jmsj.2015-001, 2015.
Langford, A., Aikin, K., Eubank, C., and Williams, E.: Stratospheric
contribution to high surface ozone in Colorado during springtime,
Geophys. Res. Lett., 36, L12801,
https://doi.org/10.1029/2009GL038367, 2009.
Langford, A., Brioude, J., Cooper, O., Senff, C., Alvarez, R., Hardesty, R.,
and Oltmans, S.: Stratospheric influence on surface ozone in the Los Angeles area during late spring and early summer of 2010, J. Geophys.
Res., 117, D00V06, https://doi.org/10.1029/2011JD016766, 2012.
Langford, A. O., Alvarez II, R. J., Brioude, J., et al.: Entrainment of stratospheric air and Asian
pollution by the convective boundary layer in the southwestern U.S., J.
Geophys. Res.-Atmos., 122, 1312–1337, https://doi.org/10.1002/2016JD025987, 2017.
Lareau, N. P. and Horel, J. D.: The Climatology of Synoptic-Scale Ascent over
Western North America: A Perspective on Storm Tracks. Mon. Weather
Rev., 140, 1761–1778, https://doi.org/10.1175/MWR-D-11-00203.1, 2012.
Lefohn, A. S., Wernli, H., Shadwick, D., Oltmans, S. J., and Shapiro, M.:
Quantifying the importance of stratospheric–tropospheric transport on
surface ozone concentrations at high- and low-elevation monitoring sites in
the United States, Atmos. Environ., 62, 646–656,
https://doi.org/10.1016/j.atmosenv.2012.09.004, 2012.
Li, C. and Wettstein, J. J.: Thermally Driven and Eddy-Driven Jet
Variability in Reanalysis, J. Climate, 25, 1587–1596, https://doi.org/10.1175/JCLI-D-11-00145.1, 2012.
Lin, M. Y., Fiore, A. M., Cooper, O. R., Horowitz, L. W., Langford, A. O.,
Levy, H., Johnson, B. J., Naik, V., Oltmans, S. J., and Senff C. J.:
Springtime high surface ozone events over the western United States:
Quantifying the role of stratospheric intrusions, J. Geophys. Res., 117,
D00v22, https://doi.org/10.1029/2012jd018151, 2012.
Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Oltmans, S. J.,
Tarasick, D., and Rieder, H. E.: Climate variability modulates western US
ozone air quality in spring via deep stratospheric intrusions, Nat.
Commun., 12, 7105, https://doi.org/10.1038/ncomms8105, 2015.
Martius, O., Schwierz, C., and Davies, H. C.: Breaking waves at the tropopause in the wintertime Northern Hemisphere: climatological analyses of the orientation and the theoretical LC1/2 classification, J.
Atmos. Sci., 64, 2576–2592, 2007.
Nakamura, H.: Midwinter suppression of baroclinic wave activity in the
Pacific, J. Atmos. Sci., 49, 1629–1642, 1992.
Neu, J. L., Flury, T., Manney, G. L., Santee, M. L., Livesey, N. J., and
Worden, J.: Tropospheric ozone variations governed by changes in
stratospheric circulation, Nat. Geosci., 7, 340–344, 2014.
Newman, M., and Sardeshmukh, P. D.: The impact of the annual cycle on the
North Pacific/North American response to remote low-frequency forcing,
J. Atmos. Sci., 55, 1336–1353, 1998.
NOAA Center for Weather and Climate Prediction, NOAA Oceanic Niño Index:
Cold & Warm Episodes by Season, available at: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php, last access: 8 June 2020.
Pan, L. L., Randel, W. J., Gille, J. C., Hall, W. D., Nardi, B., Massie, S., Yudin, V., Khosravi, R., Konopka, P., and Tarasick, D.: Tropospheric intrusions associated with the secondary tropopause, J. Geophys. Res., 114, D10302, https://doi.org/10.1029/2008JD011374, 2009.
Peters, D. and Waugh, D. W.: Rossby wave breaking in the Southern
Hemisphere wintertime upper troposphere, Mon. Weather Rev., 131, 2623–2634,
2003.
Reed, R. J. and Danielsen E. F.: Fronts in the vicinity of the tropopause,
Arch. Meteor. Geophy. A, 11, 1–17, 1959.
Renwick, J. A. and Wallace, J. M.: Relationships between North Pacific
wintertime blocking, El NinÞo, and the PNA pattern. Mon. Weather Rev., 124,
2017–2076, https://doi.org/10.1175/1520-0493(1996)124,2071:RBNPWB.2.0.co;2, 1996.
Research Data Archive at the National Center for Atmospheric Research: Computational and Information Systems Laboratory, available at: https://rda.ucar.edu/, last access: 11 January 2019.
Rivière, G. and Joly A.: Role of the Low-Frequency Deformation Field on
the Explosive Growth of Extratropical Cyclones at the Jet Exit. Part II:
Baroclinic Critical Region, J. Atmos. Sci., 63, 1982–1995, https://doi.org/10.1175/JAS3729.1, 2006.
Schemm, S. and Sprenger, M.: The Life Cycle of Upper-Level Troughs and Ridges: A Novel Detection Method, Climatologies and Lagrangian Characteristics, Weather Clim. Dynam., 1, 459–479, https://doi.org/10.5194/wcd-1-459-2020, 2020.
Seidel, D. J., Zhang, Y., Beljaars, A., Golaz, J.-C., Jacobson, A. R., and
Medeiros, B.: Climatology of the planetary boundary layer over the
continental United States and Europe, J. Geophys. Res., 117, D17106,
https://doi.org/10.1029/2012JD018143, 2012.
Shapiro, M.: Turbulent mixing within tropopause folds as a mechanism for the
exchange of chemical constituents between the stratosphere and troposphere,
J. Atmos. Sci., 37, 994–1004, 1980.
Shapiro, M., Wernli, H., Bond, N., and Langland, R.: The influence of the
1997–99 El Niño Southern Oscillation on extratropical baroclinic life
cycles over the eastern North Pacific, Q. J. R.
Meteorol. Soc., 127., 331–342, 2001.
Škerlak, B., Sprenger, M., and Wernli, H.: A global climatology of stratosphere–troposphere exchange using the ERA-Interim data set from 1979 to 2011, Atmos. Chem. Phys., 14, 913–937, https://doi.org/10.5194/acp-14-913-2014, 2014.
Škerlak, B., Sprenger, M., Pfahl, S., Tyrlis, E., and Wernli H.: Tropopause
folds in ERA-Interim: Global climatology and relation to extreme weather
events, J. Geophys. Res.-Atmos., 120, 4860–4877, https://doi.org/10.1002/2014JD022787,
2015.
Škerlak, B., Pfahl, S., Sprenger, M., and Wernli, H.: A numerical process study on the rapid transport of stratospheric air down to the surface over western North America and the Tibetan Plateau, Atmos. Chem. Phys., 19, 6535–6549, https://doi.org/10.5194/acp-19-6535-2019, 2019.
Sprenger, M. and Wernli, H.: A northern hemispheric climatology of
cross-tropopause exchange for the ERA15 time period (1979–1993), J.
Geophys. Res., 108, 8521, https://doi.org/10.1029/2002JD002636, 2003.
Sprenger, M., Wernli, H., and Bourqui, M.: Stratosphere–Troposphere
Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near
the Extratropical Tropopause, J. Atmos. Sci., 64, 1587–1602, https://doi.org/10.1175/JAS3911.1, 2007.
Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P.,
Grams, C. M., Knippertz, P., Madonna, E., Schemm, S., Škerlak, B., and
Wernli H.: Global climatologies of Eulerian and Lagrangian flow features
based on ERA-Interim reanalyses, B. Am. Meteorol. Soc., 98, 1739–1748
https://doi.org/10.1175/BAMS-D-15-00299.1, 2017.
Staley, D. O.: On the mechanism of mass and radioactivity transport from
stratosphere to troposphere, J. Atmos. Sci., 19, 450–467, 1962.
Voulgarakis, A., Hadjinicolaou, P., and Pyle, J.: Increases in global
tropospheric ozone following an El Nino event: Examining stratospheric ozone
variability as a potential driver, Atmos. Sci. Lett., 12,
228–232, 2011.
Wernli, H. and Davies, H. C.: A Lagrangian-based analysis of ex- tratropical
cyclones. I: The method and some applications, Q. J. R.. Meteor. Soc., 123,
467–489, 1997.
Zeng, G. and Pyle, J. A.: Influence of El Niño Southern Oscillation on
stratosphere/troposphere exchange and the global tropospheric ozone budget.
Geophys. Res. Lett., 32, L01814,
https://doi.org/10.1029/2004GL021353, 2005.
Short summary
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over the western United States in boreal spring, which can enhance surface ozone concentrations, reducing air quality. We find that the winter-to-summer evolution of the north Pacific jet increases the frequency of stratospheric intrusions that drive transport, helping explain the observed maximum. The El Niño–Southern Oscillation affects the timing of the spring jet transition and therefore transport.
Prior research has found a maximum in deep stratosphere-to-troposphere mass/ozone transport over...
Altmetrics
Final-revised paper
Preprint