Articles | Volume 21, issue 1
https://doi.org/10.5194/acp-21-239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-239-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
African dust particles over the western Caribbean – Part I: Impact on air quality over the Yucatán Peninsula
Carolina Ramírez-Romero
Centro de Ciencias de la Atmósfera, Universidad Nacional
Autónoma de México, Mexico City, Mexico
Alejandro Jaramillo
Centro de Ciencias de la Atmósfera, Universidad Nacional
Autónoma de México, Mexico City, Mexico
María F. Córdoba
Centro de Ciencias de la Atmósfera, Universidad Nacional
Autónoma de México, Mexico City, Mexico
Posgrado en Ciencias Químicas, Universidad Nacional Autónoma
de México, Mexico City, Mexico
Graciela B. Raga
Centro de Ciencias de la Atmósfera, Universidad Nacional
Autónoma de México, Mexico City, Mexico
Javier Miranda
Instituto de Física, Universidad Nacional Autónoma de México,
Mexico City, Mexico
Harry Alvarez-Ospina
Facultad de Ciencias, Universidad Nacional Autónoma de México,
Mexico City, Mexico
Daniel Rosas
Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
Talib Amador
Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
Jong Sung Kim
Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
Jacqueline Yakobi-Hancock
Department of Community Health and Epidemiology, Dalhousie University, Halifax, Nova Scotia, Canada
Darrel Baumgardner
Droplet Measurement Technologies, Colorado, USA
Luis A. Ladino
CORRESPONDING AUTHOR
Centro de Ciencias de la Atmósfera, Universidad Nacional
Autónoma de México, Mexico City, Mexico
Related authors
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
M. Fernanda Córdoba, Rachel Chang, Harry Alvarez-Ospina, Aramis Olivos-Ortiz, Graciela B. Raga, Daniel Rosas-Ramírez, Guadalupe Campos, Isabel Márquez, Telma Castro, and Luis A. Ladino
Atmos. Meas. Tech., 18, 2463–2479, https://doi.org/10.5194/amt-18-2463-2025, https://doi.org/10.5194/amt-18-2463-2025, 2025
Short summary
Short summary
The present study shows the development of the UNAM-MARine Aerosol Tank (UNAM-MARAT), a device that simulates wave breaking to generate marine aerosol particles. The portable and automatic tank is able to generate particle concentrations as high as 2000 cm-3, covering a wide range of sizes, similar to those found in the ambient marine boundary layer. The sea spray aerosol generated from three natural seawater samples was found to act as ice-nucleating particles (INPs) via immersion freezing.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 25, 843–865, https://doi.org/10.5194/acp-25-843-2025, https://doi.org/10.5194/acp-25-843-2025, 2025
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain. The measurements were made with two wideband integrated bioaerosol spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Bighnaraj Sarangi, Darrel Baumgardner, Benjamin Bolaños-Rosero, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 22, 9647–9661, https://doi.org/10.5194/acp-22-9647-2022, https://doi.org/10.5194/acp-22-9647-2022, 2022
Short summary
Short summary
Here, the fluorescent characteristics and cloud-forming efficiency of aerosols at an urban site in Puerto Rico are discussed. The results from this pilot study highlight the capabilities of ultraviolet-induced fluorescence (UV-IF) measurements for characterizing the properties of fluorescing aerosol particles, as they relate to the daily evolution of primary biological aerosol particles. This work has established a database of measurements on which future, longer-term studies will be initiated.
Diana L. Pereira, Irma Gavilán, Consuelo Letechipía, Graciela B. Raga, Teresa Pi Puig, Violeta Mugica-Álvarez, Harry Alvarez-Ospina, Irma Rosas, Leticia Martinez, Eva Salinas, Erika T. Quintana, Daniel Rosas, and Luis A. Ladino
Atmos. Chem. Phys., 22, 6435–6447, https://doi.org/10.5194/acp-22-6435-2022, https://doi.org/10.5194/acp-22-6435-2022, 2022
Short summary
Short summary
Airborne particles were i) collected in an agricultural fields and ii) generated in the laboratory from agricultural soil samples to analyze their ice nucleating abilities. It was found that the size and chemical composition of the Mexican agricultural dust particles influence their ice nucleating behavior, where the organic components are likely responsible for their efficiency as INPs. The INP concentrations from the present study are comparable to those from higher latitudes.
Graciela B. Raga, Darrel Baumgardner, Blanca Rios, Yanet Díaz-Esteban, Alejandro Jaramillo, Martin Gallagher, Bastien Sauvage, Pawel Wolff, and Gary Lloyd
Atmos. Chem. Phys., 22, 2269–2292, https://doi.org/10.5194/acp-22-2269-2022, https://doi.org/10.5194/acp-22-2269-2022, 2022
Short summary
Short summary
The In-Service Aircraft for a Global Observing System (IAGOS) is a small fleet of commercial aircraft that carry a suite of meteorological, gas, aerosol, and cloud sensors and have been measuring worldwide for almost 9 years, since late 2011. Extreme ice events (EIEs) have been identified from the IAGOS cloud measurements and linked to surface emissions for biomass and fossil fuel consumption. The results reported here are highly relevant for climate change and flight operations forecasting.
Elvis Torres-Delgado, Darrel Baumgardner, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 21, 18011–18027, https://doi.org/10.5194/acp-21-18011-2021, https://doi.org/10.5194/acp-21-18011-2021, 2021
Short summary
Short summary
African dust aerosols can travel thousands of kilometers and reach the Caribbean and other places, where they can serve as ice and cloud condensation nuclei and alter precipitation patterns. Cloud microphysical properties (droplet number and size) were measured in a Caribbean tropical montane cloud forest along with models and satellite products. The results of the study suggest that meteorology and air mass history are more important for cloud processes than aerosols transported from Africa.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Cited articles
Adams, A. A., Prospero, J. M., and Zhang, C.: CALIPSO – Derived
Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent
Continents, J. Climate, 25, 6862–6879,
https://doi.org/10.1175/JCLI-D-11-00672.1, 2012.
Aldhaif, A. M., Lopez, D. H., Dadashazar, H., and Sorooshian, A.: Sources,
frequency, and chemical nature of dust events impacting the United States
East Coast, Atmos. Environ., 231, 117456
https://doi.org/10.1016/j.atmosenv.2020.117456, 2020.
Alessandrini, E. R., Stafoggia, M., Faustini, A., Gobbi, G. P., and
Forastiere, F.: Saharan dust and the association between particulate matter
and daily hospitalizations in Rome, Italy, J. Occup. Environ. Med, 70,
432–434, https://doi.org/10.1136/oemed-2012-101182, 2013.
AMS: Glossary of Meteorology, edited by: Glickman, T. S., American Meteorological Society, available at: https://books.google.com.mx/books?id=kyhSAQAAIAAJ, ISBN 978-1-8782-2034-9, 2000.
Ashrafi, K., Shafiepour-Motlagh, M., Aslemand, A., and Ghader, S.: Dust
storm simulation over Iran using HYSPLIT, J. Environ. Health Sci. Eng., 12,
1–9, https://doi.org/10.1186/2052-336X-12-9, 2014.
Athanasopoulou, E., Protonotariou, A., Papangelis, G., Tombrou, M.,
Mihalopoulos, N., and Gerasopoulos, E.: Long-range transport of Saharan dust
and chemical transformations over the Eastern Mediterranean, Atmos.
Environ., 140, 592–604, https://doi.org/10.1016/j.atmosenv.2016.06.041, 2016.
Barkley, A. E., Prospero, J. M., Mahowald, N., Hamilton, D. S., Popendorf,
K. J., Oehlert, A. M., Pourmand, A., Gatineau, A., Panechou-Pulcherie, K.,
Blackwelder, P., and Gaston, C. J.: African biomass burning is a substantial
source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and
Southern Ocean, P. Natl. Acad. Sci. USA, 116, 16216–16221,
https://doi.org/10.1073/pnas.1906091116, 2019.
Bibi, M., Saad, M., Masmoudi, M., Laurent, B., and Alfaro, S. C.: Long-term
(1980–2018) spatial and temporal variability of the atmospheric dust load
and deposition fluxes along the North-African coast of the Mediterranean
Sea, Atmos. Res., 234, 104689, https://doi.org/10.1016/j.atmosres.2019.104689, 2020.
Bègue, N., Tulet, P., Chaboureau, J.-P., Roberts, G., Gomes, L., and
Mallet, M.: Long-range transport of Saharan dust over northwestern Europe
during EUCAARI 2008 campaign: Evolution of dust optical properties by
scavenging, J. Geophys. Res., 117, D17201, https://doi.org/10.1029/2012JD017611, 2012.
Bravo, J. L., Salazar, S., and Muhlia, A.: Mineral and sea salt aerosol
concentrations over low latitude tropical Atlantic and Pacific oceans during
FGGE, Geo. Int., 20, 303–317, 1982.
Broadley, S. L., Murray, B. J., Herbert, R. J., Atkinson, J. D., Dobbie, S., Malkin, T. L., Condliffe, E., and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust, Atmos. Chem. Phys., 12, 287–307, https://doi.org/10.5194/acp-12-287-2012, 2012.
Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A.,
Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., Mittleman, M. A.,
Peters, A., Siscovick, D., Smith, S. C., Whitsel, L., Kaufman, J. D., American Heart Association Council on Epidemiology and Prevention, Council
on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical
Activity and Metabolism: Particulate matter air pollution and cardiovascular
disease: An update to the scientific statement from the American Heart
Association, Circulation, 121, 2331–2378, https://doi.org/10.1161/CIR.0b013e3181dbece1, 2010.
Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015, 2015.
Buchard, V., da Silva, A. M., Randles, C. A., Colarco, P., Ferrare, R.,
Hair, J., Hostetler, C., Tackett, J., and Winker, D.: Evaluation of the
surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over
the United States, Atmos. Environ., 125, 100–111, https://doi.org/10.1016/j.atmosenv.2015.11.004, 2016.
Buchard, V., Randles, C. A., Silva, A. M. da, Darmenov, A., Colarco, P. R.,
Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D.,
and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation
and Case Studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/jcli-d-16-0613.1, 2017.
Caquineau, S., Gaudichet, A., Gomes, L., Magonthier, M. C., and Chatenet,
B.: Saharan dust: Clay ratio as a relevant tracer to assess the origin of
soil-derived aerosols, Geophys. Res. Lett., 25, 983–986, https://doi.org/10.1029/98GL00569, 1998.
Carlson, T. N., and Prospero, J. M.: The Large-Scale Movement of Saharan Air
Outbreaks over the Northern Equatorial Atlantic, J. Appl. Meteorol., 11,
283–297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2, 1972.
Cerón, R. M. B., Padilla, H. G., Belmont, R. D., Torres, M. C. B.,
Garcıá, R. M., and Báez, A. P.: Rainwater chemical composition at
the end of the mid-summer drought in the Caribbean shore of the Yucatan
Peninsula, Atmos. Environ., 36, 2367-2374, https://doi.org/10.1016/S1352-2310(02)00169-3, 2002.
Cerón-Bretón, R., Cerón-Bretón, J., Muriel-García, M.,
Lara-Severino, R., Rangel-Marrón, M., Ramírez-Lara, E.,
López-Jiménez, D., Rodríguez-Guzmán, A., and Uc-Chi, M.:
Mapping of the atmospheric deposition of sulfur and nitrogen during the dry
season 2016 in the Metropolitan zone of Merida, Yucatan, Mexico, AIP. Conf.
Proc., 1982, 020021, https://doi.org/10.1063/1.5045427, 2018.
Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., and
Suares, E.S.: Origins of African dust transported over the northeastern
tropical Atlantic, J. Geophys. Res., 102, 13701–13709, https://doi.org/10.1029/97JD00259, 1997.
Chiapello, I., Prospero, J. M., Herman, J. R., and Hsu, N. C.: Detection of
mineral dust over the North Atlantic Ocean and Africa with the Nimbus 7
TOMS, J. Geophys. Res.-Atmos., 104, 9277–9291, https://doi.org/10.1029/1998JD200083, 1999.
Chouza, F., Reitebuch, O., Benedetti, A., and Weinzierl, B.: Saharan dust long-range transport across the Atlantic studied by an airborne Doppler wind lidar and the MACC model, Atmos. Chem. Phys., 16, 11581–11600, https://doi.org/10.5194/acp-16-11581-2016, 2016.
Cohn, S. E.: An Introduction to Estimation Theory (gtSpecial IssueltData
Assimilation in Meteology and Oceanography: Theory and Practice), J.
Meteorol. Soc. Jpn. Ser. II, 75, 257–288,
https://doi.org/10.2151/jmsj1965.75.1B_257, 1997.
Corbett, J. J. and Fischbeck, P.: Emissions from Ships, Science, 278,
823–824, https://doi.org/10.1126/science.278.5339.823, 1997.
Córdoba, F., Ramirez-Romero, C., Cabrera, D., Raga, G. B., Miranda, J., Alvarez-Ospina, H., Rosas, D., Figueroa, B., Kim, J. S., Yakobi-Hancock, J., Amador, T., Gutierrez, W., Garcia, M., Bertram, A. K., Baumgardner, D., and Ladino, L. A.: Measurement report: Ice nucleating abilities of biomass burning, African dust, and sea spray aerosol particles over the Yucatan Peninsula, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-783, in review, 2020.
d'Almeida, G. A.: A Model for Saharan Dust Transport, J. Climate Appl.
Meteor., 25, 903–916, https://doi.org/10.1175/1520-0450(1986)025<0903:AMFSDT>2.0.CO;2, 1986.
DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
Denjean, C., Formenti, P., Desboeufs, K., Chevaillier, S., Triquet, S.,
Mailleì, M., Cazaunau, M., Laurent, B., Mayol-Bracero, O. L., Vallejo, P., Quiñones, M., Gutierrez-Molina I. E., Cassola, F., Prati, P., Andrews, E., and Ogren, J.: Size distribution and optical properties of African mineral dust after intercontinental transport, J. Geophys. Res.-Atmos., 121, 7117–7138, https://doi.org/10.1002/2016JD024783, 2016.
Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S.
L., and Samet, J. M.: Fine particulate air pollution and hospital admission
for cardiovascular and respiratory diseases, JAMA, 295, 1127–1134,
https://doi.org/10.1001/jama.295.10.1127, 2006.
Dunion, J. P.: Rewriting the climatology of the tropical North Atlantic and
Caribbean Sea atmosphere, J. Climate, 24, 893–908, https://doi.org/10.1175/2010JCLI3496.1, 2011.
Dunion, J. P. and Marron, C. S.: A Reexamination of the Jordan Mean
Tropical Sounding Based on Awareness of the Saharan Air Layer: Results from
2002, J. Climate, 21, 5242–5253, https://doi.org/10.1175/2008JCLI1868.1, 2008.
Dunion, J. P. and Velden, C. S.: The Impact of the Saharan Air Layer on
Atlantic Tropical Cyclone Activity, Bull. Amer. Meteor. Soc., 85, 353–366,
https://doi.org/10.1175/BAMS-85-3-353, 2004.
Espinosa, A., Miranda, J., and Pineda, J.: Uncertainty evaluation in
correlated quantities: application to elemental analysis of atmospheric
aerosols, Rev. Mex. Fis., E56, 134–140, 2010.
Espinosa, A., Reyes-Herrera, J., Miranda, J., Mercado, F., Veytia, M.,
Cuautle, M., and Cruz, J.: Development of an X-ray fluorescence spectrometer
for environmental science applications, Instrum. Sci. Technol., 40,
603–617, https://doi.org/10.1080/10739149.2012.693560, 2012.
Evan, A. T., Dunion, J., Foley, J. A., Heidinger, A. K., and Velden, C. S.:
New evidence for a relationship between Atlantic tropical cyclone activity
and African dust outbreaks, Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408, 2006.
Foltz, G. R. and McPhaden, M. J.: Trends in Saharan dust and tropical
Atlantic climate during 1980–2006, Geophys. Res. Lett., 35, L20706,
https://doi.org/10.1029/2008GL035042,2008.
Ganor, E. and Mamane, Y.: Transport of Saharan dust across the eastern
Mediterranean, Atmos. Environ., 16, 581–587, https://doi.org/10.1016/0004-6981(82)90167-6, 1982.
Ganor, E., Osetinsky, I., Stupp, A., and Alpert, P.: Increasing trend of
African dust, over 49 years, in the eastern Mediterranean, J. Geophys. Res.,
115, D07201, https://doi.org/10.1029/2009JD012500, 2010.
Gelaro, R., McCarty, W., Suaìrez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
GMAO: MERRA-2 inst1_2d_int_Nx: 2d, 1-Hourly, Instantaneous, Single-Level, Assimilation, Vertically Integrated Diagnostics V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, https://doi.org/10.5067/G0U6NGQ3BLE0, 2015a.
GMAO: MERRA-2 inst3_3d_aer_Nv: 3d, 3-Hourly, Instantaneous, Model-Level, Assimilation, Aerosol Mixing Ratio V5.12.4, Goddard Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA,
https://doi.org/10.5067/LTVB4GPCOTK2, 2015b.
Goudie, A. and Middleton, N. J.: Desert Dust in the Global System,
Springer, Berlin, Heidelberg, https://doi.org/10.1007/3-540-32355-4, 2006.
Goudie, A. S.: Desert dust and human health disorders, Environ. Int., 63,
101–113, https://doi.org/10.1016/j.envint.2013.10.011, 2014.
Griffin, D. V., Garrison, V. H., Herman, J. R., and Shinn, E.: African desert
dust in the Caribbean atmosphere: Microbiology and public health,
Aerobiologia, 17, 203–213, https://doi.org/10.1023/A:1011868218901, 2001.
Grogan, D. F. P. and Thorncroft, C. D.: The characteristics of African
easterly waves coupled to Saharan mineral dust aerosols, Q. J. R. Meteorol.
Soc., 145, 1130–1146, https://doi.org/10.1002/qj.3483, 2019.
Guieu, C., Loÿe-Pilot, M. D., Ridame, C., and Thomas, C.: Chemical
characterization of the Saharan dust end-member: Some biogeochemical
implications for the western Mediterranean Sea, J. Geophys. Res., 107, ACH
5-1–ACH 5-11, https://doi.org/10.1029/2001JD000582, 2002.
Hankes, I. and Marinaro, A.: The impacts of column water vapour variability
on Atlantic basin tropical cyclone activity, Q. J. R. Meteorol. Soc., 142,
3026–3035, https://doi.org/10.1002/qj.2886, 2016.
Holloway, C. E. and Neelin, J. D.: Moisture Vertical Structure, Column
Water Vapor, and Tropical Deep Convection. J. Atmos. Sci., 66, 1665–1683,
https://doi.org/10.1175/2008JAS2806.1, 2009.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
IAEA: Manual for QXAS, International Atomic Energy Agency, Vienna, 1997.
INEGI: Instituto Nacional de Estadística y Geografía
México, Anuario estadístico de Yucatán 2009 / Instituto
Nacional de Estadística y Geografía, Gobierno del Estado de
Yucatán, México, 2009.
INEGI: Principales resultados de la Encuesta intercensal 2015: Estados
Unidos Mexicanos, 2015.
INEGI: Anuario estadístico y geográfico de Yucatán 2017,
1–711, available at: https://www.datatur.sectur.gob.mx/ITxEF_Docs/YUC_ANUARIO_PDF.pdf, 2017.
Jackson, J. M., Liu, H., Laszlo, I., Kondragunta, S., Remer, L. A., Huang,
J., and Huang, H. C.: Suomi-NPP VIIRS aerosol algorithms and data products,
J. Geophys. Res.-Atmos., 118, 12673–12689, https://doi.org/10.1002/2013JD020449, 2013.
Kalashnikova, O. V. and Kahn, R. A.: Mineral dust plume evolution over the
Atlantic from MISR and MODIS aerosol retrievals, J. Geophys. Res., 113,
D24204, https://doi.org/10.1029/2008JD010083, 2008.
Kalnay, E.: Atmospheric modeling, data assimilation and predictability,
Cambridge University Press, Cambridge, 2003.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., and Krämer, M.: Overview of ice nucleating particles, Meteorol. Monogr., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Karanasiou, A., Moreno, N., Moreno, T., Viana, M., de Leeuw, F., and Querol,
X.: Health effects from Sahara dust episodes in Europe: Literature review
and research gaps, Environ. Int., 47, 107–114, https://doi.org/10.1016/j.envint.2012.06.012, 2012.
Karyampudi, V. M. and Carlson, T. N. Analysis and Numerical Simulations of
the Saharan Air Layer and Its Effect on Easterly Wave Disturbances, J.
Atmos. Sci., 45, 3102–3136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2, 1988.
Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., and Fan,
S.: Dust transport and deposition observed from the Terra-Moderate
Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic
Ocean, J. Geophys. Res., 110, D10S12, https://doi.org/10.1029/2003JD004436, 2005.
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study, Biogeosciences, 3, 29–51, https://doi.org/10.5194/bg-3-29-2006, 2006.
Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Martins,
J. V., and Rosenfeld, D.: The Bodélé depression: A single spot in
the Sahara that provides most of the mineral dust to the Amazon forest,
Environ. Res. Lett., 1, 014005, https://doi.org/10.1088/1748-9326/1/1/014005, 2006.
Korte, L. F., Pausch, F., Trimborn, S., Brussaard, C. P. D., Brummer, G.-J. A., van der Does, M., Guerreiro, C. V., Schreuder, L. T., Munday, C. I., and Stuut, J.-B. W.: Effects of dry and wet Saharan dust deposition in the tropical North Atlantic Ocean, Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, 2018.
Kramer, S. J., Kirtman, B. P., Zuidema, P., and Ngan, F.: Subseasonal
variability of elevated dust concentrations over South Florida, J. Geophys.
Res.-Atmos., 125, e2019JD031874, https://doi.org/10.1029/2019JD031874, 2020.
Lenes, J., Prospero, J., Landing, W., Virmani, J., and Walsh, J.: A model of
Saharan dust deposition to the eastern Gulf of Mexico, Mar. Chem., 134–135,
1–9, https://doi.org/10.1016/j.marchem.2012.02.007, 2012.
Liu, Z., Omar, A., Vaughan, M., Hair, J., Kittaka, C., Hu, Y., Powell, K., Trepte, C., Winker, D., Hostetler, C., Ferrare, R., and Pierce, R.: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport, J. Geophys. Res., 113, D07207, https://doi.org/10.1029/2007JD008878, 2008.
Li-Jones, X. and Prospero, J. M.: Variations in the size distribution of
non-sea-salt sulfate aerosol in the marine boundary layer at Barbados:
Impact of African dust, J. Geophys. Res.-Atmos., 103, 16073–16084,
https://doi.org/10.1029/98JD00883, 1998.
Linke, C., Möhler, O., Veres, A., Mohácsi, Á., Bozóki, Z., Szabó, G., and Schnaiter, M.: Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study, Atmos. Chem. Phys., 6, 3315–3323, https://doi.org/10.5194/acp-6-3315-2006, 2006.
Middleton, N. J. and Goudie, A. S.: Saharan dust: Sources and trajectories,
T. I. Brit. Geogr., 26, 165–181, https://doi.org/10.1111/1475-5661.00013, 2001.
Muñoz-Salazar J., Raga, G. B., Yakobi-Hancock, J., Kim, J. S., Rosas, D., Caudillo, L., Alvarez-Ospina, H., and Ladino, L. A.: Ultrafine Aerosol Particles in the Western Caribbean: A first case study in Merida, Atmos. Pollut. Res., 11, 1767–1775, https://doi.org/10.1016/j.apr.2020.07.008, 2020.
Nenes, A., Murray, B., and Bougiatioti, A.: Mineral dust and its
microphysical interactions with clouds, in: Mineral Dust, 287–325,
Springer, Dordrecht, 2014.
Orellana, R., Espadas, C., Conde, C., and Gay, C.: Atlas. Escenarios de cambio climático en la Península de Yucatán. Centro de Investigación Científica de Yucatán, Centro de Ciencias de la Atmósfera-Universidad Nacional Autónoma de México, Consejo Nacional de Ciencia y Tecnología, Gobierno de Yucatán, Yucatán México, 2009.
Perez, L., Tobias, A., Querol, X., Künzli, N., Pey, J., Alastuey, A.,
Viana, M., Valero, N., González-Cabré, M., and Sunyer, J.: Coarse
Particles From Saharan Dust and Daily Mortality, Epidemiology, 19, 800–807,
https://doi.org/10.1097/EDE.0b013e31818131cf, 2008.
Perry, K. D., Cahill, T. A., Eldred, R. A., Dutcher, D. D., and Gill, T. E.:
Long-range transport of North African dust to the eastern United States, J.
Geophys. Res., 102, 11225–11238, https://doi.org/10.1029/97JD00260, 1997.
Pey, J., Querol, X., Alastuey, A., Forastiere, F., and Stafoggia, M.: African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology, Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013, 2013.
Plasencia, A. P.: La Península de Yucatán en el Archivo General de
la Nación, UNAM, 1998.
ProAire.: Programa de Gestión para mejorar la calidad del aire del
estado de Yucatán, 1–159, 2018.
Prodi, F. and Fea, G.: A case of transport and deposition of Saharan dust
over the Italian Peninsula and southern Europe, J. Geophys. Res.-Oceans, 84,
6951–6960, https://doi.org/10.1029/JC084iC11p06951, 1979.
Prospero, J. M. and Carlson, T. N.: Vertical and areal distribution of
Saharan dust over the western equatorial north Atlantic Ocean, J. Geophys.
Res., 77, 5255–5265, https://doi.org/10.1029/JC077i027p05255, 1972.
Prospero, J. M.: Long-term measurements of the transport of African mineral
dust to the southeastern United States: Implications for regional air
quality, J. Geophys. Res., 104, 15917–15927, https://doi.org/10.1029/1999JD900072, 1999.
Prospero, J. M. and Lamb, P. J.: African Droughts and Dust Transport to the
Caribbean: Climate Change Implications, Science, 302, 1024–1027, https://doi.org/10.1126/science.1089915, 2003.
Prospero, J. M. and Mayol-Bracero, O. L.: Understanding the Transport and
Impact of African Dust on the Caribbean Basin, Bull. Am. Meteor. Soc., 94,
1329–1337, https://doi.org/10.1175/BAMS-D-12-00142.1, 2013.
Prospero, J. M., Glaccum, R. A., and Nees, R. T.: Atmospheric transport of
soil dust from Africa to South America, Nature, 289, 570–572,
https://doi.org/10.1038/289570a0, 1981.
Prospero, J. M., Olmez, I., and Ames, M.: Al and Fe in PM 2.5 and PM10 Suspended Particles in South-Central Florida: The Impact of the Long Range Transport of African Mineral Dust, Water Air Soil Poll., 125,
291–317, https://doi.org/10.1023/A:1005277214288, 2001.
Prospero, J. M., Blades, E., Mathison, G., and Naidu, R.: Interhemispheric
transport of viable fungi and bacteria from Africa to the Caribbean with
soil dust, Aerobiologia, 21, 1–19, https://doi.org/10.1007/s10453-004-5872-7, 2005.
Prospero, J. M., Collard, F.-X., Molinié, J., and Jeannot, A.:
Characterizing the annual cycle of African dust transport to the Caribbean
Basin and South America and its impact on the environment and air quality,
Global Biogeochem. Cy., 29, 757–773, https://doi.org/10.1002/2013GB004802, 2014.
Prospero, J. M., Barkley, A. N., Gaston, C. J., Gatineau, A., Campos y
Sansano, A., and Panechou, K.: Characterizing and Quantifying African Dust
Transport and Deposition to South America: Implications for the Phosphorus
Budget in the Amazon Basin, Global Biogeochem. Cy., 34, e2020GB006536,
https://doi.org/10.1029/2020GB006536, 2020.
Provençal, S., Buchard, V., da Silva, A. M., Leduc, R., and Barrette,
N.: Evaluation of PM surface concentrations simulated by Version 1 of NASA's
MERRA Aerosol Reanalysis over Europe, Atmos. Pollut. Res., 8, 374–382,
https://doi.org/10.1016/j.apr.2016.10.009, 2017.
Querol, X., Tobías, A., Pérez, N., Karanasiou, A., Amato, F.,
Stafoggia, M., Pérez García-Pando, C., Ginoux, P., Forastiere, F.,
Gumy, S., Mudu, P., and Alastuey, A.: Monitoring the impact of desert dust
outbreaks for air quality for health studies, Environ. Int., 130, 104867,
https://doi.org/10.1016/j.envint.2019.05.061, 2019.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/jcli-d-16-0609.1, 2017.
Reid, J. S., Jonsson, H. H., Maring, H. B., Smirnov, A., Savoie, D. L.,
Cliff, S. S., Reid, E. A., Livingston, J. M., Meier, M. M., Dubovik, O., and
Tsay, S. C.: Comparison of size and morphological measurements of coarse
mode dust particles from Africa, J. Geophys. Res., 108, https://doi.org/10.1029/2002JD002485, 2003a.
Reid, E. A., Reid, J. S., Meier, M. M., Dunlap, M. R., Cliff, S. S.,
Broumas, A., Perry, K., and Maring, H.: Characterization of African dust
transported to Puerto Rico by individual particle and size segregated bulk
analysis, J. Geophys. Res., 108, 8591, https://doi.org/10.1029/2002JD002935, 2003b.
Resch, F., Sunnu, A., and Afeti, G.: Saharan dust flux and deposition rate
near the Gulf of Guinea, Tellus B, 60, 98–105, https://doi.org/10.1111/j.1600-0889.2007.00286.x, 2008.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodriguez-Gomez, C., Ramirez-Romero, C., Cordoba, F., Raga, G. B., Salinas,
E., Martinez, L., Rosas, I., Quintana, E. T., Maldonado, L. A., Rosas, D.,
Amador, T., Alvarez, H., and Ladino, L. A.: Characterization of culturable
airborne microorganisms in the Yucatan Peninsula, Atmos. Environ., 223,
117183, https://doi.org/10.1016/j.atmosenv.2019.117183, 2020.
Rosinski, J., Haagenson, P., Nagamoto, C., Quintana, B., Parungo, F., and
Hoyt, S.: Ice-forming nuclei in air masses over the Gulf of Mexico, J.
Aerosol Sci., 19, 539–551, https://doi.org/10.1016/0021-8502(88)90206-6,
1988.
Ryder, C. L., Highwood, E. J., Walser, A., Seibert, P., Philipp, A., and Weinzierl, B.: Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara, Atmos. Chem. Phys., 19, 15353–15376, https://doi.org/10.5194/acp-19-15353-2019, 2019.
Salvador, P., Alonso-Pérez, S., Pey, J., Artíñano, B., de Bustos, J. J., Alastuey, A., and Querol, X.: African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas, Atmos. Chem. Phys., 14, 6759–6775, https://doi.org/10.5194/acp-14-6759-2014, 2014.
Schutgens, N. A. J., Miyoshi, T., Takemura, T., and Nakajima, T.: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model, Atmos. Chem. Phys., 10, 2561–2576, https://doi.org/10.5194/acp-10-2561-2010, 2010.
Shao, Y., Wyrwoll, K.-H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H.,
Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: An emerging
core theme in Earth system science, Aeolian Res., 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001, 2011.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling
System, Bull. Am. Meteorol. Soc., 96, 2059–2077,
https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Tegen, I., Werner, M., Harrison, S. P., and Kohfeld, K. E.: Relative
importance of climate and land use in determining present and future global
soil dust emission, Geophys. Res. Lett., 31, L05105, https://doi.org/10.1029/2003GL019216, 2004.
Thermo Fisher Scientific Inc.: Instruction Manual for Thermo Scientific
Model FH62C14 Ambient Particulate Monitor, available at:
https://assets.thermofisher.com/TFS-Assets/null\,{%}7Cnull/Package-Inserts/EPM-manual-FH62C14.pdf (last access: February 2020),
2007.
Trapp, J. M., Millero, F. J., and Prospero, J. M.: Temporal variability of
the elemental composition of African dust measured in trade wind aerosols at
Barbados and Miami, Mar. Chem., 120, 71–82, https://doi.org/10.1016/j.marchem.2008.10.004, 2010.
Tsamalis, C., Chédin, A., Pelon, J., and Capelle, V.: The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind, Atmos. Chem. Phys., 13, 11235–11257, https://doi.org/10.5194/acp-13-11235-2013, 2013.
Vallina, S. M. and Simó, R.: Strong Relationship Between DMS and the
Solar Radiation Dose over the Global Surface Ocean, Science, 315, 506–508,
https://doi.org/10.1126/science.1133680, 2007.
Venero-Fernández, S. J.: Saharan Dust Effects on Human Health: A
Challenge for Cuba's Researchers, MEDICC Rev., 18, 32–34, https://doi.org/10.1590/MEDICC.2016.18300011, 2016.
Veselovskii, I., Goloub, P., Podvin, T., Tanre, D., da Silva, A., Colarco, P., Castellanos, P., Korenskiy, M., Hu, Q., Whiteman, D. N., Pérez-Ramírez, D., Augustin, P., Fourmentin, M., and Kolgotin, A.: Characterization of smoke and dust episode over West Africa: comparison of MERRA-2 modeling with multiwavelength Mie–Raman lidar observations, Atmos. Meas. Tech., 11, 949–969, https://doi.org/10.5194/amt-11-949-2018, 2018.
Voss, K. K. and Evan, A. T.: A New Satellite-Based Global Climatology of
Dust Aerosol Optical Depth, J. Appl. Meteorol. Clim., 59, 83–102,
https://doi.org/10.1175/JAMC-D-19-0194.1, 2020.
Walker, G. P. L.: Generation and dispersal of fine ash and dust by volcanic
eruptions, J. Volcanol. Geotherm. Res., 11, 81–92, https://doi.org/10.1016/0377-0273(81)90077-9, 1981.
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N.,
Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V.,
Gasteiger, J., Groß, S., Haarig, M., Heinold, B., Kandler, K.,
Kristensen, T. B., Mayol-Bracero, O. L., Müller, T., Reitebuch, O.,
Sauer, D., Schäfler, A., Schepanski, K., Spanu, A., Tegen, I., Toledano,
C., and Walser, A.: The Saharan Aerosol Long-Range Transport and
Aerosol–Cloud-Interaction Experiment: Overview and Selected Highlights.
Bull. Am. Meteor. Soc., 98, 1427–1451, https://doi.org/10.1175/BAMS-D-15-00142.1, 2016.
WHO: Office of World Health Reporting, Quantifying Selected Major Risks to Health. In The world health report 2002: Reducing risks, promoting healthy life, World Health Organization, available at: https://apps.who.int/iris/handle/10665/67454 (last access: March 2020), 2018.
Wilker, E. H., Preis, S. R., Beiser, A. S., Wolf, P. A., Au, R., Kloog, I.,
Li, W., Schwartz, J., Koutrakis, P., DeCarli, C., Seshadri, S., and
Mittleman, M. A.: Long-term exposure to fine particulate matter, residential
proximity to major roads and measures of brain structure, Stroke, 46,
1161–1166, https://doi.org/10.1161/STROKEAHA.114.008348, 2015.
World Resource Institute.: Inventario Municipal de Gases de Efecto Invernadero Municipio de Mérida, 1–29, available at: http://www.merida.gob.mx/municipio/sitiosphp/sustentable/contenidos/doc/Inventario_Municipal_GEI.pdf, (last access: January 2021), 2018.
Zhang, H., McFarquhar, G. M., Saleeby, S. M., and Cotton, W. R.: Impacts
of Saharan dust as CCN on the evolution of an idealized tropical
cyclone, Geophys. Res. Lett., 34, L14812, https://doi.org/10.1029/2007GL029876, 2007.
Zhang, J. and Reid, J. S.: MODIS aerosol product analysis for data
assimilation: Assessment of over-ocean level 2 aerosol optical thickness
retrievals, J. Geophys. Res., 111, D22207, https://doi.org/10.1029/2005JD006898, 2006.
Zhang, X., Zhao, L., Tong, D. Q., Wu, G., Dan, M., and Teng, B.: A
systematic review of global desert dust and associated human health effects,
Atmosphere-Basel, 7, 158, https://doi.org/10.3390/atmos7120158, 2016.
Short summary
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn Peninsula. Aerosol particles were monitored at ground level by different online and off-line sensors. Several particulate matter peaks were observed with a relative increase in their levels of up to 500 % with respect to background conditions. Based on the chemical composition, back trajectories, vertical profiles, reanalysis, and satellite images, it was found that the peaks are linked to African dust.
Field measurements were conducted to confirm the arrival of African dust on the Yucatàn...
Altmetrics
Final-revised paper
Preprint