Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence
Tatiana Drotikova
CORRESPONDING AUTHOR
Department of Arctic Technology, University Centre in Svalbard (UNIS),
Longyearbyen, 9171, Norway
Faculty of Chemistry, Biotechnology and Food Science, Norwegian
University of Life Sciences (NMBU), Ås, 1432, Norway
Alena Dekhtyareva
Geophysical Institute, University of Bergen and Bjerknes Centre for
Climate Research, Bergen, 5020, Norway
Roland Kallenborn
Department of Arctic Technology, University Centre in Svalbard (UNIS),
Longyearbyen, 9171, Norway
Faculty of Chemistry, Biotechnology and Food Science, Norwegian
University of Life Sciences (NMBU), Ås, 1432, Norway
Alexandre Albinet
CORRESPONDING AUTHOR
French National Institute for Industrial Environment and Risks
(Ineris), Verneuil-en-Halatte, 60550, France
Related authors
No articles found.
Camille Noblet, François Lestremau, Adrien Dermigny, Nicolas Karoski, Claudine Chatellier, Jérôme Beaumont, Yao Liu, Boris Vansevenant, Jean-Luc Besombes, and Alexandre Albinet
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-25, https://doi.org/10.5194/ar-2025-25, 2025
Preprint under review for AR
Short summary
Short summary
Vehicle emissions significantly impact air quality, but distinguishing between gasoline and diesel aerosol sources in the air is still difficult. This study used advanced chemical analysis and statistical methods to discover unique aerosol molecular markers from each vehicle type. By simulating real-world driving and atmospheric aging, researchers found specific markers for both primary and secondary particle emissions, offering a promising new approach to improve air pollution source tracking.
Sijia Lou, Manish Shrivastava, Alexandre Albinet, Sophie Tomaz, Deepchandra Srivastava, Olivier Favez, Huizhong Shen, and Aijun Ding
Atmos. Chem. Phys., 25, 8163–8183, https://doi.org/10.5194/acp-25-8163-2025, https://doi.org/10.5194/acp-25-8163-2025, 2025
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs), emitted from incomplete combustion, pose serious health risks due to their carcinogenic properties. This research demonstrates that viscous organic aerosol coatings significantly hinder PAH oxidation, with spatial distributions sensitive to the degradation modeling approach. Our findings emphasize the need for accurate modeling of PAH oxidation processes in risk assessments, considering both fresh and oxidized PAHs in evaluating human health risks.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Samuël Weber, Gaëlle Uzu, Olivier Favez, Lucille Joanna S. Borlaza, Aude Calas, Dalia Salameh, Florie Chevrier, Julie Allard, Jean-Luc Besombes, Alexandre Albinet, Sabrina Pontet, Boualem Mesbah, Grégory Gille, Shouwen Zhang, Cyril Pallares, Eva Leoz-Garziandia, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, https://doi.org/10.5194/acp-21-11353-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of aerosols is apportioned to the main PM sources found in 15 sites over France. The sources present clear distinct intrinsic OPs at a large geographic scale, and a drastic redistribution between the mass concentration and OP measured by both ascorbic acid and dithiothreitol is highlighted. Moreover, the high discrepancy between the mean and median contributions of the sources to the given metrics raises some important questions when dealing with health endpoints.
Lucille Joanna S. Borlaza, Samuël Weber, Jean-Luc Jaffrezo, Stephan Houdier, Rémy Slama, Camille Rieux, Alexandre Albinet, Steve Micallef, Cécile Trébluchon, and Gaëlle Uzu
Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, https://doi.org/10.5194/acp-21-9719-2021, 2021
Short summary
Short summary
With an enhanced source apportionment obtained in a companion paper, this paper acquires more understanding of the spatiotemporal associations of the sources of PM to oxidative potential (OP), an emerging health-based metric. Multilayer perceptron neural network analysis was used to apportion OP from PM sources. Results showed that such a methodology is as robust as the linear classical inversion and permits an improvement in the OP prediction when local features or non-linear effects occur.
Cited articles
Abbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D.,
and Garçon, G.: Polycyclic aromatic hydrocarbon derivatives in airborne
particulate matter: sources, analysis and toxicity, Environ. Chem. Lett.,
1–37, https://doi.org/10.1007/s10311-017-0697-0, 2018.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., and ViIlenave, E.:
Simultaneous analysis of oxygenated and nitrated polycyclic aromatic
hydrocarbons on standard reference material 1649a (urban dust) and on
natural ambient air samples by gas chromatography–mass spectrometry with
negative ion chemical ionisation, J. Chromatogr. A, 1121, 106–113,
https://doi.org/10.1016/j.chroma.2006.04.043, 2006.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., and Viilenave, E.:
Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs
in ambient air of the Marseilles area (South of France): Concentrations and
sources, Sci. Total Environ., 384, 280–292, https://doi.org/10.1016/j.scitotenv.2007.04.028, 2007.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E., and
Jaffrezo, J. L.: Nitrated and oxygenated derivatives of polycyclic aromatic
hydrocarbons in the ambient air of two French alpine valleys. Part 1:
Concentrations, sources and gas/particle partitioning, Atmos. Environ., 42,
43–54, https://doi.org/10.1016/j.atmosenv.2007.10.009, 2008.
Albinet, A., Tomaz, S., and Lestremau, F.: A really quick easy cheap
effective rugged and safe (QuEChERS) extraction procedure for the analysis
of particle-bound PAHs in ambient air and emission samples, Sci. Total
Environ., 450–451, 31-38, https://doi.org/10.1016/j.scitotenv.2013.01.068, 2013.
Albinet, A., Nalin, F., Tomaz, S., Beaumont, J., and Lestremau, F.: A simple
QuEChERS-like extraction approach for molecular chemical characterization of
organic aerosols: application to nitrated and oxygenated PAH derivatives
(NPAH and OPAH) quantified by GC–NICIMS, Anal. Bioanal.Chem., 406,
3131–3148, https://doi.org/10.1007/s00216-014-7760-5, 2014.
Aliabadi, A. A., Staebler, R. M., and Sharma, S.: Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution, Atmos. Chem. Phys., 15, 2651–2673, https://doi.org/10.5194/acp-15-2651-2015, 2015.
AMAP: AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and
Acidification in the Arctic, Oslo, Norway, xii+112 pp., 2006.
AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate
forcers, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway,
116 pp., 2015.
Arya, S. P.: Air Pollution and Dispersion Meteorology, Oxford University
Press, New York, 310 pp., 1999.
Atlas, E. L., Ridley, B. A., and Cantrell, C. A.: The tropospheric ozone
production about the spring equinox (TOPSE) experiment: introduction,
J. Geophys. Res.-Atmos., 108, 8353, https://doi.org/10.1029/2002JD003172, 2003.
Aubin, C.-P., Girard, E., Langlois, P.-O., Lebreux, Y., and Verner, G.:
4-Stroke IDI Turbocharged Diesel Snowmobile Design, The Clean Snowmobile
Challenge 2017 Conference, March 2017, Ann Arbor, Michigan, United States,
2017.
Bailleul, S. and Albinet, A.: Interlaboratory comparison for the analysis
of PAHs in ambient air (2018), LCSQA, available at: https://www.lcsqa.org/fr/rapport/interlaboratory-comparison-analysis-pah-ambient-air-2018 (last access: 14 September 2021),
2018.
Balmer, J. and Muir, D.: Polycyclic aromatic hydrocarbons (PAHs), in: AMAP
Assessment 2016: Chemicals of emerging Arctic concern, edited by: Hung, H.,
Letcher, R., and Yu, Y., Arctic Monitoring and Assessment Programme (AMAP),
Oslo, Norway, 219–238, 2017.
Balmer, J. E., Hung, H., Yu, Y., Letcher, R. J., and Muir, D. C. G.: Sources
and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs)
in the Arctic, Emerging Contaminants, 5, 128–142, https://doi.org/10.1016/j.emcon.2019.04.002, 2019.
Bandowe, B. A. M. and Meusel, H.: Nitrated polycyclic aromatic hydrocarbons
(nitro-PAHs) in the environment – A review, Sci. Total Environ., 581–582,
237–257, https://doi.org/10.1016/J.SCITOTENV.2016.12.115, 2017.
Barrie, L. and Platt, U.: Arctic tropospheric chemistry: an overview,
Tellus B, 49, 450–454, https://doi.org/10.3402/tellusb.v49i5.15984, 1997.
Berthiaume, A., Galarneau, E., and Marson, G.: Polycyclic aromatic compounds
(PACs) in the Canadian environment: Sources and emissions, Environ. Pollut.,
116008, https://doi.org/10.1016/j.envpol.2020.116008, 2020.
Bishop, G. A., Morris, J. A., and Stedman, D. H.: Snowmobile contributions
to mobile source emissions in Yellowstone National Park, Environ. Sci.
Technol., 35, 2874–2881, https://doi.org/10.1021/es010513l, 2001.
Bøckman, R.: Fremtidens energiutfordringer på Svalbard, Longyearbyen Lokalstyre, Norway, available at: http://www.uit.no (last access: 28 January 2020), 10 pp., 2019 (in
Norwegian).
Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks, T. J.:
Role of Quinones in Toxicology, Chem. Res. Toxicol., 13, 135–160,
https://doi.org/10.1021/tx9902082, 2000.
Bozem, H., Hoor, P., Kunkel, D., Köllner, F., Schneider, J., Herber, A., Schulz, H., Leaitch, W. R., Aliabadi, A. A., Willis, M. D., Burkart, J., and Abbatt, J. P. D.: Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements, Atmos. Chem. Phys., 19, 15049–15071, https://doi.org/10.5194/acp-19-15049-2019, 2019.
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798, https://doi.org/10.5194/acp-12-6775-2012, 2012.
Bunce, N. J., Liu, L., Zhu, J., and Lane, D. A.: Reaction of Naphthalene and
Its Derivatives with Hydroxyl Radicals in the Gas Phase, Environ. Sci.
Technol., 31, 2252–2259, https://doi.org/10.1021/es960813g, 1997.
Carrara, M. and Niessner, R.: Impact of a NO2-regenerated diesel
particulate filter on PAH and NPAH emissions from an EURO IV heavy duty
engine, J. Environ. Monit., 13, 3373–3379, https://doi.org/10.1039/C1EM10573F, 2011.
Carrara, M., Wolf, J.-C., and Niessner, R.: Nitro-PAH formation studied by
interacting artificially PAH-coated soot aerosol with NO2 in the temperature
range of 295–523 K, Atmos. Environ., 44, 3878–3885, https://doi.org/10.1016/j.atmosenv.2010.07.032, 2010.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
CEN: European Commitee for Standardization, EN-15549: 2008 – Air Quality –
Standard Method for the Measurement of the Concentration of Benzo[a]pyrene
in Air, CEN, Brussels, Belgium, available at:
https://shop.bsigroup.com/ProductDetail?pid=000000000030142046 (last access: 14 September 2021), 2008.
CEN: European Commitee for Standardization, TS-16645: 2014 – Ambient Air –
Method for the Measurement of Benz[a]anthracene, Benzo[b]fluoranthene,
Benzo[j]fluoranthene, Benzo[k]fluoranthene, Dibenz[a,h]anthracene,
Indeno[1,2,3-cd]pyrene and Benzo[ghi]perylene, CEN, Brussels, Belgium,
available at: https://shop.bsigroup.com/ProductDetail?pid=000000000030277467 (last access: 14 September 2021), 2014.
CEN: European Commitee for Standardization, EN-16909: 2017 – Ambient air –
Measurement of elemental carbon (EC) and organic carbon (OC) collected on
filters, CEN, Brussels, Belgium, 2017.
Cesana, G., Kay, J., Chepfer, H., English, J., and De Boer, G.: Ubiquitous
low-level liquid-containing Arctic clouds: New observations and climate
model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012.
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009.
Clergé, A., Le Goff, J., Lopez, C., Ledauphin, J., and Delépée,
R.: Oxy-PAHs: occurrence in the environment and potential
genotoxic/mutagenic risk assessment for human health, Crit. Rev. Toxicol.,
1–27, https://doi.org/10.1080/10408444.2019.1605333, 2019.
Contini, D., Gambaro, A., Belosi, F., De Pieri, S., Cairns, W. R. L.,
Donateo, A., Zanotto, E., and Citron, M.: The direct influence of ship
traffic on atmospheric PM2.5, PM10 and PAH in Venice, J. Environ. Manage.,
92, 2119–2129, https://doi.org/10.1016/j.jenvman.2011.01.016, 2011.
Copernicus C3S: Copernicus Climate Change Service (C3S), ERA5: Fifth
generation of ECMWF atmospheric reanalyses of the global climate, Copernicus
Climate Change Service Climate Data Store (CDS), 2017.
Cvrčková, O. and Ciganek, M.: Photostability of polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons
(NPAHs) in dichloromethane and isooctane solutions, Polycyclic Aromat. Compd., 25,
141–156, https://doi.org/10.1080/10406630590922166, 2005.
Cvrčková, O., Ciganek, M., and Šimek, Z.: Anthracene, chrysene, their nitro- and methyl-derivatives photostability in isooctane, Polycyclic
Aromat. Compd., 26, 331–344, https://doi.org/10.1080/10406630601028221, 2006.
Czech, H., Stengel, B., Adam, T., Sklorz, M., Streibel, T., and Zimmermann,
R.: A chemometric investigation of aromatic emission profiles from a marine
engine in comparison with residential wood combustion and road traffic:
Implications for source apportionment inside and outside sulphur emission
control areas, Atmos. Environ., 167, 212–222, https://doi.org/10.1016/j.atmosenv.2017.08.022, 2017.
Dahlke, S., Hughes, N. E., Wagner, P. M., Gerland, S., Wawrzyniak, T.,
Ivanov, B., and Maturilli, M.: The observed recent surface air temperature
development across Svalbard and concurring footprints in local sea ice
cover, Int. J. Climatol., 40, 5246–5265, https://doi.org/10.1002/joc.6517, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Dekhtyareva, A.: On local and long-range transported air pollution in
Svalbard, Phylosophiae Doctor, University in Tromsø, UiT The Arctic
University of Norway, Tromsø, Norway, 2019.
Dekhtyareva, A., Edvardsen, K., Holmén, K., Hermansen, O., and Hansson,
H. C.: Influence of local and regional air pollution on atmospheric
measurements in Ny-Ålesund, International Journal of Sustainable
Development and Planning, 11, 578–587, https://doi.org/10.2495/sdp-v11-n4-578-587, 2016.
Drotikova, T., Ali, A. M., Halse, A. K., Reinardy, H. C., and Kallenborn, R.: Polycyclic aromatic hydrocarbons (PAHs) and oxy- and nitro-PAHs in ambient air of the Arctic town Longyearbyen, Svalbard, Atmos. Chem. Phys., 20, 9997–10014, https://doi.org/10.5194/acp-20-9997-2020, 2020.
Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P., Forster, C., Junker, C., Wagner, T., Platt, U., and Jennings, S. G.: The North Atlantic Oscillation controls air pollution transport to the Arctic, Atmos. Chem. Phys., 3, 1769–1778, https://doi.org/10.5194/acp-3-1769-2003, 2003.
Eckhardt, S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A., and Stohl, A.: The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?, Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, 2013.
ECMWF: European Centre for Medium-Range Weather Forecasts. PART IV: PHYSICAL
PROCESSES, in: IFS Documentation CY43R3, IFS Documentation, ECMWF, 221 pp.,
2017.
EPA: United States Environmental Protection Agency, Annual Certification
Data for Vehicles, Engines, and Equipment, available at: https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment,
last access: 22 November 2020.
Eriksson, K., Tjärner, D., Marqvardsen, I., and Järvholm, B.:
Exposure to benzene, toluene, xylenes and total hydrocarbons among
snowmobile drivers in Sweden, Chemosphere, 50, 1343–1347, https://doi.org/10.1016/S0045-6535(02)00808-1, 2003.
Fan, Z., Kamens, R. M., Hu, J., Zhang, J., and McDow, S.: Photostability of
Nitro-Polycyclic Aromatic Hydrocarbons on Combustion Soot Particles in
Sunlight, Environ. Sci. Technol., 30, 1358–1364, https://doi.org/10.1021/es9505964, 1996.
Ferrero, L., Cappelletti, D., Busetto, M., Mazzola, M., Lupi, A., Lanconelli, C., Becagli, S., Traversi, R., Caiazzo, L., Giardi, F., Moroni, B., Crocchianti, S., Fierz, M., Močnik, G., Sangiorgi, G., Perrone, M. G., Maturilli, M., Vitale, V., Udisti, R., and Bolzacchini, E.: Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012) of field campaigns, Atmos. Chem. Phys., 16, 12601–12629, https://doi.org/10.5194/acp-16-12601-2016, 2016.
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
Fu, P., Kawamura, K., and Barrie, L. A.: Photochemical and Other Sources of
Organic Compounds in the Canadian High Arctic Aerosol Pollution during
Winter-Spring, Environ. Sci. Technol., 43, 286–292, https://doi.org/10.1021/es803046q, 2009.
Garrett, T., Zhao, C., and Novelli, P.: Assessing the relative contributions
of transport efficiency and scavenging to seasonal variability in Arctic
aerosol, Tellus B, 62, 190–196,
https://doi.org/10.1111/j.1600-0889.2010.00453.x, 2010.
GYC: Greater Yellowstone Coalition. Existing Research and Data Regarding the
Status of Air Quality in the Greater Yellowstone Ecosystem: A Bibliography,
edited by: Hettinger, K., 2011.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Halsall, C. J., Barrie, L. A., Fellin, P., Muir, D., Billeck, B., Lockhart,
L., Rovinsky, F. Y., Kononov, E. Y., and Pastukhov, B.: Spatial and temporal
variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere,
Environ. Sci. Technol., 31, 3593–3599, https://doi.org/10.1021/es970342d, 1997.
Hanssen-Bauer, I., Førland, E., Hisdal, H., Mayer, S., Sandø, A. B., and
Sorteberg, A.: Climate in Svalbard 2100 – a knowledge base for climate
adaptation. NCCS report no. 1/2019, Norway, 105 pp., 2019.
Heald, C. L. and Kroll, J. H.: The fuel of atmospheric chemistry: Toward a
complete description of reactive organic carbon, Sci. Adv., 6, eaay8967,
https://doi.org/10.1126/sciadv.aay8967, 2020.
Heeb, N. V., Schmid, P., Kohler, M., Gujer, E., Zennegg, M., Wenger, D.,
Wichser, A., Ulrich, A., Gfeller, U., Honegger, P., Zeyer, K., Emmenegger,
L., Petermann, J.-L., Czerwinski, J., Mosimann, T., Kasper, M., and Mayer,
A.: Secondary effects of catalytic diesel particulate filters: conversion of
PAHs versus formation of nitro-PAHs, Environ. Sci. Technol., 42, 3773–3779,
https://doi.org/10.1021/es7026949, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, S., Herner, J. D., Robertson, W., Kobayashi, R., Chang, M. C. O., Huang,
S.-M., Zielinska, B., Kado, N., Collins, J. F., Rieger, P., Huai, T., and
Ayala, A.: Emissions of polycyclic aromatic hydrocarbons (PAHs) and
nitro-PAHs from heavy-duty diesel vehicles with DPF and SCR, J.
Air Waste Manage. Assoc., 63, 984–996, https://doi.org/10.1080/10962247.2013.795202, 2013.
Huang, B., Liu, M., Bi, X., Chaemfa, C., Ren, Z., Wang, X., Sheng, G., and
Fu, J.: Phase distribution, sources and risk assessment of PAHs, NPAHs and
OPAHs in a rural site of Pearl River Delta region, China, Atmos. Pollut.
Res., 5, 210–218, https://doi.org/10.5094/APR.2014.026, 2014.
Huang, C., Hu, Q., Li, Y., Tian, J., Ma, Y., Zhao, Y., Feng, J., An, J.,
Qiao, L., Wang, H., Jing, S. a., Huang, D., Lou, S., Zhou, M., Zhu, S., Tao,
S., and Li, L.: Intermediate Volatility Organic Compound Emissions from a
Large Cargo Vessel Operated under Real-World Conditions, Environ. Sci.
Technol., 52, 12934–12942, https://doi.org/10.1021/acs.est.8b04418, 2018a.
Huang, C., Hu, Q., Wang, H., Qiao, L., Jing, S. a., Wang, H., Zhou, M., Zhu,
S., Ma, Y., Lou, S., Li, L., Tao, S., Li, Y., and Lou, D.: Emission factors
of particulate and gaseous compounds from a large cargo vessel operated
under real-world conditions, Environ. Pollut., 242, 667–674, https://doi.org/10.1016/j.envpol.2018.07.036, 2018b.
IARC: International Agency for Research on Cancer. Some Chemicals Present in
Industrial and Consumer Products, Food and Drinking-water, available at: http://monographs.iarc.fr/ENG/Monographs/vol101/index.php (last access: 14 September 2021), 2012.
Idowu, O., Semple, K. T., Ramadass, K., O'Connor, W., Hansbro, P., and
Thavamani, P.: Beyond the obvious: Environmental health implications of
polar polycyclic aromatic hydrocarbons, Environ. Int., 123, 543–557,
https://doi.org/10.1016/j.envint.2018.12.051, 2019.
International Agency for Research on Cancer: Some non-heterocyclic
polycyclic aromatic hydrocarbons and some related exposures, available at: http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf (last access: 14 September 2021), 2010.
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood,
S., and Niedźwiedź, T.: Recent warming on Spitsbergen – Influence of
atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121, 11913–11931, https://doi.org/10.1002/2016JD025606, 2016.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kameda, T.: Atmospheric Reactions of PAH derivatives: Formation and
Degradation, in: Polycyclic Aromatic Hydrocarbons: Environmental Behavior
and Toxicity in East Asia, edited by: Hayakawa, K., Springer Singapore,
Singapore, 75–91, 2018.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate
change and forest fires synergistically drive widespread melt events of the
Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111,
7964–7967, 2014.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and
long-range transport potential of polycyclic aromatic hydrocarbons – a
review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/C3CS60147A, 2013.
Kim, K.-H., Jahan, S. A., Kabir, E., and Brown, R. J. C.: A review of
airborne polycyclic aromatic hydrocarbons (PAHs) and their human health
effects, Environ. Int., 60, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013.
Klonecki, A.: Seasonal changes in the transport of pollutants into the
Arctic troposphere-model study, J. Geophys. Res., 108, 8367, https://doi.org/10.1029/2002jd002199, 2003.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kystdatahuset: Longyearbyen port traffic as of 2018, available at: https://kystdatahuset.no/ (last access: 5 June 2020), 2018.
Law, K. S., Roiger, A., Thomas, J. L., Marelle, L., Raut, J.-C.,
Dalsøren, S., Fuglestvedt, J., Tuccella, P., Weinzierl, B., and Schlager,
H.: Local Arctic air pollution: Sources and impacts, Ambio, 46, 453–463,
https://doi.org/10.1007/s13280-017-0962-2, 2017.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T.: An overview of
microphysical properties of Arctic clouds observed in May and July 1998
during FIRE ACE, J. Geophys. Res.-Atmos., 106,
14989–15014, https://doi.org/10.1029/2000JD900789, 2001.
Lee, J. Y. and Lane, D. A.: Unique products from the reaction of
naphthalene with the hydroxyl radical, Atmos. Environ., 43, 4886–4893,
https://doi.org/10.1016/j.atmosenv.2009.07.018, 2009.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of
organic chemicals?, Atmos. Environ., 38, 3557–3571,
https://doi.org/10.1016/j.atmosenv.2004.03.039, 2004.
Läderach, A. and Sodemann, H.: A revised picture of the atmospheric
moisture residence time, Geophys. Res. Lett., 43, 924–933, https://doi.org/10.1002/2015GL067449, 2016.
Madonna, E., Wernli, H., Joos, H., and Martius, O.: Warm Conveyor Belts in
the ERA-Interim Dataset (1979–2010). Part I: Climatology and Potential
Vorticity Evolution, J. Climate, 27, 3–26, https://doi.org/10.1175/jcli-d-12-00720.1, 2014.
Marchand, N., Besombes, J. L., Chevron, N., Masclet, P., Aymoz, G., and Jaffrezo, J. L.: Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns, Atmos. Chem. Phys., 4, 1167–1181, https://doi.org/10.5194/acp-4-1167-2004, 2004.
Matsuzawa, S.: Photodegradation of some Oxygenated Polycyclic Aromatic
Hydrocarbons, Polycyclic Aromat. Compd., 21, 331–339,
https://doi.org/10.1080/10406630008028543, 2000.
McDaniel, M. and Zielinska, B.: Polycyclic Aromatic Hydrocarbons in the
Snowpack and Surface Water in Blackwood Canyon, Lake Tahoe, CA, as Related
to Snowmobile Activity, Polycyclic Aromat. Compd., 35, 102–119,
https://doi.org/10.1080/10406638.2014.935449, 2014.
Meldrum, J.: Optimization of a Direct-Injected 2-Stroke Cycle Snowmobile,
in: Clean Snowmobile Challenge: 1 the Early Years, 4-Stroke Engines Make
Their Debut, SAE, USA, 1–14, 2017.
Miet, K., Albinet, A., Budzinski, H., and Villenave, E.: Atmospheric
reactions of 9,10-anthraquinone, Chemosphere, 107, 1–6,
https://doi.org/10.1016/J.CHEMOSPHERE.2014.02.050, 2014.
Miljødirektoratet: Longyearbyen power plant coal and diesel consumption
as of 2018, available at:
https://www.norskeutslipp.no/no/Diverse/Virksomhet/?CompanyID=5115 (last access: 12 November 2020), 2018.
Monks, P. S.: A review of the observations and origins of the spring ozone
maximum, Atmos. Environ., 34, 3545–3561, https://doi.org/10.1016/S1352-2310(00)00129-1, 2000.
Mulder, M. D., Dumanoglu, Y., Efstathiou, C., Kukučka, P.,
Matejovičová, J., Maurer, C., Přibylová, P., Prokeš, R.,
Sofuoglu, A., Sofuoglu, S. C., Wilson, J., Zetzsch, C., Wotawa, G., and
Lammel, G.: Fast Formation of Nitro-PAHs in the Marine Atmosphere
Constrained in a Regional-Scale Lagrangian Field Experiment, Environ. Sci.
Technol., 53, 8914–8924, https://doi.org/10.1021/acs.est.9b03090, 2019.
Nalin, F., Golly, B., Besombes, J.-L., Pelletier, C., Aujay-Plouzeau, R.,
Verlhac, S., Dermigny, A., Fievet, A., Karoski, N., Dubois, P., Collet, S.,
Favez, O., and Albinet, A.: Fast oxidation processes from emission to
ambient air introduction of aerosol emitted by residential log wood stoves,
Atmos. Environ., 143, 15–26, https://doi.org/10.1016/j.atmosenv.2016.08.002, 2016.
Nežiková, B., Degrendele, C., Bandowe, B. A. M., Holubová
Šmejkalová, A., Kukučka, P., Martiník, J., Mayer, L.,
Prokeš, R., Přibylová, P., Klánová, J., and Lammel, G.:
Three years of atmospheric concentrations of nitrated and oxygenated
polycyclic aromatic hydrocarbons and oxygen heterocycles at a central
European background site, Chemosphere, 128738, https://doi.org/10.1016/j.chemosphere.2020.128738, 2020.
Niedźwiedź, T.: The atmospheric circulation, Climate and Climate
Change at Hornsund, Svalbard. The Publishing House of Gdynia Maritime
University, Gdynia, 2013.
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term
temperature trends and variability on Spitsbergen: the extended Svalbard
Airport temperature series, 1898–2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2014.
Oanh, P. K., Kazushi, N., Yoshie, N., Tatsuya, T., Yusuke, F., Miho, A.,
Toshimitsu, S., Kenji, K., Hideaki, M., Hien, T. O. T., and Norimichi, T.:
Concentrations of polycyclic aromatic hydrocarbons in Antarctic snow
polluted by research activities using snow mobiles and diesel electric
generators, Bull. Glaciol. Res., 37, 23–30, https://doi.org/10.5331/bgr.19A02, 2019.
Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., and Holsen, T. M.:
Polycyclic aromatic hydrocarbons (PAHs) in Chicago air, Sci. Total Environ.,
227, 57–67, https://doi.org/10.1016/S0048-9697(99)00004-2,
1999.
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of
sea ice during winter north of Svalbard, Tellus A, 66, 23933, https://doi.org/10.3402/tellusa.v66.23933, 2014.
Perraudin, E., Budzinski, H., and Villenave, E.: Identification and
quantification of ozonation products of anthracene and phenanthrene adsorbed
on silica particles, Atmos. Environ., 41, 6005–6017, https://doi.org/10.1016/j.atmosenv.2007.03.010, 2007.
Prevedouros, K., Brorström-Lundén, E., J. Halsall, C., Jones, K. C.,
Lee, R. G. M., and Sweetman, A. J.: Seasonal and long-term trends in
atmospheric PAH concentrations: evidence and implications, Environ. Pollut.,
128, 17–27, https://doi.org/10.1016/j.envpol.2003.08.032, 2004.
Ravindra, K., Sokhi, R., and Vangrieken, R.: Atmospheric polycyclic aromatic
hydrocarbons: Source attribution, emission factors and regulation, Atmos.
Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Ray, J. D., Bishop, G., Schuchmann, B., Frey, C., Sandu, G., and Graver, B.:
Yellowstone Over-snow Vehicle Emission Tests–2012: Preliminary Report,
Natural Resource Technical Report NPS/NRPC/ARD/NRTR – 2012, National Park
Service, Fort Collins, Colorado, 36 pp., 2012.
Reimann, S., Kallenborn, R., and Schmidbauer, N.: Severe Aromatic
Hydrocarbon Pollution in the Arctic Town of Longyearbyen (Svalbard) Caused
by Snowmobile Emissions, Environ. Sci. Technol., 43, 4791–4795,
https://doi.org/10.1021/es900449x, 2009.
Reisen, F. and Arey, J.: Atmospheric Reactions Influence Seasonal PAH and
Nitro-PAH Concentrations in the Los Angeles Basin, Environ. Sci. Technol.,
39, 64–73, https://doi.org/10.1021/es035454l, 2005.
Rhea, D. T., Gale, R. W., Orazio, C. E., Peterman, P. H., Harper, D. D., and
Farag, A. M.: Polycyclic aromatic hydrocarbons in water, sediment, and snow,
from lakes in Grand Teton National Park, Wyoming. Final Report,
USGS-CERC-91344, US. Geological Survey, Columbia Environmental Research
Center (USGS-CERC), Columbia, South Carolina, USA, 30 pp., 2005.
Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., and Villenave,
E.: Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs)
adsorbed on natural aerosol particles exposed to atmospheric oxidants,
Atmos. Environ., 61, 15–22, https://doi.org/10.1016/j.atmosenv.2012.07.025, 2012.
Röhler, L., Schlabach, M., Haglund, P., Breivik, K., Kallenborn, R., and Bohlin-Nizzetto, P.: Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air, Atmos. Chem. Phys., 20, 9031–9049, https://doi.org/10.5194/acp-20-9031-2020, 2020.
Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson, W.
R., Mao, J., and Pratt, K. A.: Local Arctic air pollution: A neglected but
serious problem, Earth's Future, 6, 1385–1412, https://doi.org/10.1029/2018ef000952, 2018.
Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., and
Trenberth, K. E.: The large-scale energy budget of the Arctic, J. Geophys.
Res., 112, D11122, https://doi.org/10.1029/2006jd008230, 2007.
Shahpoury, P., Lammel, G., Albinet, A., Sofuoglu, A., Dumanoğlu, Y.,
Sofuoglu, S. C., Wagner, Z., and Zdimal, V.: Evaluation of a Conceptual
Model for Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons
Using Polyparameter Linear Free Energy Relationships, Environ. Sci.
Technol., 50, 12312–12319, https://doi.org/10.1021/acs.est.6b02158, 2016.
Shahpoury, P., Kitanovski, Z., and Lammel, G.: Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic, Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018, 2018.
Shively, D. D., Pape, B. M. C., Mower, R. N., Zhou, Y., Russo, R., and Sive,
B. C.: Blowing Smoke in Yellowstone: Air Quality Impacts of Oversnow
Motorized Recreation in the Park, Environ. Manage., 41, 183–199,
https://doi.org/10.1007/s00267-007-9036-8, 2008.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Singh, D. K., Kawamura, K., Yanase, A., and Barrie, L. A.: Distributions of
polycyclic aromatic hydrocarbons, aromatic ketones, carboxylic acids, and
trace metals in Arctic aerosols: Long-range atmospheric transport,
photochemical degradation/production at polar sunrise, Environ. Sci.
Technol., 51, 8992–9004, https://doi.org/10.1021/acs.est.7b01644, 2017.
Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J.,
Lintelmann, J., Michalke, B., Abbaszade, G., Radischat, C., Gröger, T.,
Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R.: Particle Emissions
from a Marine Engine: Chemical Composition and Aromatic Emission Profiles
under Various Operating Conditions, Environ. Sci. Technol., 48, 11721–11729,
https://doi.org/10.1021/es502484z, 2014.
Sive, B. C., Shively, D., and Pape, B.: Spatial variation of volatile
organic compounds associated with snowmobile emissions in Yellowstone
National Park, National Park Service, 85 pp., 2003.
Sjöblom, A.: The Ice-atmosphere boundary layer, The University Centre in
Svalbard, Norway, Longyearbyen, 30 pp., 2010.
Srivastava, D., Favez, O., Bonnaire, N., Lucarelli, F., Haeffelin, M.,
Perraudin, E., Gros, V., Villenave, E., and Albinet, A.: Speciation of
organic fractions does matter for aerosol source apportionment. Part 2:
Intensive short-term campaign in the Paris area (France), Sci. Total
Environ., 634, 267–278, https://doi.org/10.1016/j.scitotenv.2018.03.296, 2018.
Statistics Norway: This is Svalbard 2016. What the figures say, Statistics
Norway, Oslo, Norway, 28 pp., 2016.
Statistics Norway. Registered vehicles, by region, statistical variable per
year, data for 2018, available at: https://www.ssb.no/statbank/table/11823/
(last access: 5 June 2020), 2018.
Statistics Norway: Longyearbyen and Ny-Ålesund population as of 2020, available at:
https://www.ssb.no/befolkning/statistikker/befsvalbard, last access:
12 November 2020.
Stohl, A.: Characteristics of atmospheric transport into the Arctic
troposphere, J. Geophys. Res.-Atmos., 111, D11306,
https://doi.org/10.1029/2005jd006888, 2006.
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the
pathways and timescales of intercontinental air pollution transport, J. Geophys. Res.-Atmos., 107, ACH 6-1–ACH 6-17, https://doi.org/10.1029/2001JD001396, 2002.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1988.
Tomaz, S., Shahpoury, P., Jaffrezo, J.-L., Lammel, G., Perraudin, E.,
Villenave, E., and Albinet, A.: One-year study of polycyclic aromatic
compounds at an urban site in Grenoble (France): Seasonal variations,
gas/particle partitioning and cancer risk estimation, Sci. Total Environ.,
565, 1071–1083, https://doi.org/10.1016/j.scitotenv.2016.05.137,
2016.
U.S. NPS: National Park Service, Best Available Technology (BAT) Snowmobiles
as of December 15th, 2015, available at: https://www.nps.gov/yell/planyourvisit/newbatlist.htm (last access: 30 December 2020), 2015.
van Pelt, W. J. J., Kohler, J., Liston, G. E., Hagen, J. O., Luks, B.,
Reijmer, C. H., and Pohjola, V. A.: Multidecadal climate and seasonal snow
conditions in Svalbard, J. Geophys. Res.-Earth Surf., 121,
2100–2117, https://doi.org/10.1002/2016JF003999, 2016.
Verlhac, S., Albinet, A., Cabillic, J., Lalère, B., and Fallot, C.,:
European Interlaboratory Comparison for the analysis of PAHs in ambient air
(2015), LCSQA, available at: https://www.lcsqa.org/fr/rapport/2015/ineris/european-interlaboratory-comparison-for-the-analysis-of-pah-in-ambient-air (last access: 14 September 2021),
2015.
Vestreng, V., Kallenborn, R., and Økstad, E.: Norwegian Arctic climate:
climate influencing emissions, scenarios and mitigation options at Svalbard, Klima- og forurensningsdirektoratet [Climate and Pollution Agency], Oslo, Norway,
56 pp., 2009.
Walgraeve, C., Demeestere, K., Dewulf, J., Zimmermann, R., and Van
Langenhove, H.: Oxygenated polycyclic aromatic hydrocarbons in atmospheric
particulate matter: Molecular characterization and occurrence, Atmos.
Environ., 44, 1831–1846, https://doi.org/10.1016/j.atmosenv.2009.12.004, 2010.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory
survey, Elsevier, 2006.
Wang, R., Tao, S., Wang, B., Yang, Y., Lang, C., Zhang, Y., Hu, J., Ma, J.,
and Hung, H.: Sources and Pathways of Polycyclic Aromatic Hydrocarbons
Transported to Alert, the Canadian High Arctic, Environ. Sci. Technol., 44,
1017–1022, https://doi.org/10.1021/es902203w, 2010.
WHO: The World Health Organization, Environmental health criteria 229,
Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons, 511,
available at: http://whqlibdoc.who.int/ehc/WHO_EHC_229.pdf (last access: 14 September 2021), 2003.
Wickström, S.: Warmer and wetter winters over the high-latitude North
Atlantic: an atmospheric circulation perspective, Doctoral thesis, UiB, The
University of Bergen, Bergen, Norway, 2020.
Wickström, S., Jonassen, M. O., Cassano, J. J., and Vihma, T.: Present
Temperature, Precipitation, and Rain-on-Snow Climate in Svalbard, J.
Geophys. Res.-Atmos., 125, e2019JD032155, https://doi.org/10.1029/2019JD032155, 2020a.
Wickström, S., Jonassen, M. O., Vihma, T., and Uotila, P.: Trends in
cyclones in the high-latitude North Atlantic during 1979–2016, Q. J. Roy.
Meteor. Soc., 146, 762–779, https://doi.org/10.1002/qj.3707, 2020b.
Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes controlling
the composition and abundance of Arctic aerosol, Rev. Geophys., 56, 621–671,
https://doi.org/10.1029/2018rg000602, 2018.
Willis, M. D., Bozem, H., Kunkel, D., Lee, A. K. Y., Schulz, H., Burkart, J., Aliabadi, A. A., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition, Atmos. Chem. Phys., 19, 57–76, https://doi.org/10.5194/acp-19-57-2019, 2019.
Wong, F., Hung, H., Dryfhout-Clark, H., Aas, W., Bohlin-Nizzetto, P.,
Breivik, K., Mastromonaco, M. N., Lundén, E. B., Ólafsdóttir,
K., Sigurðsson, Á., Vorkamp, K., Bossi, R., Skov, H., Hakola, H.,
Barresi, E., Sverko, E., Fellin, P., Li, H., Vlasenko, A., Zapevalov, M.,
Samsonov, D., and Wilson, S.: Time Trends Of Persistent Organic Pollutants
(Pops) And Chemicals Of Emerging Arctic Concern (Ceac) In Arctic Air From 25
Years Of Monitoring, Sci. Total Environ., 775, 145109, https://doi.org/10.1016/j.scitotenv.2021.145109, 2021.
Yu, Y., Katsoyiannis, A., Bohlin-Nizzetto, P., Brorström-Lundén, E.,
Ma, J., Zhao, Y., Wu, Z., Tych, W., Mindham, D., Sverko, E., Barresi, E.,
Dryfhout-Clark, H., Fellin, P., and Hung, H.: Polycyclic aromatic
hydrocarbons not declining in Arctic air despite global emission reduction,
Environ. Sci. Technol., 53, 2375–2382, https://doi.org/10.1021/acs.est.8b05353, 2019.
Zhan, J., Gao, Y., Li, W., Chen, L., Lin, H., and Lin, Q.: Effects of ship
emissions on summertime aerosols at Ny-Alesund in the Arctic, Atmos.
Pollut. Res., 5, 500–510, https://doi.org/10.5094/apr.2014.059, 2014.
Zhang, F., Chen, Y., Tian, C., Lou, D., Li, J., Zhang, G., and Matthias, V.: Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China, Atmos. Chem. Phys., 16, 6319–6334, https://doi.org/10.5194/acp-16-6319-2016, 2016.
Zhang, F., Chen, Y., Cui, M., Feng, Y., Yang, X., Chen, J., Zhang, Y., Gao,
H., Tian, C., Matthias, V., and Liu, H.: Emission factors and environmental
implication of organic pollutants in PM emitted from various vessels in
China, Atmos. Environ., 200, 302–311, https://doi.org/10.1016/j.atmosenv.2018.12.006, 2019.
Zhang, F., Guo, H., Chen, Y., Matthias, V., Zhang, Y., Yang, X., and Chen, J.: Size-segregated characteristics of organic carbon (OC), elemental carbon (EC) and organic matter in particulate matter (PM) emitted from different types of ships in China, Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020, 2020.
Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S., and Ikeda, M.: Climatology
and Interannual Variability of Arctic Cyclone Activity: 1948–2002, J.
Clim., 17, 2300–2317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2, 2004.
Zhao, J., Zhang, Y., Wang, T., Sun, L., Yang, Z., Lin, Y., Chen, Y., and
Mao, H.: Characterization of PM2.5-bound polycyclic aromatic hydrocarbons
and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines
under different operating conditions, Chemosphere, 225, 43–52, https://doi.org/10.1016/j.chemosphere.2019.03.022, 2019.
Zhao, J., Zhang, Y., Chang, J., Peng, S., Hong, N., Hu, J., Lv, J., Wang,
T., and Mao, H.: Emission characteristics and temporal variation of PAHs and
their derivatives from an ocean-going cargo vessel, Chemosphere, 249,
126194, https://doi.org/10.1016/j.chemosphere.2020.126194, 2020.
Zhou, Y., Shively, D., Mao, H., Russo, R. S., Pape, B., Mower, R. N.,
Talbot, R., and Sive, B. C.: Air Toxic Emissions from Snowmobiles in
Yellowstone National Park, Environ. Sci. Technol., 44, 222–228,
https://doi.org/10.1021/es9018578, 2010.
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil...
Altmetrics
Final-revised paper
Preprint