Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14351-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: seasonal trends and local anthropogenic influence
Tatiana Drotikova
CORRESPONDING AUTHOR
Department of Arctic Technology, University Centre in Svalbard (UNIS),
Longyearbyen, 9171, Norway
Faculty of Chemistry, Biotechnology and Food Science, Norwegian
University of Life Sciences (NMBU), Ås, 1432, Norway
Alena Dekhtyareva
Geophysical Institute, University of Bergen and Bjerknes Centre for
Climate Research, Bergen, 5020, Norway
Roland Kallenborn
Department of Arctic Technology, University Centre in Svalbard (UNIS),
Longyearbyen, 9171, Norway
Faculty of Chemistry, Biotechnology and Food Science, Norwegian
University of Life Sciences (NMBU), Ås, 1432, Norway
Alexandre Albinet
CORRESPONDING AUTHOR
French National Institute for Industrial Environment and Risks
(Ineris), Verneuil-en-Halatte, 60550, France
Related authors
Tatiana Drotikova, Aasim M. Ali, Anne Karine Halse, Helena C. Reinardy, and Roland Kallenborn
Atmos. Chem. Phys., 20, 9997–10014, https://doi.org/10.5194/acp-20-9997-2020, https://doi.org/10.5194/acp-20-9997-2020, 2020
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in global emissions. We studied PAHs and oxy- and nitro-PAHs in gas and particulate phases of Arctic aerosol, collected in autumn 2018 in Longyearbyen, Svalbard. PAHs were found at comparable levels as at other background Scandinavian and European air sampling stations. Statistical analysis confirmed that a coal-fired power plant and vehicle and marine traffic are the main local contributors of PAHs.
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Sijia Lou, Manish Shrivastava, Alexandre Albinet, Sophie Tomaz, Deepchandra Srivastava, Olivier Favez, Huizhong Shen, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-3269, https://doi.org/10.5194/egusphere-2024-3269, 2024
Short summary
Short summary
PAHs, emitted from incomplete combustion, pose serious health risks due to their carcinogenic properties. This research demonstrates that viscous organic aerosol coatings significantly hinder PAH oxidation, with spatial distributions sensitive to the degradation modelling approach. Our findings underscore the importance of accurately modelling these processes for risk assessments, highlighting the need to consider both fresh and oxidized PAHs in evaluating human exposure and health risks.
Andrew W. Seidl, Aina Johannessen, Alena Dekhtyareva, Jannis M. Huss, Marius O. Jonassen, Alexander Schulz, Ove Hermansen, Christoph K. Thomas, and Harald Sodemann
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-293, https://doi.org/10.5194/essd-2024-293, 2024
Preprint under review for ESSD
Short summary
Short summary
ISLAS2020 set out to measure the stable water isotopic composition of Arctic moisture. By not only measuring at different sites around Ny-Ålesund, Svalbard, but also measuring at variable heights above surface level, we aim to characterize processes that produce or modify the isotopic composition. We also collect precipitation samples from sites that were typically downstream of Ny-Ålesund, so as to capture the isotopic composition during removal from the atmospheric water cycle.
Abd El Rahman El Mais, Barbara D'Anna, Luka Drinovec, Andrew T. Lambe, Zhe Peng, Jean-Eudes Petit, Olivier Favez, Selim Aït-Aïssa, and Alexandre Albinet
Atmos. Chem. Phys., 23, 15077–15096, https://doi.org/10.5194/acp-23-15077-2023, https://doi.org/10.5194/acp-23-15077-2023, 2023
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHS) and furans are key precursors of secondary organic aerosols (SOAs) related to biomass burning emissions. We evaluated and compared the formation yields, and the physical and light absorption properties, of laboratory-generated SOAs from the oxidation of such compounds for both, day- and nighttime reactivities. The results illustrate that PAHs are large SOA precursors and may contribute significantly to the biomass burning brown carbon in the atmosphere.
Harald Sodemann, Alena Dekhtyareva, Alvaro Fernandez, Andrew Seidl, and Jenny Maccali
Atmos. Meas. Tech., 16, 5181–5203, https://doi.org/10.5194/amt-16-5181-2023, https://doi.org/10.5194/amt-16-5181-2023, 2023
Short summary
Short summary
We describe a device that allows one to produce a continuous stream of water vapour with a specified level of humidity. As a main innovation, we can mix waters with different water isotope composition. Through a series of tests we show that the performance characteristics of the device are in line with specifications. We present two laboratory applications where the device proves useful, first in characterizing instruments, and second for the analysis of water contained in stalagmites.
Alena Dekhtyareva, Mark Hermanson, Anna Nikulina, Ove Hermansen, Tove Svendby, Kim Holmén, and Rune Grand Graversen
Atmos. Chem. Phys., 22, 11631–11656, https://doi.org/10.5194/acp-22-11631-2022, https://doi.org/10.5194/acp-22-11631-2022, 2022
Short summary
Short summary
Despite decades of industrial activity in Svalbard, there is no continuous air pollution monitoring in the region’s settlements except Ny-Ålesund. The NOx and O3 observations from the three-station network have been compared for the first time in this study. It has been shown how the large-scale weather regimes control the synoptic meteorological conditions and determine the atmospheric long-range transport pathways and efficiency of local air pollution dispersion.
Samuël Weber, Gaëlle Uzu, Olivier Favez, Lucille Joanna S. Borlaza, Aude Calas, Dalia Salameh, Florie Chevrier, Julie Allard, Jean-Luc Besombes, Alexandre Albinet, Sabrina Pontet, Boualem Mesbah, Grégory Gille, Shouwen Zhang, Cyril Pallares, Eva Leoz-Garziandia, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 21, 11353–11378, https://doi.org/10.5194/acp-21-11353-2021, https://doi.org/10.5194/acp-21-11353-2021, 2021
Short summary
Short summary
Oxidative potential (OP) of aerosols is apportioned to the main PM sources found in 15 sites over France. The sources present clear distinct intrinsic OPs at a large geographic scale, and a drastic redistribution between the mass concentration and OP measured by both ascorbic acid and dithiothreitol is highlighted. Moreover, the high discrepancy between the mean and median contributions of the sources to the given metrics raises some important questions when dealing with health endpoints.
Lucille Joanna S. Borlaza, Samuël Weber, Jean-Luc Jaffrezo, Stephan Houdier, Rémy Slama, Camille Rieux, Alexandre Albinet, Steve Micallef, Cécile Trébluchon, and Gaëlle Uzu
Atmos. Chem. Phys., 21, 9719–9739, https://doi.org/10.5194/acp-21-9719-2021, https://doi.org/10.5194/acp-21-9719-2021, 2021
Short summary
Short summary
With an enhanced source apportionment obtained in a companion paper, this paper acquires more understanding of the spatiotemporal associations of the sources of PM to oxidative potential (OP), an emerging health-based metric. Multilayer perceptron neural network analysis was used to apportion OP from PM sources. Results showed that such a methodology is as robust as the linear classical inversion and permits an improvement in the OP prediction when local features or non-linear effects occur.
Tatiana Drotikova, Aasim M. Ali, Anne Karine Halse, Helena C. Reinardy, and Roland Kallenborn
Atmos. Chem. Phys., 20, 9997–10014, https://doi.org/10.5194/acp-20-9997-2020, https://doi.org/10.5194/acp-20-9997-2020, 2020
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are not declining in Arctic air despite reductions in global emissions. We studied PAHs and oxy- and nitro-PAHs in gas and particulate phases of Arctic aerosol, collected in autumn 2018 in Longyearbyen, Svalbard. PAHs were found at comparable levels as at other background Scandinavian and European air sampling stations. Statistical analysis confirmed that a coal-fired power plant and vehicle and marine traffic are the main local contributors of PAHs.
Andrew T. Lambe, Ezra C. Wood, Jordan E. Krechmer, Francesca Majluf, Leah R. Williams, Philip L. Croteau, Manuela Cirtog, Anaïs Féron, Jean-Eudes Petit, Alexandre Albinet, Jose L. Jimenez, and Zhe Peng
Atmos. Meas. Tech., 13, 2397–2411, https://doi.org/10.5194/amt-13-2397-2020, https://doi.org/10.5194/amt-13-2397-2020, 2020
Short summary
Short summary
We present a new method to continuously generate N2O5 in the gas phase that is injected into a reactor where it decomposes to generate nitrate radicals (NO3). To assess the applicability of the method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure and other metrics as a function of operating conditions. We demonstrate the method by characterizing secondary organic aerosol particles generated from the β-pinene + NO3 reaction.
Yunjiang Zhang, Olivier Favez, Jean-Eudes Petit, Francesco Canonaco, Francois Truong, Nicolas Bonnaire, Vincent Crenn, Tanguy Amodeo, Andre S. H. Prévôt, Jean Sciare, Valerie Gros, and Alexandre Albinet
Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, https://doi.org/10.5194/acp-19-14755-2019, 2019
Short summary
Short summary
We present 6-year source apportionment of organic aerosol (OA) achieved with near-continuous online measurements and subsequent receptor model analysis in the Paris region, France. The OA factors presented distinct seasonal patterns, associated with different atmospheric formation processes and roles in air pollution. Limited year-round trends for two primary anthropogenic factors and a biogenic-like secondary factor were observed, while a more oxidized secondary OA showed a decreasing feature.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Trishalee Canete, Alexandre Albinet, Aurélie Charron, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Jean-Luc Besombes, Jean M. F. Martins, Nicolas Bonnaire, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 11013–11030, https://doi.org/10.5194/acp-19-11013-2019, https://doi.org/10.5194/acp-19-11013-2019, 2019
Short summary
Short summary
We conducted a large study focusing on the daily (24 h) PM10 sugar compound (SC) concentrations for 16 increasing space-scale sites in France (local to nationwide) over at least 1 complete year. Our main results clearly show distance-dependent covariation patterns, with SC concentrations being highly synchronous at an urban city scale and remaining well correlated throughout the same geographic regions. However, sampling sites located in two distinct geographic areas are poorly correlated.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Alexandre Albinet, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Nicolas Bonnaire, Jean-Luc Besombes, Jean M. F. Martins, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, https://doi.org/10.5194/acp-19-3357-2019, 2019
Short summary
Short summary
The contribution of primary biogenic organic aerosols to PM is barely documented. This work provides a broad overview of the spatiotemporal evolution of concentrations and contributions to OM of dominant primary sugar alcohols and saccharides for a large selection of environmental conditions in France (28 sites and more than 5 340 samples). These chemicals are ubiquitous, and are associated with coarse aerosols. Their concentrations display site-to-site and clear seasonal variations.
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Alexia Baudic, Valérie Gros, Stéphane Sauvage, Nadine Locoge, Olivier Sanchez, Roland Sarda-Estève, Cerise Kalogridis, Jean-Eudes Petit, Nicolas Bonnaire, Dominique Baisnée, Olivier Favez, Alexandre Albinet, Jean Sciare, and Bernard Bonsang
Atmos. Chem. Phys., 16, 11961–11989, https://doi.org/10.5194/acp-16-11961-2016, https://doi.org/10.5194/acp-16-11961-2016, 2016
Short summary
Short summary
This article presents ambient air VOC measurements performed in Paris during the MEGAPOLI and FRANCIPOL campaigns (2010). For the first time, we report (O)VOC concentration levels, their temporal variations and their main emission sources. The originality of this study stands in using near-field observations to help strengthen the identification of apportioned sources derived from PMF. An important finding of this work is the high contribution of the wood burning source (50 %) in winter.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Measurement report: Wintertime aerosol characterization at an urban traffic site in Helsinki, Finland
Source apportionment and ecotoxicity of PM2.5 pollution events in a major Southern Hemisphere megacity: influence of a biofuel-impacted fleet and biomass burning
Marine organic aerosol at Mace Head: effects from phytoplankton and source region variability
Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India
Formation of highly absorptive secondary brown carbon through nighttime multiphase chemistry of biomass burning emissions
Measurement report: Vertically resolved atmospheric properties observed over the Southern Great Plains with the ArcticShark uncrewed aerial system
Non-biogenic sources are an important but overlooked contributor to aerosol isoprene-derived organosulfates during winter in northern China
The critical role of aqueous-phase processes in aromatic-derived nitrogen-containing organic aerosol formation in cities with different energy consumption patterns
Characterization of atmospheric water-soluble brown carbon in the Athabasca oil sands region, Canada
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Burning conditions and transportation pathways determine biomass-burning aerosol properties in the Ascension Island marine boundary layer
Observations of high-time-resolution and size-resolved aerosol chemical composition and microphysics in the central Arctic: implications for climate-relevant particle properties
Measurement report: Brown carbon aerosol in rural Germany – sources, chemistry, and diurnal variations
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Seasonal investigation of ultrafine-particle organic composition in an eastern Amazonian rainforest
Characterizing lead-rich particles in Beijing's atmosphere following coal-to-gas conversion: Insights from single particle aerosol mass spectrometry
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Direct measurement of N2O5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Significant contributions of biomass burning to PM2.5-bound aromatic compounds: insights from field observations and quantum chemical calculations
A 60-year atmospheric nitrate isotope record from a Southeast Greenland ice core with minimal post-depositional alteration
Iron isotopes reveal significant aerosol dissolution over the Pacific Ocean
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Enrichment of organic nitrogen in fog residuals observed in the Italian Po Valley
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Technical note: Reconstructing surface missing aerosol elemental carbon data in long-term series with ensemble learning
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Enhanced emission of intermediate/semi-volatile organic matters in both gas and particle phases from ship exhausts with low-sulfur fuels
Advances in characterization of black carbon particles and their associated coatings using the soot particle aerosol mass spectrometer in Singapore, a complex city environment
Measurement report: Crustal materials play an increasing role in elevating particle pH: Insights from 12-year records in a typical inland city of China
African dust transported to Barbados in the Wintertime Lacks Indicators of Chemical Aging
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Machine Learning Assisted Chemical Characterization and Optical Properties of Atmospheric Brown Carbon in Nanjing, China
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Measurement report: Characterization of Aerosol Hygroscopicity over Southeast Asia during the NASA CAMP2Ex Campaign
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Measurement report: In-depth characterization of ship emissions during operations in a Mediterranean port
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025, https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary
Short summary
In order to study aerosols in environments influenced by anthropogenic and biogenic emissions, we performed analyses of samples collected during the ACROSS (Atmospheric Chemistry Of the Suburban Forest) campaign in summer 2022 in the greater Paris area. After analysis of the chemical composition by means of total carbon determination and high-resolution mass spectrometry, this work highlights the influence of anthropogenic inputs on the chemical composition of both urban and forested areas.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 25, 4907–4928, https://doi.org/10.5194/acp-25-4907-2025, https://doi.org/10.5194/acp-25-4907-2025, 2025
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland, and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments and a mobile laboratory were used, and the measurement data were analysed further with modelling tools like positive matrix factorization and the Pollution Detection Algorithm.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
Atmos. Chem. Phys., 25, 4587–4616, https://doi.org/10.5194/acp-25-4587-2025, https://doi.org/10.5194/acp-25-4587-2025, 2025
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources remain relevant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane-bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Emmanuel Chevassus, Kirsten N. Fossum, Darius Ceburnis, Lu Lei, Chunshui Lin, Wei Xu, Colin O'Dowd, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 25, 4107–4129, https://doi.org/10.5194/acp-25-4107-2025, https://doi.org/10.5194/acp-25-4107-2025, 2025
Short summary
Short summary
This study presents the first source apportionment of organic aerosol at Mace Head via high-resolution mass spectrometry. Introducing transfer entropy as a novel method reveals that aged organic aerosol originates from both open-ocean ozonolysis and local peat-burning oxidation. Methanesulfonic acid and organic sea spray both mirror phytoplankton activity, with the former closely tied to coccolithophore blooms and the latter linked to diatoms, chlorophytes, and cyanobacteria.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Fan Mei, Qi Zhang, Damao Zhang, Jerome D. Fast, Gourihar Kulkarni, Mikhail S. Pekour, Christopher R. Niedek, Susanne Glienke, Israel Silber, Beat Schmid, Jason M. Tomlinson, Hardeep S. Mehta, Xena Mansoura, Zezhen Cheng, Gregory W. Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
Atmos. Chem. Phys., 25, 3425–3444, https://doi.org/10.5194/acp-25-3425-2025, https://doi.org/10.5194/acp-25-3425-2025, 2025
Short summary
Short summary
This study highlights the unique capability of the ArcticShark, an uncrewed aerial system, in measuring vertically resolved atmospheric properties. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Ting Yang, Yu Xu, Yu-Chen Wang, Yi-Jia Ma, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2967–2978, https://doi.org/10.5194/acp-25-2967-2025, https://doi.org/10.5194/acp-25-2967-2025, 2025
Short summary
Short summary
Previous measurement–model comparisons of atmospheric isoprene levels showed a significant unidentified source of isoprene in some northern Chinese cities during winter. Here, the first combination of large-scale observations and field combustion experiments provides novel insights into biomass burning emissions as a significant source of isoprene-derived organosulfates during winter in northern cities of China.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
Atmos. Chem. Phys., 25, 2763–2780, https://doi.org/10.5194/acp-25-2763-2025, https://doi.org/10.5194/acp-25-2763-2025, 2025
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of nitrogen-containing organic compounds (NOCs) in PM2.5 during winter were compared among cities with different energy consumption patterns. The aerosol NOC pollution during winter in China is closely associated with the intensity of precursor emissions and the aqueous-phase processes. Our results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter in China.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
Atmos. Chem. Phys., 25, 2423–2442, https://doi.org/10.5194/acp-25-2423-2025, https://doi.org/10.5194/acp-25-2423-2025, 2025
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca oil sands region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (collected during the summer of 2021) identified oil sands operations as a measurable brown carbon source. Industrial aerosol emissions were unlikely to impact regional radiative forcing. These findings show that fluorescence spectroscopy can be used to monitor brown carbon in the AOSR.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 25, 2407–2422, https://doi.org/10.5194/acp-25-2407-2025, https://doi.org/10.5194/acp-25-2407-2025, 2025
Short summary
Short summary
In situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below-cloud-base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Amie Dobracki, Ernie R. Lewis, Arthur J. Sedlacek III, Tyler Tatro, Maria A. Zawadowicz, and Paquita Zuidema
Atmos. Chem. Phys., 25, 2333–2363, https://doi.org/10.5194/acp-25-2333-2025, https://doi.org/10.5194/acp-25-2333-2025, 2025
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer over the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes (heterogeneous and aqueous phases) determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiia Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
Atmos. Chem. Phys., 25, 2207–2241, https://doi.org/10.5194/acp-25-2207-2025, https://doi.org/10.5194/acp-25-2207-2025, 2025
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol–climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Local wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Uzoamaka Ezenobi, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
Atmos. Chem. Phys., 25, 1917–1930, https://doi.org/10.5194/acp-25-1917-2025, https://doi.org/10.5194/acp-25-1917-2025, 2025
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase was determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at a rural location in central Europe.
James Brean, David C. S. Beddows, Eija Asmi, Aki Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Rolf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall'Osto
Atmos. Chem. Phys., 25, 1145–1162, https://doi.org/10.5194/acp-25-1145-2025, https://doi.org/10.5194/acp-25-1145-2025, 2025
Short summary
Short summary
Our results emphasise how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 25, 959–977, https://doi.org/10.5194/acp-25-959-2025, https://doi.org/10.5194/acp-25-959-2025, 2025
Short summary
Short summary
We present measurements of the organic composition of ultrafine particles collected from the eastern Amazon, an understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant for ultrafine-particle growth throughout the year, compounds related to other sources, such as biological-spore emissions and biomass burning, exhibit striking seasonal differences, implying extensive variation in regional ultrafine-particle sources.
Xiufeng Lian, Yongjiang Xu, Fengxian Liu, Long Peng, Xiaodong Hu, Guigang Tang, Xu Dao, Hui Guo, Liwei Wang, Bo Huang, Chunlei Cheng, Lei Li, Guohua Zhang, Xinhui Bi, Xiaofei Wang, Zhen Zhou, and Mei Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3469, https://doi.org/10.5194/egusphere-2024-3469, 2025
Short summary
Short summary
In this study, we analyzed the mixing state and atmospheric chemical processes of Pb-rich single particles in Beijing. Then, we focused on analyzing the differences in Pb-rich particles between the heating period and non-heating period, as well as the formation mechanism of lead nitrate after coal-to-gas conversion. Our results highlighted the improvement of coal-to-gas conversion on Pb in the particulate.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Huabin Dong, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3804, https://doi.org/10.5194/egusphere-2024-3804, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient which critical impact the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found the performance of current γ(N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation on particulate nitrate production potential. Our findings suggest the directions for future studies.
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
EGUsphere, https://doi.org/10.5194/egusphere-2024-3952, https://doi.org/10.5194/egusphere-2024-3952, 2025
Short summary
Short summary
Pollution with per- and polyfluoroalkyl substances (PFAS) received attention due to their environmental persistence and bioaccumulation. PM10 collected above a scaled-down activated sludge tank treating domestic sewage for a population >10,000 people in the UK were analysed for a range of short-, medium- and long-chain PFAS. Eight PFAS were detected in the PM10. Our results suggest that wastewater treatment processes i.e. activated sludge aeration could aerosolise PFAS into airborne PM.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Yanqin Ren, Zhenhai Wu, Fang Bi, Hong Li, Haijie Zhang, Junling Li, Rui Gao, Fangyun Long, Zhengyang Liu, Yuanyuan Ji, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3678, https://doi.org/10.5194/egusphere-2024-3678, 2025
Short summary
Short summary
The daily concentrations of Polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs), and nitrated phenols (NPs) in PM2.5 were all increased during the heating season. Biomass burning was identified to be the primary source of these aromatic compounds, particularly for PAHs. Phenol and nitrobenzene are two main primary precursors for 4NP, with phenol showing lower reaction barriers. P-Cresol was identified as the primary precursor for the formation of 4-methyl-5-nitrocatechol.
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
EGUsphere, https://doi.org/10.5194/egusphere-2024-3937, https://doi.org/10.5194/egusphere-2024-3937, 2024
Short summary
Short summary
Nitrate isotope records in ice cores reveal changes in NOₓ emissions, atmospheric acidity, and oxidation chemistry driven by human activity. However, nitrate in snow can be altered by UV-driven post-depositional processes, making snow accumulation rates critical for preserving these records. This study examines nitrate isotopes in an SE-Dome ice core, where high snow accumulation minimizes these effects, providing a reliable archive of atmospheric nitrogen cycling.
Capucine Camin, François Lacan, Catherine Pradoux, Marie Labatut, Anne Johansen, and James W. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-3777, https://doi.org/10.5194/egusphere-2024-3777, 2024
Short summary
Short summary
This manuscript presents the chemical composition of aerosols (> 1µm) over the Equatorial and Tropical Pacific Ocean, presenting the first measurements of iron isotopes in aerosols from this region. Iron concentrations and isotopes were determined using a Neptune MC-ICPMS. Our data analysis reveals that a significant portion of the aerosols undergo dissolution and removal during atmospheric transport. These findings contribute to original conclusions about the chemistry and physics of aerosols.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Fredrik Mattsson, Almuth Neuberger, Liine Heikkinen, Yvette Gramlich, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Paul Zieger, Ilona Riipinen, and Claudia Mohr
EGUsphere, https://doi.org/10.5194/egusphere-2024-3629, https://doi.org/10.5194/egusphere-2024-3629, 2024
Short summary
Short summary
This study investigated aerosol-cloud interactions, focusing on organic nitrogen (ON) formation in the aqueous phase. Measurements were conducted in wintertime Italian Po Valley, using aerosol mass spectrometry. The fog was enriched in more hygroscopic inorganic compounds and ON, containing e.g. imidazoles. The formation of imidazole by aerosol-fog interactions could be confirmed for the first time in atmospheric observations. Findings highlight the role of fog in nitrogen aerosol formation.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Qingxiao Meng, Yunjiang Zhang, Sheng Zhong, Jie Fang, Lili Tang, Yongcai Rao, Minfeng Zhou, Jian Qiu, Xiaofeng Xu, Jean-Eudes Petit, Olivier Favez, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2776, https://doi.org/10.5194/egusphere-2024-2776, 2024
Short summary
Short summary
We developed a new method to reconstruct missing elemental carbon (EC) data in four Chinese cities from 2013 to 2023. Using machine learning, we accurately filled data gaps and introduced a new approach to analyze EC trends. Our findings reveal a significant decline in EC due to stricter pollution controls, though this slowed after 2020. This study provides a versatile framework for addressing data gaps and supports strategies to reduce urban air pollution and its climate impacts.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3433, https://doi.org/10.5194/egusphere-2024-3433, 2024
Short summary
Short summary
Intermediate/semi-volatile organic compounds in both gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low-sulfur to ultra-low-sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes, in conjunction with the ratio of octadecanoic to tetradecanoic could be considered as potential tracers for HFO exhausts.
Mutian Ma, Laura-Hélèna Rivellini, Yichen Zong, Markus Kraft, Liya E. Yu, and Alex King Yin Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-3240, https://doi.org/10.5194/egusphere-2024-3240, 2024
Short summary
Short summary
This work advances our understanding of emission and atmospheric evolution of black carbon (BC) particles in Singapore, a complex urban environment impacted by multiple local and regional combustion sources, based on the improved source apportionment analysis of real-time aerosol mass spectrometry measurement.
Hongyu Zhang, Shenbo Wang, Zhangsen Dong, Xiao Li, and Ruiqin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2869, https://doi.org/10.5194/egusphere-2024-2869, 2024
Short summary
Short summary
To address this, 12-year observational data in Zhengzhou were investigated and revealed that the resuspension of surrounding soil dust determined the rebound of crustal material concentrations after 2019, further elevating the particle pH. Therefore, the future ammonia reduction policies in North China may not lead to a rapid increase in particle acidity buffering by the crustal materials, but it is necessary to consider synergistic control with dust sources.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3288, https://doi.org/10.5194/egusphere-2024-3288, 2024
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by inorganic and organic acids that enhances cloud droplet formation, nutrient availability, and reflectivity of. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Yu Huang, Xingru Li, Dan Dan Huang, Ruoyuan Lei, Binhuang Zhou, Yunjiang Zhang, and Xinlei Ge
EGUsphere, https://doi.org/10.5194/egusphere-2024-2757, https://doi.org/10.5194/egusphere-2024-2757, 2024
Short summary
Short summary
This work performed a comprehensive investigation on the chemical and optical properties of the brown carbon in PM2.5 samples collected in Nanjing, China. In particular, we used the machine learning approach to identify a list of key BrC species, which can be a good reference for future studies. Our findings extend the understanding on BrC properties and are valuable to the assessment of its impact on air quality and radiative forcing.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D’Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
EGUsphere, https://doi.org/10.5194/egusphere-2024-2903, https://doi.org/10.5194/egusphere-2024-2903, 2024
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, like ultra-fine particles, were higher in the port than in the city and offer a strong support to improve emission inventories. These findings may also serve as reference for assessing the benefits of a Sulphur Emission Control Area in the Mediterranean in 2025.
Cited articles
Abbas, I., Badran, G., Verdin, A., Ledoux, F., Roumié, M., Courcot, D.,
and Garçon, G.: Polycyclic aromatic hydrocarbon derivatives in airborne
particulate matter: sources, analysis and toxicity, Environ. Chem. Lett.,
1–37, https://doi.org/10.1007/s10311-017-0697-0, 2018.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., and ViIlenave, E.:
Simultaneous analysis of oxygenated and nitrated polycyclic aromatic
hydrocarbons on standard reference material 1649a (urban dust) and on
natural ambient air samples by gas chromatography–mass spectrometry with
negative ion chemical ionisation, J. Chromatogr. A, 1121, 106–113,
https://doi.org/10.1016/j.chroma.2006.04.043, 2006.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., and Viilenave, E.:
Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs
in ambient air of the Marseilles area (South of France): Concentrations and
sources, Sci. Total Environ., 384, 280–292, https://doi.org/10.1016/j.scitotenv.2007.04.028, 2007.
Albinet, A., Leoz-Garziandia, E., Budzinski, H., Villenave, E., and
Jaffrezo, J. L.: Nitrated and oxygenated derivatives of polycyclic aromatic
hydrocarbons in the ambient air of two French alpine valleys. Part 1:
Concentrations, sources and gas/particle partitioning, Atmos. Environ., 42,
43–54, https://doi.org/10.1016/j.atmosenv.2007.10.009, 2008.
Albinet, A., Tomaz, S., and Lestremau, F.: A really quick easy cheap
effective rugged and safe (QuEChERS) extraction procedure for the analysis
of particle-bound PAHs in ambient air and emission samples, Sci. Total
Environ., 450–451, 31-38, https://doi.org/10.1016/j.scitotenv.2013.01.068, 2013.
Albinet, A., Nalin, F., Tomaz, S., Beaumont, J., and Lestremau, F.: A simple
QuEChERS-like extraction approach for molecular chemical characterization of
organic aerosols: application to nitrated and oxygenated PAH derivatives
(NPAH and OPAH) quantified by GC–NICIMS, Anal. Bioanal.Chem., 406,
3131–3148, https://doi.org/10.1007/s00216-014-7760-5, 2014.
Aliabadi, A. A., Staebler, R. M., and Sharma, S.: Air quality monitoring in communities of the Canadian Arctic during the high shipping season with a focus on local and marine pollution, Atmos. Chem. Phys., 15, 2651–2673, https://doi.org/10.5194/acp-15-2651-2015, 2015.
AMAP: AMAP Assessment 2006: Acidifying Pollutants, Arctic Haze, and
Acidification in the Arctic, Oslo, Norway, xii+112 pp., 2006.
AMAP: AMAP Assessment 2015: Black carbon and ozone as Arctic climate
forcers, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway,
116 pp., 2015.
Arya, S. P.: Air Pollution and Dispersion Meteorology, Oxford University
Press, New York, 310 pp., 1999.
Atlas, E. L., Ridley, B. A., and Cantrell, C. A.: The tropospheric ozone
production about the spring equinox (TOPSE) experiment: introduction,
J. Geophys. Res.-Atmos., 108, 8353, https://doi.org/10.1029/2002JD003172, 2003.
Aubin, C.-P., Girard, E., Langlois, P.-O., Lebreux, Y., and Verner, G.:
4-Stroke IDI Turbocharged Diesel Snowmobile Design, The Clean Snowmobile
Challenge 2017 Conference, March 2017, Ann Arbor, Michigan, United States,
2017.
Bailleul, S. and Albinet, A.: Interlaboratory comparison for the analysis
of PAHs in ambient air (2018), LCSQA, available at: https://www.lcsqa.org/fr/rapport/interlaboratory-comparison-analysis-pah-ambient-air-2018 (last access: 14 September 2021),
2018.
Balmer, J. and Muir, D.: Polycyclic aromatic hydrocarbons (PAHs), in: AMAP
Assessment 2016: Chemicals of emerging Arctic concern, edited by: Hung, H.,
Letcher, R., and Yu, Y., Arctic Monitoring and Assessment Programme (AMAP),
Oslo, Norway, 219–238, 2017.
Balmer, J. E., Hung, H., Yu, Y., Letcher, R. J., and Muir, D. C. G.: Sources
and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs)
in the Arctic, Emerging Contaminants, 5, 128–142, https://doi.org/10.1016/j.emcon.2019.04.002, 2019.
Bandowe, B. A. M. and Meusel, H.: Nitrated polycyclic aromatic hydrocarbons
(nitro-PAHs) in the environment – A review, Sci. Total Environ., 581–582,
237–257, https://doi.org/10.1016/J.SCITOTENV.2016.12.115, 2017.
Barrie, L. and Platt, U.: Arctic tropospheric chemistry: an overview,
Tellus B, 49, 450–454, https://doi.org/10.3402/tellusb.v49i5.15984, 1997.
Berthiaume, A., Galarneau, E., and Marson, G.: Polycyclic aromatic compounds
(PACs) in the Canadian environment: Sources and emissions, Environ. Pollut.,
116008, https://doi.org/10.1016/j.envpol.2020.116008, 2020.
Bishop, G. A., Morris, J. A., and Stedman, D. H.: Snowmobile contributions
to mobile source emissions in Yellowstone National Park, Environ. Sci.
Technol., 35, 2874–2881, https://doi.org/10.1021/es010513l, 2001.
Bøckman, R.: Fremtidens energiutfordringer på Svalbard, Longyearbyen Lokalstyre, Norway, available at: http://www.uit.no (last access: 28 January 2020), 10 pp., 2019 (in
Norwegian).
Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., and Monks, T. J.:
Role of Quinones in Toxicology, Chem. Res. Toxicol., 13, 135–160,
https://doi.org/10.1021/tx9902082, 2000.
Bozem, H., Hoor, P., Kunkel, D., Köllner, F., Schneider, J., Herber, A., Schulz, H., Leaitch, W. R., Aliabadi, A. A., Willis, M. D., Burkart, J., and Abbatt, J. P. D.: Characterization of transport regimes and the polar dome during Arctic spring and summer using in situ aircraft measurements, Atmos. Chem. Phys., 19, 15049–15071, https://doi.org/10.5194/acp-19-15049-2019, 2019.
Browse, J., Carslaw, K. S., Arnold, S. R., Pringle, K., and Boucher, O.: The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12, 6775–6798, https://doi.org/10.5194/acp-12-6775-2012, 2012.
Bunce, N. J., Liu, L., Zhu, J., and Lane, D. A.: Reaction of Naphthalene and
Its Derivatives with Hydroxyl Radicals in the Gas Phase, Environ. Sci.
Technol., 31, 2252–2259, https://doi.org/10.1021/es960813g, 1997.
Carrara, M. and Niessner, R.: Impact of a NO2-regenerated diesel
particulate filter on PAH and NPAH emissions from an EURO IV heavy duty
engine, J. Environ. Monit., 13, 3373–3379, https://doi.org/10.1039/C1EM10573F, 2011.
Carrara, M., Wolf, J.-C., and Niessner, R.: Nitro-PAH formation studied by
interacting artificially PAH-coated soot aerosol with NO2 in the temperature
range of 295–523 K, Atmos. Environ., 44, 3878–3885, https://doi.org/10.1016/j.atmosenv.2010.07.032, 2010.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
CEN: European Commitee for Standardization, EN-15549: 2008 – Air Quality –
Standard Method for the Measurement of the Concentration of Benzo[a]pyrene
in Air, CEN, Brussels, Belgium, available at:
https://shop.bsigroup.com/ProductDetail?pid=000000000030142046 (last access: 14 September 2021), 2008.
CEN: European Commitee for Standardization, TS-16645: 2014 – Ambient Air –
Method for the Measurement of Benz[a]anthracene, Benzo[b]fluoranthene,
Benzo[j]fluoranthene, Benzo[k]fluoranthene, Dibenz[a,h]anthracene,
Indeno[1,2,3-cd]pyrene and Benzo[ghi]perylene, CEN, Brussels, Belgium,
available at: https://shop.bsigroup.com/ProductDetail?pid=000000000030277467 (last access: 14 September 2021), 2014.
CEN: European Commitee for Standardization, EN-16909: 2017 – Ambient air –
Measurement of elemental carbon (EC) and organic carbon (OC) collected on
filters, CEN, Brussels, Belgium, 2017.
Cesana, G., Kay, J., Chepfer, H., English, J., and De Boer, G.: Ubiquitous
low-level liquid-containing Arctic clouds: New observations and climate
model constraints from CALIPSO-GOCCP, Geophys. Res. Lett., 39, L20804, https://doi.org/10.1029/2012GL053385, 2012.
Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kürten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009, 2009.
Clergé, A., Le Goff, J., Lopez, C., Ledauphin, J., and Delépée,
R.: Oxy-PAHs: occurrence in the environment and potential
genotoxic/mutagenic risk assessment for human health, Crit. Rev. Toxicol.,
1–27, https://doi.org/10.1080/10408444.2019.1605333, 2019.
Contini, D., Gambaro, A., Belosi, F., De Pieri, S., Cairns, W. R. L.,
Donateo, A., Zanotto, E., and Citron, M.: The direct influence of ship
traffic on atmospheric PM2.5, PM10 and PAH in Venice, J. Environ. Manage.,
92, 2119–2129, https://doi.org/10.1016/j.jenvman.2011.01.016, 2011.
Copernicus C3S: Copernicus Climate Change Service (C3S), ERA5: Fifth
generation of ECMWF atmospheric reanalyses of the global climate, Copernicus
Climate Change Service Climate Data Store (CDS), 2017.
Cvrčková, O. and Ciganek, M.: Photostability of polycyclic aromatic hydrocarbons (PAHs) and nitrated polycyclic aromatic hydrocarbons
(NPAHs) in dichloromethane and isooctane solutions, Polycyclic Aromat. Compd., 25,
141–156, https://doi.org/10.1080/10406630590922166, 2005.
Cvrčková, O., Ciganek, M., and Šimek, Z.: Anthracene, chrysene, their nitro- and methyl-derivatives photostability in isooctane, Polycyclic
Aromat. Compd., 26, 331–344, https://doi.org/10.1080/10406630601028221, 2006.
Czech, H., Stengel, B., Adam, T., Sklorz, M., Streibel, T., and Zimmermann,
R.: A chemometric investigation of aromatic emission profiles from a marine
engine in comparison with residential wood combustion and road traffic:
Implications for source apportionment inside and outside sulphur emission
control areas, Atmos. Environ., 167, 212–222, https://doi.org/10.1016/j.atmosenv.2017.08.022, 2017.
Dahlke, S., Hughes, N. E., Wagner, P. M., Gerland, S., Wawrzyniak, T.,
Ivanov, B., and Maturilli, M.: The observed recent surface air temperature
development across Svalbard and concurring footprints in local sea ice
cover, Int. J. Climatol., 40, 5246–5265, https://doi.org/10.1002/joc.6517, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P.,
Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M.,
Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828,
2011.
Dekhtyareva, A.: On local and long-range transported air pollution in
Svalbard, Phylosophiae Doctor, University in Tromsø, UiT The Arctic
University of Norway, Tromsø, Norway, 2019.
Dekhtyareva, A., Edvardsen, K., Holmén, K., Hermansen, O., and Hansson,
H. C.: Influence of local and regional air pollution on atmospheric
measurements in Ny-Ålesund, International Journal of Sustainable
Development and Planning, 11, 578–587, https://doi.org/10.2495/sdp-v11-n4-578-587, 2016.
Drotikova, T., Ali, A. M., Halse, A. K., Reinardy, H. C., and Kallenborn, R.: Polycyclic aromatic hydrocarbons (PAHs) and oxy- and nitro-PAHs in ambient air of the Arctic town Longyearbyen, Svalbard, Atmos. Chem. Phys., 20, 9997–10014, https://doi.org/10.5194/acp-20-9997-2020, 2020.
Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P., Forster, C., Junker, C., Wagner, T., Platt, U., and Jennings, S. G.: The North Atlantic Oscillation controls air pollution transport to the Arctic, Atmos. Chem. Phys., 3, 1769–1778, https://doi.org/10.5194/acp-3-1769-2003, 2003.
Eckhardt, S., Hermansen, O., Grythe, H., Fiebig, M., Stebel, K., Cassiani, M., Baecklund, A., and Stohl, A.: The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic?, Atmos. Chem. Phys., 13, 8401–8409, https://doi.org/10.5194/acp-13-8401-2013, 2013.
ECMWF: European Centre for Medium-Range Weather Forecasts. PART IV: PHYSICAL
PROCESSES, in: IFS Documentation CY43R3, IFS Documentation, ECMWF, 221 pp.,
2017.
EPA: United States Environmental Protection Agency, Annual Certification
Data for Vehicles, Engines, and Equipment, available at: https://www.epa.gov/compliance-and-fuel-economy-data/annual-certification-data-vehicles-engines-and-equipment,
last access: 22 November 2020.
Eriksson, K., Tjärner, D., Marqvardsen, I., and Järvholm, B.:
Exposure to benzene, toluene, xylenes and total hydrocarbons among
snowmobile drivers in Sweden, Chemosphere, 50, 1343–1347, https://doi.org/10.1016/S0045-6535(02)00808-1, 2003.
Fan, Z., Kamens, R. M., Hu, J., Zhang, J., and McDow, S.: Photostability of
Nitro-Polycyclic Aromatic Hydrocarbons on Combustion Soot Particles in
Sunlight, Environ. Sci. Technol., 30, 1358–1364, https://doi.org/10.1021/es9505964, 1996.
Ferrero, L., Cappelletti, D., Busetto, M., Mazzola, M., Lupi, A., Lanconelli, C., Becagli, S., Traversi, R., Caiazzo, L., Giardi, F., Moroni, B., Crocchianti, S., Fierz, M., Močnik, G., Sangiorgi, G., Perrone, M. G., Maturilli, M., Vitale, V., Udisti, R., and Bolzacchini, E.: Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012) of field campaigns, Atmos. Chem. Phys., 16, 12601–12629, https://doi.org/10.5194/acp-16-12601-2016, 2016.
Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
Fu, P., Kawamura, K., and Barrie, L. A.: Photochemical and Other Sources of
Organic Compounds in the Canadian High Arctic Aerosol Pollution during
Winter-Spring, Environ. Sci. Technol., 43, 286–292, https://doi.org/10.1021/es803046q, 2009.
Garrett, T., Zhao, C., and Novelli, P.: Assessing the relative contributions
of transport efficiency and scavenging to seasonal variability in Arctic
aerosol, Tellus B, 62, 190–196,
https://doi.org/10.1111/j.1600-0889.2010.00453.x, 2010.
GYC: Greater Yellowstone Coalition. Existing Research and Data Regarding the
Status of Air Quality in the Greater Yellowstone Ecosystem: A Bibliography,
edited by: Hettinger, K., 2011.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Halsall, C. J., Barrie, L. A., Fellin, P., Muir, D., Billeck, B., Lockhart,
L., Rovinsky, F. Y., Kononov, E. Y., and Pastukhov, B.: Spatial and temporal
variation of polycyclic aromatic hydrocarbons in the Arctic atmosphere,
Environ. Sci. Technol., 31, 3593–3599, https://doi.org/10.1021/es970342d, 1997.
Hanssen-Bauer, I., Førland, E., Hisdal, H., Mayer, S., Sandø, A. B., and
Sorteberg, A.: Climate in Svalbard 2100 – a knowledge base for climate
adaptation. NCCS report no. 1/2019, Norway, 105 pp., 2019.
Heald, C. L. and Kroll, J. H.: The fuel of atmospheric chemistry: Toward a
complete description of reactive organic carbon, Sci. Adv., 6, eaay8967,
https://doi.org/10.1126/sciadv.aay8967, 2020.
Heeb, N. V., Schmid, P., Kohler, M., Gujer, E., Zennegg, M., Wenger, D.,
Wichser, A., Ulrich, A., Gfeller, U., Honegger, P., Zeyer, K., Emmenegger,
L., Petermann, J.-L., Czerwinski, J., Mosimann, T., Kasper, M., and Mayer,
A.: Secondary effects of catalytic diesel particulate filters: conversion of
PAHs versus formation of nitro-PAHs, Environ. Sci. Technol., 42, 3773–3779,
https://doi.org/10.1021/es7026949, 2008.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hu, S., Herner, J. D., Robertson, W., Kobayashi, R., Chang, M. C. O., Huang,
S.-M., Zielinska, B., Kado, N., Collins, J. F., Rieger, P., Huai, T., and
Ayala, A.: Emissions of polycyclic aromatic hydrocarbons (PAHs) and
nitro-PAHs from heavy-duty diesel vehicles with DPF and SCR, J.
Air Waste Manage. Assoc., 63, 984–996, https://doi.org/10.1080/10962247.2013.795202, 2013.
Huang, B., Liu, M., Bi, X., Chaemfa, C., Ren, Z., Wang, X., Sheng, G., and
Fu, J.: Phase distribution, sources and risk assessment of PAHs, NPAHs and
OPAHs in a rural site of Pearl River Delta region, China, Atmos. Pollut.
Res., 5, 210–218, https://doi.org/10.5094/APR.2014.026, 2014.
Huang, C., Hu, Q., Li, Y., Tian, J., Ma, Y., Zhao, Y., Feng, J., An, J.,
Qiao, L., Wang, H., Jing, S. a., Huang, D., Lou, S., Zhou, M., Zhu, S., Tao,
S., and Li, L.: Intermediate Volatility Organic Compound Emissions from a
Large Cargo Vessel Operated under Real-World Conditions, Environ. Sci.
Technol., 52, 12934–12942, https://doi.org/10.1021/acs.est.8b04418, 2018a.
Huang, C., Hu, Q., Wang, H., Qiao, L., Jing, S. a., Wang, H., Zhou, M., Zhu,
S., Ma, Y., Lou, S., Li, L., Tao, S., Li, Y., and Lou, D.: Emission factors
of particulate and gaseous compounds from a large cargo vessel operated
under real-world conditions, Environ. Pollut., 242, 667–674, https://doi.org/10.1016/j.envpol.2018.07.036, 2018b.
IARC: International Agency for Research on Cancer. Some Chemicals Present in
Industrial and Consumer Products, Food and Drinking-water, available at: http://monographs.iarc.fr/ENG/Monographs/vol101/index.php (last access: 14 September 2021), 2012.
Idowu, O., Semple, K. T., Ramadass, K., O'Connor, W., Hansbro, P., and
Thavamani, P.: Beyond the obvious: Environmental health implications of
polar polycyclic aromatic hydrocarbons, Environ. Int., 123, 543–557,
https://doi.org/10.1016/j.envint.2018.12.051, 2019.
International Agency for Research on Cancer: Some non-heterocyclic
polycyclic aromatic hydrocarbons and some related exposures, available at: http://monographs.iarc.fr/ENG/Monographs/vol92/mono92.pdf (last access: 14 September 2021), 2010.
Isaksen, K., Nordli, Ø., Førland, E. J., Łupikasza, E., Eastwood,
S., and Niedźwiedź, T.: Recent warming on Spitsbergen – Influence of
atmospheric circulation and sea ice cover, J. Geophys. Res.-Atmos., 121, 11913–11931, https://doi.org/10.1002/2016JD025606, 2016.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Kameda, T.: Atmospheric Reactions of PAH derivatives: Formation and
Degradation, in: Polycyclic Aromatic Hydrocarbons: Environmental Behavior
and Toxicity in East Asia, edited by: Hayakawa, K., Springer Singapore,
Singapore, 75–91, 2018.
Keegan, K. M., Albert, M. R., McConnell, J. R., and Baker, I.: Climate
change and forest fires synergistically drive widespread melt events of the
Greenland Ice Sheet, P. Natl. Acad. Sci. USA, 111,
7964–7967, 2014.
Keyte, I. J., Harrison, R. M., and Lammel, G.: Chemical reactivity and
long-range transport potential of polycyclic aromatic hydrocarbons – a
review, Chem. Soc. Rev., 42, 9333–9391, https://doi.org/10.1039/C3CS60147A, 2013.
Kim, K.-H., Jahan, S. A., Kabir, E., and Brown, R. J. C.: A review of
airborne polycyclic aromatic hydrocarbons (PAHs) and their human health
effects, Environ. Int., 60, 71–80, https://doi.org/10.1016/j.envint.2013.07.019, 2013.
Klonecki, A.: Seasonal changes in the transport of pollutants into the
Arctic troposphere-model study, J. Geophys. Res., 108, 8367, https://doi.org/10.1029/2002jd002199, 2003.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kystdatahuset: Longyearbyen port traffic as of 2018, available at: https://kystdatahuset.no/ (last access: 5 June 2020), 2018.
Law, K. S., Roiger, A., Thomas, J. L., Marelle, L., Raut, J.-C.,
Dalsøren, S., Fuglestvedt, J., Tuccella, P., Weinzierl, B., and Schlager,
H.: Local Arctic air pollution: Sources and impacts, Ambio, 46, 453–463,
https://doi.org/10.1007/s13280-017-0962-2, 2017.
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T.: An overview of
microphysical properties of Arctic clouds observed in May and July 1998
during FIRE ACE, J. Geophys. Res.-Atmos., 106,
14989–15014, https://doi.org/10.1029/2000JD900789, 2001.
Lee, J. Y. and Lane, D. A.: Unique products from the reaction of
naphthalene with the hydroxyl radical, Atmos. Environ., 43, 4886–4893,
https://doi.org/10.1016/j.atmosenv.2009.07.018, 2009.
Lei, Y. D. and Wania, F.: Is rain or snow a more efficient scavenger of
organic chemicals?, Atmos. Environ., 38, 3557–3571,
https://doi.org/10.1016/j.atmosenv.2004.03.039, 2004.
Läderach, A. and Sodemann, H.: A revised picture of the atmospheric
moisture residence time, Geophys. Res. Lett., 43, 924–933, https://doi.org/10.1002/2015GL067449, 2016.
Madonna, E., Wernli, H., Joos, H., and Martius, O.: Warm Conveyor Belts in
the ERA-Interim Dataset (1979–2010). Part I: Climatology and Potential
Vorticity Evolution, J. Climate, 27, 3–26, https://doi.org/10.1175/jcli-d-12-00720.1, 2014.
Marchand, N., Besombes, J. L., Chevron, N., Masclet, P., Aymoz, G., and Jaffrezo, J. L.: Polycyclic aromatic hydrocarbons (PAHs) in the atmospheres of two French alpine valleys: sources and temporal patterns, Atmos. Chem. Phys., 4, 1167–1181, https://doi.org/10.5194/acp-4-1167-2004, 2004.
Matsuzawa, S.: Photodegradation of some Oxygenated Polycyclic Aromatic
Hydrocarbons, Polycyclic Aromat. Compd., 21, 331–339,
https://doi.org/10.1080/10406630008028543, 2000.
McDaniel, M. and Zielinska, B.: Polycyclic Aromatic Hydrocarbons in the
Snowpack and Surface Water in Blackwood Canyon, Lake Tahoe, CA, as Related
to Snowmobile Activity, Polycyclic Aromat. Compd., 35, 102–119,
https://doi.org/10.1080/10406638.2014.935449, 2014.
Meldrum, J.: Optimization of a Direct-Injected 2-Stroke Cycle Snowmobile,
in: Clean Snowmobile Challenge: 1 the Early Years, 4-Stroke Engines Make
Their Debut, SAE, USA, 1–14, 2017.
Miet, K., Albinet, A., Budzinski, H., and Villenave, E.: Atmospheric
reactions of 9,10-anthraquinone, Chemosphere, 107, 1–6,
https://doi.org/10.1016/J.CHEMOSPHERE.2014.02.050, 2014.
Miljødirektoratet: Longyearbyen power plant coal and diesel consumption
as of 2018, available at:
https://www.norskeutslipp.no/no/Diverse/Virksomhet/?CompanyID=5115 (last access: 12 November 2020), 2018.
Monks, P. S.: A review of the observations and origins of the spring ozone
maximum, Atmos. Environ., 34, 3545–3561, https://doi.org/10.1016/S1352-2310(00)00129-1, 2000.
Mulder, M. D., Dumanoglu, Y., Efstathiou, C., Kukučka, P.,
Matejovičová, J., Maurer, C., Přibylová, P., Prokeš, R.,
Sofuoglu, A., Sofuoglu, S. C., Wilson, J., Zetzsch, C., Wotawa, G., and
Lammel, G.: Fast Formation of Nitro-PAHs in the Marine Atmosphere
Constrained in a Regional-Scale Lagrangian Field Experiment, Environ. Sci.
Technol., 53, 8914–8924, https://doi.org/10.1021/acs.est.9b03090, 2019.
Nalin, F., Golly, B., Besombes, J.-L., Pelletier, C., Aujay-Plouzeau, R.,
Verlhac, S., Dermigny, A., Fievet, A., Karoski, N., Dubois, P., Collet, S.,
Favez, O., and Albinet, A.: Fast oxidation processes from emission to
ambient air introduction of aerosol emitted by residential log wood stoves,
Atmos. Environ., 143, 15–26, https://doi.org/10.1016/j.atmosenv.2016.08.002, 2016.
Nežiková, B., Degrendele, C., Bandowe, B. A. M., Holubová
Šmejkalová, A., Kukučka, P., Martiník, J., Mayer, L.,
Prokeš, R., Přibylová, P., Klánová, J., and Lammel, G.:
Three years of atmospheric concentrations of nitrated and oxygenated
polycyclic aromatic hydrocarbons and oxygen heterocycles at a central
European background site, Chemosphere, 128738, https://doi.org/10.1016/j.chemosphere.2020.128738, 2020.
Niedźwiedź, T.: The atmospheric circulation, Climate and Climate
Change at Hornsund, Svalbard. The Publishing House of Gdynia Maritime
University, Gdynia, 2013.
Nordli, Ø., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term
temperature trends and variability on Spitsbergen: the extended Svalbard
Airport temperature series, 1898–2012, Polar Res., 33, 21349,
https://doi.org/10.3402/polar.v33.21349, 2014.
Oanh, P. K., Kazushi, N., Yoshie, N., Tatsuya, T., Yusuke, F., Miho, A.,
Toshimitsu, S., Kenji, K., Hideaki, M., Hien, T. O. T., and Norimichi, T.:
Concentrations of polycyclic aromatic hydrocarbons in Antarctic snow
polluted by research activities using snow mobiles and diesel electric
generators, Bull. Glaciol. Res., 37, 23–30, https://doi.org/10.5331/bgr.19A02, 2019.
Odabasi, M., Vardar, N., Sofuoglu, A., Tasdemir, Y., and Holsen, T. M.:
Polycyclic aromatic hydrocarbons (PAHs) in Chicago air, Sci. Total Environ.,
227, 57–67, https://doi.org/10.1016/S0048-9697(99)00004-2,
1999.
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of
sea ice during winter north of Svalbard, Tellus A, 66, 23933, https://doi.org/10.3402/tellusa.v66.23933, 2014.
Perraudin, E., Budzinski, H., and Villenave, E.: Identification and
quantification of ozonation products of anthracene and phenanthrene adsorbed
on silica particles, Atmos. Environ., 41, 6005–6017, https://doi.org/10.1016/j.atmosenv.2007.03.010, 2007.
Prevedouros, K., Brorström-Lundén, E., J. Halsall, C., Jones, K. C.,
Lee, R. G. M., and Sweetman, A. J.: Seasonal and long-term trends in
atmospheric PAH concentrations: evidence and implications, Environ. Pollut.,
128, 17–27, https://doi.org/10.1016/j.envpol.2003.08.032, 2004.
Ravindra, K., Sokhi, R., and Vangrieken, R.: Atmospheric polycyclic aromatic
hydrocarbons: Source attribution, emission factors and regulation, Atmos.
Environ., 42, 2895–2921, https://doi.org/10.1016/j.atmosenv.2007.12.010, 2008.
Ray, J. D., Bishop, G., Schuchmann, B., Frey, C., Sandu, G., and Graver, B.:
Yellowstone Over-snow Vehicle Emission Tests–2012: Preliminary Report,
Natural Resource Technical Report NPS/NRPC/ARD/NRTR – 2012, National Park
Service, Fort Collins, Colorado, 36 pp., 2012.
Reimann, S., Kallenborn, R., and Schmidbauer, N.: Severe Aromatic
Hydrocarbon Pollution in the Arctic Town of Longyearbyen (Svalbard) Caused
by Snowmobile Emissions, Environ. Sci. Technol., 43, 4791–4795,
https://doi.org/10.1021/es900449x, 2009.
Reisen, F. and Arey, J.: Atmospheric Reactions Influence Seasonal PAH and
Nitro-PAH Concentrations in the Los Angeles Basin, Environ. Sci. Technol.,
39, 64–73, https://doi.org/10.1021/es035454l, 2005.
Rhea, D. T., Gale, R. W., Orazio, C. E., Peterman, P. H., Harper, D. D., and
Farag, A. M.: Polycyclic aromatic hydrocarbons in water, sediment, and snow,
from lakes in Grand Teton National Park, Wyoming. Final Report,
USGS-CERC-91344, US. Geological Survey, Columbia Environmental Research
Center (USGS-CERC), Columbia, South Carolina, USA, 30 pp., 2005.
Ringuet, J., Albinet, A., Leoz-Garziandia, E., Budzinski, H., and Villenave,
E.: Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs)
adsorbed on natural aerosol particles exposed to atmospheric oxidants,
Atmos. Environ., 61, 15–22, https://doi.org/10.1016/j.atmosenv.2012.07.025, 2012.
Röhler, L., Schlabach, M., Haglund, P., Breivik, K., Kallenborn, R., and Bohlin-Nizzetto, P.: Non-target and suspect characterisation of organic contaminants in Arctic air – Part 2: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air, Atmos. Chem. Phys., 20, 9031–9049, https://doi.org/10.5194/acp-20-9031-2020, 2020.
Schmale, J., Arnold, S. R., Law, K. S., Thorp, T., Anenberg, S., Simpson, W.
R., Mao, J., and Pratt, K. A.: Local Arctic air pollution: A neglected but
serious problem, Earth's Future, 6, 1385–1412, https://doi.org/10.1029/2018ef000952, 2018.
Serreze, M. C., Barrett, A. P., Slater, A. G., Steele, M., Zhang, J., and
Trenberth, K. E.: The large-scale energy budget of the Arctic, J. Geophys.
Res., 112, D11122, https://doi.org/10.1029/2006jd008230, 2007.
Shahpoury, P., Lammel, G., Albinet, A., Sofuoglu, A., Dumanoğlu, Y.,
Sofuoglu, S. C., Wagner, Z., and Zdimal, V.: Evaluation of a Conceptual
Model for Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons
Using Polyparameter Linear Free Energy Relationships, Environ. Sci.
Technol., 50, 12312–12319, https://doi.org/10.1021/acs.est.6b02158, 2016.
Shahpoury, P., Kitanovski, Z., and Lammel, G.: Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic, Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018, 2018.
Shively, D. D., Pape, B. M. C., Mower, R. N., Zhou, Y., Russo, R., and Sive,
B. C.: Blowing Smoke in Yellowstone: Air Quality Impacts of Oversnow
Motorized Recreation in the Park, Environ. Manage., 41, 183–199,
https://doi.org/10.1007/s00267-007-9036-8, 2008.
Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., Burrows, J., Carpenter, L. J., Frieß, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H.-W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375–4418, https://doi.org/10.5194/acp-7-4375-2007, 2007.
Singh, D. K., Kawamura, K., Yanase, A., and Barrie, L. A.: Distributions of
polycyclic aromatic hydrocarbons, aromatic ketones, carboxylic acids, and
trace metals in Arctic aerosols: Long-range atmospheric transport,
photochemical degradation/production at polar sunrise, Environ. Sci.
Technol., 51, 8992–9004, https://doi.org/10.1021/acs.est.7b01644, 2017.
Sippula, O., Stengel, B., Sklorz, M., Streibel, T., Rabe, R., Orasche, J.,
Lintelmann, J., Michalke, B., Abbaszade, G., Radischat, C., Gröger, T.,
Schnelle-Kreis, J., Harndorf, H., and Zimmermann, R.: Particle Emissions
from a Marine Engine: Chemical Composition and Aromatic Emission Profiles
under Various Operating Conditions, Environ. Sci. Technol., 48, 11721–11729,
https://doi.org/10.1021/es502484z, 2014.
Sive, B. C., Shively, D., and Pape, B.: Spatial variation of volatile
organic compounds associated with snowmobile emissions in Yellowstone
National Park, National Park Service, 85 pp., 2003.
Sjöblom, A.: The Ice-atmosphere boundary layer, The University Centre in
Svalbard, Norway, Longyearbyen, 30 pp., 2010.
Srivastava, D., Favez, O., Bonnaire, N., Lucarelli, F., Haeffelin, M.,
Perraudin, E., Gros, V., Villenave, E., and Albinet, A.: Speciation of
organic fractions does matter for aerosol source apportionment. Part 2:
Intensive short-term campaign in the Paris area (France), Sci. Total
Environ., 634, 267–278, https://doi.org/10.1016/j.scitotenv.2018.03.296, 2018.
Statistics Norway: This is Svalbard 2016. What the figures say, Statistics
Norway, Oslo, Norway, 28 pp., 2016.
Statistics Norway. Registered vehicles, by region, statistical variable per
year, data for 2018, available at: https://www.ssb.no/statbank/table/11823/
(last access: 5 June 2020), 2018.
Statistics Norway: Longyearbyen and Ny-Ålesund population as of 2020, available at:
https://www.ssb.no/befolkning/statistikker/befsvalbard, last access:
12 November 2020.
Stohl, A.: Characteristics of atmospheric transport into the Arctic
troposphere, J. Geophys. Res.-Atmos., 111, D11306,
https://doi.org/10.1029/2005jd006888, 2006.
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the
pathways and timescales of intercontinental air pollution transport, J. Geophys. Res.-Atmos., 107, ACH 6-1–ACH 6-17, https://doi.org/10.1029/2001JD001396, 2002.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stohl, A., Berg, T., Burkhart, J. F., Fjǽraa, A. M., Forster, C., Herber, A., Hov, Ø., Lunder, C., McMillan, W. W., Oltmans, S., Shiobara, M., Simpson, D., Solberg, S., Stebel, K., Ström, J., Tørseth, K., Treffeisen, R., Virkkunen, K., and Yttri, K. E.: Arctic smoke – record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7, 511–534, https://doi.org/10.5194/acp-7-511-2007, 2007.
Stull, R. B.: An introduction to boundary layer meteorology, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1988.
Tomaz, S., Shahpoury, P., Jaffrezo, J.-L., Lammel, G., Perraudin, E.,
Villenave, E., and Albinet, A.: One-year study of polycyclic aromatic
compounds at an urban site in Grenoble (France): Seasonal variations,
gas/particle partitioning and cancer risk estimation, Sci. Total Environ.,
565, 1071–1083, https://doi.org/10.1016/j.scitotenv.2016.05.137,
2016.
U.S. NPS: National Park Service, Best Available Technology (BAT) Snowmobiles
as of December 15th, 2015, available at: https://www.nps.gov/yell/planyourvisit/newbatlist.htm (last access: 30 December 2020), 2015.
van Pelt, W. J. J., Kohler, J., Liston, G. E., Hagen, J. O., Luks, B.,
Reijmer, C. H., and Pohjola, V. A.: Multidecadal climate and seasonal snow
conditions in Svalbard, J. Geophys. Res.-Earth Surf., 121,
2100–2117, https://doi.org/10.1002/2016JF003999, 2016.
Verlhac, S., Albinet, A., Cabillic, J., Lalère, B., and Fallot, C.,:
European Interlaboratory Comparison for the analysis of PAHs in ambient air
(2015), LCSQA, available at: https://www.lcsqa.org/fr/rapport/2015/ineris/european-interlaboratory-comparison-for-the-analysis-of-pah-in-ambient-air (last access: 14 September 2021),
2015.
Vestreng, V., Kallenborn, R., and Økstad, E.: Norwegian Arctic climate:
climate influencing emissions, scenarios and mitigation options at Svalbard, Klima- og forurensningsdirektoratet [Climate and Pollution Agency], Oslo, Norway,
56 pp., 2009.
Walgraeve, C., Demeestere, K., Dewulf, J., Zimmermann, R., and Van
Langenhove, H.: Oxygenated polycyclic aromatic hydrocarbons in atmospheric
particulate matter: Molecular characterization and occurrence, Atmos.
Environ., 44, 1831–1846, https://doi.org/10.1016/j.atmosenv.2009.12.004, 2010.
Wallace, J. M. and Hobbs, P. V.: Atmospheric science: an introductory
survey, Elsevier, 2006.
Wang, R., Tao, S., Wang, B., Yang, Y., Lang, C., Zhang, Y., Hu, J., Ma, J.,
and Hung, H.: Sources and Pathways of Polycyclic Aromatic Hydrocarbons
Transported to Alert, the Canadian High Arctic, Environ. Sci. Technol., 44,
1017–1022, https://doi.org/10.1021/es902203w, 2010.
WHO: The World Health Organization, Environmental health criteria 229,
Selected nitro- and nitro-oxy-polycyclic aromatic hydrocarbons, 511,
available at: http://whqlibdoc.who.int/ehc/WHO_EHC_229.pdf (last access: 14 September 2021), 2003.
Wickström, S.: Warmer and wetter winters over the high-latitude North
Atlantic: an atmospheric circulation perspective, Doctoral thesis, UiB, The
University of Bergen, Bergen, Norway, 2020.
Wickström, S., Jonassen, M. O., Cassano, J. J., and Vihma, T.: Present
Temperature, Precipitation, and Rain-on-Snow Climate in Svalbard, J.
Geophys. Res.-Atmos., 125, e2019JD032155, https://doi.org/10.1029/2019JD032155, 2020a.
Wickström, S., Jonassen, M. O., Vihma, T., and Uotila, P.: Trends in
cyclones in the high-latitude North Atlantic during 1979–2016, Q. J. Roy.
Meteor. Soc., 146, 762–779, https://doi.org/10.1002/qj.3707, 2020b.
Willis, M. D., Leaitch, W. R., and Abbatt, J. P. D.: Processes controlling
the composition and abundance of Arctic aerosol, Rev. Geophys., 56, 621–671,
https://doi.org/10.1029/2018rg000602, 2018.
Willis, M. D., Bozem, H., Kunkel, D., Lee, A. K. Y., Schulz, H., Burkart, J., Aliabadi, A. A., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.: Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition, Atmos. Chem. Phys., 19, 57–76, https://doi.org/10.5194/acp-19-57-2019, 2019.
Wong, F., Hung, H., Dryfhout-Clark, H., Aas, W., Bohlin-Nizzetto, P.,
Breivik, K., Mastromonaco, M. N., Lundén, E. B., Ólafsdóttir,
K., Sigurðsson, Á., Vorkamp, K., Bossi, R., Skov, H., Hakola, H.,
Barresi, E., Sverko, E., Fellin, P., Li, H., Vlasenko, A., Zapevalov, M.,
Samsonov, D., and Wilson, S.: Time Trends Of Persistent Organic Pollutants
(Pops) And Chemicals Of Emerging Arctic Concern (Ceac) In Arctic Air From 25
Years Of Monitoring, Sci. Total Environ., 775, 145109, https://doi.org/10.1016/j.scitotenv.2021.145109, 2021.
Yu, Y., Katsoyiannis, A., Bohlin-Nizzetto, P., Brorström-Lundén, E.,
Ma, J., Zhao, Y., Wu, Z., Tych, W., Mindham, D., Sverko, E., Barresi, E.,
Dryfhout-Clark, H., Fellin, P., and Hung, H.: Polycyclic aromatic
hydrocarbons not declining in Arctic air despite global emission reduction,
Environ. Sci. Technol., 53, 2375–2382, https://doi.org/10.1021/acs.est.8b05353, 2019.
Zhan, J., Gao, Y., Li, W., Chen, L., Lin, H., and Lin, Q.: Effects of ship
emissions on summertime aerosols at Ny-Alesund in the Arctic, Atmos.
Pollut. Res., 5, 500–510, https://doi.org/10.5094/apr.2014.059, 2014.
Zhang, F., Chen, Y., Tian, C., Lou, D., Li, J., Zhang, G., and Matthias, V.: Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China, Atmos. Chem. Phys., 16, 6319–6334, https://doi.org/10.5194/acp-16-6319-2016, 2016.
Zhang, F., Chen, Y., Cui, M., Feng, Y., Yang, X., Chen, J., Zhang, Y., Gao,
H., Tian, C., Matthias, V., and Liu, H.: Emission factors and environmental
implication of organic pollutants in PM emitted from various vessels in
China, Atmos. Environ., 200, 302–311, https://doi.org/10.1016/j.atmosenv.2018.12.006, 2019.
Zhang, F., Guo, H., Chen, Y., Matthias, V., Zhang, Y., Yang, X., and Chen, J.: Size-segregated characteristics of organic carbon (OC), elemental carbon (EC) and organic matter in particulate matter (PM) emitted from different types of ships in China, Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020, 2020.
Zhang, X., Walsh, J. E., Zhang, J., Bhatt, U. S., and Ikeda, M.: Climatology
and Interannual Variability of Arctic Cyclone Activity: 1948–2002, J.
Clim., 17, 2300–2317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2, 2004.
Zhao, J., Zhang, Y., Wang, T., Sun, L., Yang, Z., Lin, Y., Chen, Y., and
Mao, H.: Characterization of PM2.5-bound polycyclic aromatic hydrocarbons
and their derivatives (nitro-and oxy-PAHs) emissions from two ship engines
under different operating conditions, Chemosphere, 225, 43–52, https://doi.org/10.1016/j.chemosphere.2019.03.022, 2019.
Zhao, J., Zhang, Y., Chang, J., Peng, S., Hong, N., Hu, J., Lv, J., Wang,
T., and Mao, H.: Emission characteristics and temporal variation of PAHs and
their derivatives from an ocean-going cargo vessel, Chemosphere, 249,
126194, https://doi.org/10.1016/j.chemosphere.2020.126194, 2020.
Zhou, Y., Shively, D., Mao, H., Russo, R. S., Pape, B., Mower, R. N.,
Talbot, R., and Sive, B. C.: Air Toxic Emissions from Snowmobiles in
Yellowstone National Park, Environ. Sci. Technol., 44, 222–228,
https://doi.org/10.1021/es9018578, 2010.
Short summary
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil fuel combustion, were measured during 8 months in the urban air of Longyearbyen (78° N, 15° E), the most populated settlement in Svalbard. Contrary to a stereotype of pristine Arctic conditions with very low human activity, considerable PAC concentrations were detected, with spring levels comparable to European levels. Air pollution was caused by local snowmobiles in spring and shipping in summer.
A total of 86 polycyclic aromatic compounds (PACs), toxic compounds mainly emitted after fossil...
Altmetrics
Final-revised paper
Preprint