Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14141-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-14141-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol effects on electrification and lightning discharges in a multicell thunderstorm simulated by the WRF-ELEC model
Mengyu Sun
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, China
Dongxia Liu
CORRESPONDING AUTHOR
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
Xiushu Qie
CORRESPONDING AUTHOR
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, China
Edward R. Mansell
NOAA National Severe Storms Laboratory, Norman, Oklahoma, USA
Yoav Yair
School of Sustainability, Interdisciplinary Center (IDC) Herzliya,
Herzliya, Israel
Alexandre O. Fierro
NOAA National Severe Storms Laboratory, Norman, Oklahoma, USA
Cooperative Institute for Mesoscale Meteorological Studies,
University of Oklahoma, Norman, Oklahoma, USA
Department of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
Shanfeng Yuan
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
Zhixiong Chen
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, China
Dongfang Wang
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, China
Related authors
Mengyu Sun, Paul J. Connolly, Paul R. Field, Declan L. Finney, and Alan M. Blyth
EGUsphere, https://doi.org/10.5194/egusphere-2025-3158, https://doi.org/10.5194/egusphere-2025-3158, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how extra ice particles form inside tropical storm clouds and how they affect rainfall and sunlight reflection. By using a weather model, we found that these extra ice particles can change how clouds grow, reduce heat escaping to space, and slightly shift where rain falls. This helps improve how weather and climate models predict tropical storms.
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
Mengyu Sun, Paul J. Connolly, Paul R. Field, Declan L. Finney, and Alan M. Blyth
EGUsphere, https://doi.org/10.5194/egusphere-2025-3158, https://doi.org/10.5194/egusphere-2025-3158, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how extra ice particles form inside tropical storm clouds and how they affect rainfall and sunlight reflection. By using a weather model, we found that these extra ice particles can change how clouds grow, reduce heat escaping to space, and slightly shift where rain falls. This helps improve how weather and climate models predict tropical storms.
Declan L. Finney, Alan M. Blyth, Paul R. Field, Martin I. Daily, Benjamin J. Murray, Mengyu Sun, Paul J. Connolly, Zhiqiang Cui, and Steven Böing
EGUsphere, https://doi.org/10.5194/egusphere-2025-1227, https://doi.org/10.5194/egusphere-2025-1227, 2025
Short summary
Short summary
We present observation-informed modelling from the Deep Convective Microphysics Experiment to study how environmental conditions and cloud processes affect anvil cloud albedo and radiation. Aerosols influencing cloud droplets or influencing ice formation yield varying radiative effects. We introduce fingerprint metrics to discern these effects. Using detailed observations and modelling, we offer insights into high cloud radiative effects and feedbacks.
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
Atmos. Chem. Phys., 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, https://doi.org/10.5194/acp-22-8221-2022, 2022
Short summary
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
Cited articles
Altaratz, O., Koren, I., Yair, Y., and Price, C.: Lightning response to
smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801,
https://doi.org/10.1029/2010GL042679, 2010.
Altaratz, O., Kucienska, B., Kostinski, A., Raga, G. B., and Koren, I.:
Global association of aerosol with flash density of intense lightning,
Environ. Res. Lett., 12, 114037, https://doi.org/10.1088/1748-9326/aa922b,
2017.
Bougeault, P. and Lacarrere, P.: Parameterization of orography-induced
turbulence in a mesobeta–scale model, Mon. Weather Rev., 117, 1872–1890,
https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989.
Brooks, I. M., Saunders, C. P. R., Mitzeva, R. P., and Peck, S. L.: The effect
on thunderstorm charging of the rate of rime accretion by graupel, Atmos.
Res., 43, 277–295, https://doi.org/10.1016/S0169-8095(96)00043-9, 1997.
Chaudhuri, S. and Middey, A.: Effect of meteorological parameters and
environmental pollution on thunderstorm and lightning activity over an urban
metropolis of India, Urban Clim., 3, 67–75,
https://doi.org/10.1016/j.uclim.2013.03.003, 2013.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn State–NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, Z., Qie, X., Yair, Y., Liu, D., Xiao, X., Wang, D., and Yuan, S.:
Electrical evolution of a rapidly developing MCS during its vigorous
vertical growth phase, Atmos. Res., 246, 105201,
https://doi.org/10.1016/j.atmosres.2020.105201, 2020.
Dendy Jr., J. E.: Two multigrid methods for three-dimensional problems with
discontinuous and anisotropic coefficients, SIAM J. Sci. Stat. Comp.,
8, 673–685, https://doi.org/10.1137/0908059, 1987.
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46,
3077–3107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.
Dwyer, J. R.: A fundamental limit on electric fields in air, Geophys. Res.
Lett., 30, 2055, https://doi.org/10.1029/2003GL017781, 2003.
Fan, J., Zhang, R., Li, G., and Tao, W., K.: Effects of aerosols and
relative humidity on cumulus clouds, J. Geophys. Res., 112, D14204,
https://doi.org/10.1029/2006jd008136, 2007.
Fan, J., Leung, L. R., Rosenfeld, D., and DeMott, P. J.: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds, Atmos. Chem. Phys., 17, 1017–1035, https://doi.org/10.5194/acp-17-1017-2017, 2017.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S., Li, Z., Machado, L., Martin, S., Yang, Y., Wang, J., Artaxo, P., Barbosa, H., Braga, R., Comstock, J., Feng, Z., Gao, W., Gomes, H., Mei, F., Pöhlker, C., Pöhlker, M., Pöschl, U., and Souza, R.: Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411–418, https://doi.org/10.1126/science.aan8461, 2018.
Fierro, A. O., Mansell, E. R., MacGorman, D. R., and Ziegler, C. L.: The
implementation of an explicit charging and discharge lightning scheme within
the WRF-ARW model: Benchmark simulations of a continental squall line, a
tropical cyclone, and a winter storm, Mon. Weather Rev., 141, 2390–2415,
https://doi.org/10.1175/MWR-D-12-00278.1, 2013.
Guo, J., Deng, M., Lee, S.S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W.,
Yao, W., and Li, X.: Delaying precipitation and lightning by air pollution
over the Pearl River Delta. Part I: Observational analyses, J. Geophys.
Res.-Atmos., 121, 6472–6488, https://doi.org/10.1002/2015JD023257, 2016.
Gustafsson, N., Janjić, T., Schraff, C., Leuenberger, D., Weissmann, M.,
Reich, H., et al.: Survey of data assimilation methods for convective-scale
numerical weather prediction at operational centres, Q. J. Roy. Meteor.
Soc., 144, 1218–1256, https://doi.org/10.1002/qj.3179, 2018.
Hobbs, P. V. and Rangno, A. L.: Ice particle concentrations in clouds, J.
Atmos. Sci., 42, 2523–2549,
https://doi.org/10.1175/1520-0469(1985)042<2523:IPCIC>2.0.CO;2, 1985.
Hu, J. X., Rosenfeld, D., Ryzhkov, A., Zrnic, D., Williams, E., Zhang, P.
F., Snyder, J. C., Zhang, R. Y., and Weitz, R.: Polarimetric radar
convective cell tracking reveals large sensitivity of cloud precipitation
and electrification properties to CCN, J. Geophys. Res.-Atmos., 124,
12194–12205, https://doi.org/10.1029/2019jd030857, 2019.
Jiang, M., Feng, J., Li, Z., Sun, R., Hou, Y.-T., Zhu, Y., Wan, B., Guo, J., and Cribb, M.: Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast, Atmos. Chem. Phys., 17, 13967–13982, https://doi.org/10.5194/acp-17-13967-2017, 2017.
Kar, S. K., Liou, Y. A., and Ha, K. J.: Aerosol effects on the enhancement
of cloud-to-ground lightning over major urban areas of South Korea, Atmos.
Res., 92, 80–87, https://doi.org/10.1016/j.atmosres.2008.09.004, 2009.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy. Meteor. Soc., 131,
2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Khain, A., Cohen, N., Lynn, B., and Pokrovsky, A.: Possible aerosol effects
on lightning activity and structure of hurricanes, J. Atmos. Sci., 65,
3652–3667, https://doi.org/10.1175/2008JAS2678.1, 2008.
Khain, A., Lynn, B., and Dudhia, J.: Aerosol Effects on Intensity of Landfalling Hurricanes as Seen from Simulations with the WRF Model with Spectral Bin Microphysics, J. Atmos. Sci., 67, 365–384, https://doi.org/10.1175/2009JAS3210.1, 2010.
Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration of warm convective clouds, Science, 344, 1143–1146, https://doi.org/10.1126/science.1252595, 2014.
Kumjian, M. R., Ryzhkov, A. V., Melnikov, V. M., and Schuur, T. J.: Rapid-scan
super-resolution observations of a cyclic supercell with a dual-polarization
WSR-88D, Mon. Weather Rev., 138, 3762–3786,
https://doi.org/10.1175/2010MWR3322.1, 2010.
Li, X., Zhang, Q., and Xue, H.: The role of initial cloud condensation nuclei
concentration in hail using the WRF NSSL 2-moment microphysics scheme, Adv.
Atmos. Sci., 34, 1106–1120, https://doi.org/10.1007/s00376-017-6237-9,
2017.
Li, Z. Q., Wang, Y., Guo, J. P., Zhao, C. F., Cribb, M. C., Dong, X. Q.,
Fan, J. W., Gong, D. Y., Huang, J. P., Jiang, M. J., Jiang, Y. Q., Lee, S.
S., Li, H., Li, J. M., Liu, J. J., Qian, Y., Rosenfeld, D., Shan, S. Y.,
Sun, Y. L., Wang, H. J., Xin, J. Y., Yan, X., Yang, X., Yang, X. Q., Zhang,
F., and Zheng, Y. T.: East Asian study of tropospheric aerosols and their
impact on regional clouds, precipitation, and climate (EAST-AIR(CPC)), J.
Geophys. Res.-Atmos., 124, 13026–13054,
https://doi.org/10.1029/2019jd030758, 2019.
Liu, D., Sun, M., Su, D., Xu, W., Yu, H., and Chen, Y.: A five-year
climatological lightning characteristics of linear mesoscale convective
systems over North China, Atmos. Res., 256, 105580,
https://doi.org/10.1016/j.atmosres.2021.105580, 2021.
Liu, Z., Gao, W., Yu, Y., Hu, B., Xin, J., Sun, Y., Wang, L., Wang, G., Bi, X., Zhang, G., Xu, H., Cong, Z., He, J., Xu, J., and Wang, Y.: Characteristics of PM2.5 mass concentrations and chemical species in urban and background areas of China: emerging results from the CARE-China network, Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, 2018.
Lynn, B. H., Khain, A., Rosenfeld, D., and Woodley, W. L.: Effects of
aerosols on precipitation from orographic clouds, J. Geophys. Res., 112,
D10225, https://doi.org/10.1029/2006JD007537, 2007.
Lynn, B. H., Kelman, G., and Ellrod, G.: An evaluation of the efficacy of using
observed lightning to improve convective lightning forecasts, Weather
Forecast., 30, 405–423, https://doi.org/10.1175/WAF-D-13-00028.1, 2015.
Lynn, B. H., Yair, Y., Shpund, J., Levi, Y., Qie, X., and Khain, A.: Using
factor separation to elucidate the respective contributions of desert dust
and urban pollution to the 4 January 2020 Tel Aviv lightning and flash flood
disaster, J. Geophys. Res.-Atmos., 125, e2020JD033520,
https://doi.org/10.1029/2020JD033520, 2020.
Mansell, E. R. and Ziegler, C. L.: Aerosol effects on simulated storm
electrification and precipitation in a two-moment bulk microphysics model,
J. Atmos. Sci. 70, 2032–2050, https://doi.org/10.1175/JAS-D-12-0264.1,
2013.
Mansell, E. R., MacGorman, D. R., Ziegler, C. L., and Straka, J. M.: Simulated three-dimensional branched lightning in a numerical thunderstorm model, J. Geophys. Res., 107, https://doi.org/10.1029/2000JD000244, 2002.
Mansell, E. R., MacGorman, D. R., Ziegler, C. L., and Straka, J. M.: Charge
structure and lightning sensitivity in a simulated multicell thunderstorm,
J. Geophys. Res.-Atmos., 110, D12101, https://doi.org/10.1029/2004JD005287,
2005.
Mansell, E. R., Ziegler, C. L., and Bruning, E. C.: Simulated
electrification of a small thunderstorm with two-moment bulk microphysics,
J. Atmos. Sci., 67, 171–194, https://doi.org/10.1175/2009jas2965.1, 2010.
Mitzeva, R., Latham, J., and Petrova, S.: A comparative modeling study of the
early electrical development of maritime and continental thunderstorms,
Atmos. Res., 82, 26–36, https://doi.org/10.1016/j.atmosres.2005.01.006,
2006.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M., and Clough, S.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997.
Orville, R. E., Huffines, G., Nielsen-Gammon, J., Zhang, R., Ely, B.,
Steiger, S., Phillips, S., Allen, S., and Read, W.: Enhancement of
cloud-to-ground lightning over Houston, Texas, Geophys. Res. Lett., 28,
2597–2600, https://doi.org/10.1029/2001GL012990, 2001.
Price, C.: Global surface temperatures and the atmospheric electrical
circuit, Geophys. Res. Lett., 20, 1363–1366,
https://doi.org/10.1029/93GL01774, 1993.
Qie, X., Yuan, T., Xie, Y., and Ma, Y.: Spatial and temporal distribution of lightning activities on the Tibetan Plateau, Chinese J. Geophys., 47, 1122–1127, https://doi.org/10.1002/cjg2.596, 2004 (in Chinese).
Qie, K., Qie, X., and Tian, W.: Increasing trend of lightning activity in the
South Asia region, Sci. Bull., 66, 78–84,
https://doi.org/10.1016/j.scib.2020.08.033, 2021.
Qie, X., Yuan, T., Xie, Y., et al.: Spatial and temporal distribution of
lightning activities on the Tibetan Plateau, Chinese J. Geophys., 47,
1122–1127, https://doi.org/10.1002/cjg2.596, 2004 (in Chinese).
Qie, X., Yuan, S., Chen, Z., Wang, D., Liu, D., Sun, M., Sun, Z., Srivastava, A., Zhang, H., Lu, J., Xiao, H., Bi, Y., Feng, L., Tian, Y., Xu, Y., Jiang, R., Liu, M., Xiao, X., Duan, S., Su, D., Sun, C., Xu, W., Zhang, Y., Lu, G., Zhang, D., Yin, Y., and Yu, Y.: Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region, Sci. China Earth Sci., 64, 10–26, https://doi.org/10.1007/s11430-020-9656-8, 2020.
Rawlins, F.: A numerical study of thunderstorm electrification using a three dimensional model incorporating the ice phase, Quart. J. Meteor. Soc., 108, 779–800, https://doi.org/10.1002/qj.49710845804, 1982.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi,
S., Reissell, A., and Andreae, M. O.: Flood or Drought: How Do Aerosols
Affect Precipitation, Science, 321, 1309–1313,
https://doi.org/10.1126/science.1160606, 2008.
Saunders, C. P. R. and Peck, S. L.: Laboratory studies of the influence of the
rime accretion rate on charge transfer during crystal/graupel collisions, J.
Geophys. Res.-Atmos., 103, 13949–13956, https://doi.org/10.1029/97JD02644,
1998.
Saunders, C. P. R., Peck, S. L., Varela, G. G. A., Avila, E. E., and Castellano, N. E.: A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel, Atmos. Res., 58, 187–203, https://doi.org/10.1016/S0169-8095(01)00090-4, 2001.
Simpson, G. C. and Scrase, F. J.: The distribution of electricity in
thunderclouds, P. Roy. Soc. Lond. A, 161, 309–352,
https://doi.org/10.1098/rspa.1937.0148, 1937.
Srivastava, A., Tian, Y., Qie, X., Wang, D., Sun, Z., Yuan, S., Wang, Y., Chen, Z., Xu, W., Zhang, H., Jiang, R., and Su, D.: Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing, Atmos. Res., 197, 76–83, https://doi.org/10.1016/j.atmosres.2017.06.026, 2017.
Stolz, D. C., Rutledge, S. A., and Pierce, J. R.: Simultaneous influences of
thermodynamics and aerosols on deep convection and lightning in the tropics,
J. Geophys. Res.-Atmos., 120, 6207–6231,
https://doi.org/10.1002/2014JD023033, 2015.
Storer, R. L., van den Heever, S. C., and Stephens, G. L.: Modeling aerosol
impacts on convective storms in different environments, J. Atmos. Sci., 67,
3904–3915, https://doi.org/10.1175/2010JAS3363.1, 2010.
Straka, J. M. and Mansell, E. R.: A bulk microphysics parameterization with
multiple ice precipitation categories, J. Appl. Meteorol. Clim., 44,
445–466, https://doi.org/10.1175/JAM2211.1, 2005.
Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P., Onvlee-Hooimeyer, J., Joe, P., Barker, D. M., Li, P., Golding, B., Xu, M., and Pinto, J.: Use of NWP for nowcasting convective precipitation: Recent progress and challenges, Bull. Am. Meteorol. Soc., 95, 409–426, https://doi.org/10.1175/BAMS-D-11-00263.1, 2014.
Sun, M., Qie, X., Liu, D., Yair, Y., Xia, X., Yuan, S., Wang, D., Lu, J., Srivastava, A., and Ntwali, D.: Analysis of potential effects of aerosol on lightning activity in Beijing metropolitan region, Chinese J. of Geophys., 63, 1766–1774, https://doi.org/10.6038/cjg2020N0095, 2020 (in Chinese).
Takahashi, T.: Riming electrification as a charge generation mechanism in
thunderstorms, J. Atmos. Sci., 35, 1536–1548,
https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2, 1978.
Takahashi, T.: A numerical simulation of winter cumulus electrification.
Part I: Shallow cloud, J. Atmos. Sci., 40, 1257–1280,
https://doi.org/10.1175/1520-0469(1983)040<1257:ANSOWC>2.0.CO;2, 1983.
Tan, Y., Ma, X., Xiang, C., Xia, Y., and Zhang, X.: A numerical study of the effects of aerosol on electrification and lightning discharges during thunderstorms, Chinese J. Geophys., 60, 3041–3050, https://doi.org/10.6038/cjg20170812, 2017 (in Chinese).
Tao, W. K., Chen, J. P., Li, Z. Q., Wang, C., and Zhang, C. D.: Impact of
aerosols on convective clouds and precipitation, Rev. Geophys., 50, RG2001,
https://doi.org/10.1029/2011rg000369, 2012.
Thomas, R. J., Krehbiel, P. R., Rison, W., Hamlin, T., Harlin, J., and Shown, D.: Observations of VHF source powers radiated by lightning, Geophys. Res. Lett., 28, 143–146, https://doi.org/10.1029/2000GL011464, 2001.
Thornton, J. A., Virts, K. S., Holzworth, R. H., and Mitchell, T. P.:
Lightning enhancement over major oceanic shipping lanes, Geophys. Res.
Lett., 44, 9102–9111, https://doi.org/10.1002/2017GL074982, 2017.
Twomey, S.: The nuclei of natural cloud formation, Part II: The
supersaturation in natural clouds and the variation of cloud droplet
concentration, Geofis. Pura Appl., 43, 243–249,
https://doi.org/10.1007/BF01993560, 1959.
Van Den Broeke, M. S., Straka, J. M., and Rasmussen, E. N.: Polarimetric radar
observations at low levels during tornado life cycles in a small sample of
classic southern plains supercells, J. Appl. Meteorol. Clim., 47,
1232–1247, https://doi.org/10.1175/2007JAMC1714.1, 2008.
Wang, Q., Li, Z., Guo, J., Zhao, C., and Cribb, M.: The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?, Atmos. Chem. Phys., 18, 12797–12816, https://doi.org/10.5194/acp-18-12797-2018, 2018.
Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem. Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
Wang, Y., Qie, X., Wang, D., Liu, M., Su, D., Wang, Z., Liu, D., Wu, Z., Sun, Z., and Tian, Y.: Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes, Atmos. Res., 171, 121–132, https://doi.org/10.1016/j.atmosres.2015.12.012, 2016.
Westcott, N. E.: Summertime cloud-to-ground lightning activity around major
Midwestern urban areas, J. Appl. Meteorol., 34, 1633–1642,
https://doi.org/10.1175/1520-0450-34.7.1633, 1995.
Williams, E. R.: The tripole structure of thunderstorms, J. Geophys.
Res.-Atmos., 94, 13151–13167, https://doi.org/10.1029/JD094iD11p13151,
1989.
Williams, E. R., Mushtak, V., Rosenfeld, D., Goodman, S., and Boccippio, D.:
Thermodynamic conditions favorable to superlative thunderstorm updraft,
mixed phase microphysics and lightning flash rate, Atmos. Res., 76,
288–306, https://doi.org/10.1016/j.atmosres.2004.11.009, 2005.
Xiong, Y., Qie, X., Zhou, Y., Yuan, T., and Zhang, T.: Regional responses of lightning activities to relative humidity of the surface, Chinese J. Geophys., 49, 311–318, https://doi.org/10.1002/cjg2.840, 2006 (in Chinese).
Yair, Y.: Charge generation and separation processes, Space Sci. Rev., 137,
119–131, https://doi.org/10.1007/s11214-008-9348-x, 2008.
Yair, Y.: Lightning hazards to human societies in a changing climate,
Environ. Res. Lett., 13, 123002, https://doi.org/10.1088/1748-9326/aaea86,
2018.
Yair, Y., Lynn, B., Price, C., Kotroni, V., Lagouvardos, K., Morin, E.,
Mugnai, A., and Llasat, M. D. C.: Predicting the potential for lightning
activity in Mediterranean storms based on the Weather Research and
Forecasting (WRF) model dynamic and microphysical fields, J. Geophys.
Res.-Atmos., 115, D04205, https://doi.org/10.1029/2008JD010868, 2010.
Yair, Y., Lynn, B., Yaffe, M., Ziv, B., and Shpund, J.: Observations and numerical simulations of the October 25th, 2015 super-cell thunderstorm over Central Israel, Atmos. Res., 247, 105165, https://doi.org/10.1016/j.atmosres.2020.105165, 2021.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C. S. L., Zhu, L., Chen, Z., Zhao, Y., and Shen, Z.: Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074, https://doi.org/10.5194/acp-13-7053-2013, 2013.
Zhang, H., Qie, X., Liu, M., Jiang, R., Lu, G., Liu, R., Liu, D., Chen, Z., Sun, Z., Li, Z., Li, J., and Ma, Z.: The charge structure in a thunderstorm based on three-dimensional electric field sonde, Chinese J. Geophys., 64, 1155–1166, https://doi.org/10.6038/cjg2021O0187, 2021 (in Chinese).
Zhao, P., Yin, Y., and Xiao, H.: The effects of aerosol on development of
thunderstorm electrification: A numerical study, Atmos. Res., 153, 376–391,
https://doi.org/10.1016/j.atmosres.2014.09.011, 2015.
Zhao, P., Li, Z., Xiao, H., Wu, F., Zheng, Y., Cribb, M. C., Jin, X., and Zhou, Y.: Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China, Atmos. Chem. Phys., 20, 13379–13397, https://doi.org/10.5194/acp-20-13379-2020, 2020.
Ziegler, C. L.: Retrieval of thermal and microphysical variables in observed
convective storms. Part 1: Model development and preliminary testing, J.
Atmos. Sci., 42, 1487–1509,
https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2, 1985.
Ziegler, C. L. and MacGorman, D. R.: Observed lightning morphology relative to
modeled space charge and electric field distributions in a tornadic storm,
J. Atmos. Sci., 51, 833–851,
https://doi.org/10.1175/1520-0469(1994)051<0833:OLMRTM>2.0.CO;2, 1994.
Ziegler, C. L., MacGorman, D. R., Dye, J. E., and Ray, P. S.: A model evaluation of noninductive graupel‐ice charging in the early electrification of a mountain thunderstorm, J. Geophys. Res.-Atmos., 96, 12833–12855, https://doi.org/10.1029/91JD01246, 1991.
Zrnic, D. S., Balakrishnan, N., Ziegler, C. L., Bringi, V. N., Aydin, K., and Matejka, T.: Polarimetric signatures in the stratiform region of a mesoscale convective system, J. Appl. Meteorol. Climatol., 32, 678–693, https://doi.org/10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2, 1993.
Short summary
By acting as cloud condensation nuclei (CCN), increasing aerosol loading tends to enhance lightning activity through microphysical processes. We investigated the aerosol effects on the development of a thunderstorm. A two-moment bulk microphysics scheme and bulk lightning model were coupled in the WRF Model to simulate a multicell thunderstorm. Sensitivity experiments show that the enhancement of lightning activity under polluted conditions results from an increasing ice crystal number.
By acting as cloud condensation nuclei (CCN), increasing aerosol loading tends to enhance...
Altmetrics
Final-revised paper
Preprint