Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-12909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: Papers that shaped tropospheric chemistry
School of Chemistry, University of Leicester, University Rd., Leicester, LE1
7RH, UK
A. R. Ravishankara
Departments of Chemistry and Atmospheric Science, Colorado State University,
Fort Collins, Colorado 80523, USA
Erika von Schneidemesser
Institute for Advanced Sustainability Studies, Berlinerstrasse 130, 14467
Potsdam, Germany
Roberto Sommariva
School of Chemistry, University of Leicester, University Rd., Leicester, LE1
7RH, UK
Related authors
No articles found.
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025, https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in the central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found enhancements in O3 and NOy (mostly peroxyacetyl nitrate) concentrations in the Arctic due to northern boreal wildfires, particularly at higher altitudes.
This article is included in the Encyclopedia of Geosciences
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
This article is included in the Encyclopedia of Geosciences
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
This article is included in the Encyclopedia of Geosciences
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
This article is included in the Encyclopedia of Geosciences
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
This article is included in the Encyclopedia of Geosciences
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
This article is included in the Encyclopedia of Geosciences
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
This article is included in the Encyclopedia of Geosciences
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
This article is included in the Encyclopedia of Geosciences
Marios Panagi, Roberto Sommariva, Zoë L. Fleming, Paul S. Monks, Gongda Lu, Eloise A. Marais, James R. Hopkins, Alastair C. Lewis, Qiang Zhang, James D. Lee, Freya A. Squires, Lisa K. Whalley, Eloise J. Slater, Dwayne E. Heard, Robert Woodward-Massey, Chunxiang Ye, and Joshua D. Vande Hey
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-379, https://doi.org/10.5194/acp-2022-379, 2022
Revised manuscript not accepted
Short summary
Short summary
A dispersion model and a box model were combined to investigate the evolution of VOCs in Beijing once they are emitted from anthropogenic sources. It was determined that during the winter time the VOC concentrations in Beijing are driven predominantly by sources within Beijing and by a combination of transport and chemistry during the summer. Furthermore, the results in the paper highlight the need for a season specific policy.
This article is included in the Encyclopedia of Geosciences
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
This article is included in the Encyclopedia of Geosciences
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
This article is included in the Encyclopedia of Geosciences
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
This article is included in the Encyclopedia of Geosciences
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
This article is included in the Encyclopedia of Geosciences
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abbatt, J., George, C., Melamed, M., Monks, P., Pandis, S., and Rudich, Y.:
New Directions: Fundamentals of atmospheric chemistry: Keeping a
three-legged stool balanced, Atmos. Environ., 84, 390–391,
https://doi.org/10.1016/j.atmosenv.2013.10.025, 2014.
Aitken, J.: On the Number of Dust Particles in the Atmosphere, Nature, 37,
428–430, https://doi.org/10.1038/037428a0, 1888.
Akimoto, H., Takagi, H., and Sakamaki, F.: Photoenhancement of the nitrous
acid formation in the surface reaction of nitrogen dioxide and water vapor:
Extra radical source in smog chamber experiments, Int. J.
Chem. Kinet., 19, 539–551, https://doi.org/10.1002/kin.550190606, 1987.
Alicke, B., Hebestreit, K., Stutz, J., and Platt, U.: Iodine oxide in the
marine boundary layer, Nature, 397, 572–573, 1999.
Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.:
Observations of the nitrate radical in the marine boundary layer, J.
Atmos. Chem., 33, 129–154, https://doi.org/10.1023/A:1005917203307, 1999.
Anderson, J. G., Toohey, D. W., and Brune, W. H.: Free Radicals Within the
Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss, Science, 251,
39–46, https://doi.org/10.1126/science.251.4989.39, 1991.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000gb001382, 2001.
Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W.
E.: Carbon disulphide and carbonyl sulphide from biogenic sources and their
contributions to the global sulphur cycle, Nature, 282, 493–496,
https://doi.org/10.1038/282493a0, 1979.
Aneja, V. P., Schlesinger, W. H., and Erisman, J. W.: Effects of agriculture
upon the air quality and climate: Research, policy, and regulations,
Environ. Sci. Technol., 43, 4234–4240, https://doi.org/10.1021/es8024403,
2009.
Arrhenius, S.: On the Influence of Carbonic Acid in the Air upon the
Temperature of the Ground, Philosophical Magazine and Journal of Science, 41,
237–276, 1896.
Atkinson, R.: Kinetics and Mechanisms of the Gas-Phase Reactions of the
Hydroxyl Radical with Organic Compounds under Atmospheric Conditions,
Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986.
Atkinson, R.: Atmospheric chemistry of VOCs and NO(x), Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr,
J. A., and Troe, J.: Evaluated Kinetic and Photochemical Data for
Atmospheric Chemistry: Supplement III. IUPAC Subcommittee on Gas Kinetic
Data Evaluation for Atmospheric Chemistry, J. Phys. Chem.
Ref. Data, 18, 881–1097, https://doi.org/10.1063/1.555832, 1989.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A.,
and Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric
Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation
for Atmospheric Chemistry, J. Phys. Chem. Ref. Data,
21, 1125–1568, https://doi.org/10.1063/1.555918, 1992.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume
II – gas phase reactions of organic species, Atmos. Chem. Phys., 6,
3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Galbally, I. E.,
Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W.: Evidence
for photochemical control of ozone concentrations in unpolluted marine air,
Nature, 360, 446–449, https://doi.org/10.1038/360446a0, 1992.
Ball, S. M., Hancock, G., Murphy, I. J., and Rayner, S. P.: The relative
quantum yields of O2(a1Δg) from the photolysis
of ozone in the wavelength range 270 nm 329 nm, Geophys.
Res. Lett., 20, 2063–2066, https://doi.org/10.1029/93gl02494, 1993.
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and
Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar
sunrise in the lower Arctic atmosphere, Nature, 334, 138–140, 1988.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res. Atmos.,
106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Bishop, G. A. and Stedman, D. H.: Measuring the Emissions of Passing Cars,
Accounts Chem. Res., 29, 489–495, https://doi.org/10.1021/ar950240x, 1996.
Blake, D. R. and Rowland, F. S.: World-wide increase in tropospheric
methane, 1978–1983, J. Atmos. Chem., 4, 43–62,
https://doi.org/10.1007/BF00053772, 1986.
Bolin, B. and Charlson, R. J.: On the role of the tropospheric sulfur cycle
in the shortwave radiative climate of the earth, Ambio, 5, 47–54, 1976.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus B, 47, 281–300, https://doi.org/10.3402/tellusb.v47i3.16048,
1995.
Boutron, C. F., Görlach, U., Candelone, J.-P., Bolshov, M. A., and
Delmas, R. J.: Decrease in anthropogenic lead, cadmium and zinc in Greenland
snows since the late 1960s, Nature, 353, 153–156, https://doi.org/10.1038/353153a0, 1991.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
objectives and measurement modes, J. Atmos. Sci., 56,
127–150, 1999.
Brasseur, G.: The Ozone Layer – from Discovery to Recovery, American
Meteorological Society, Boston, USA, 2019.
Brasseur, G. P.: The Importance of Fundamental Science for Society: The
Success Story of Ozone Research, Perspect. Earth Space Sci.,
1, e2020CN000136, https://doi.org/10.1029/2020CN000136, 2020.
Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Chemistry
and Global Change, OUP, 1999.
Brasseur, G. P., Prinn, R. G., and Pszenny, A. A. P.: Atmospheric Chemistry
in a Changing World, Global Change – IGBP Series, Springer, 2003.
Brimblecombe, P.: The Big Smoke: The History of Air Pollution in London
since Medieval Times Methuen & Co., New York, 1987.
Brown, S. S., Stark, H., Ryerson, T. B., Williams, E. J., Nicks Jr, D. K.,
Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nitrogen oxides in
the nocturnal boundary layer: Simultaneous in situ measurements of NO3,
N2O5, NO2, NO, and O3, J. Geophys. Res., 108, 4299,
https://doi.org/10.1029/2002JD002917, 2003.
Brown, S. S., Ryerson, T. B., Wollny, A. G. C., Brock, A., Peltier, R.,
Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F.,
Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in Nocturnal
Nitrogen Oxide Processing and Its Role in Regional Air Quality, Science,
311, 67–70, 2006.
Burkholder, J. B., Abbatt, J. P. D., Barnes, I., Roberts, J. M., Melamed, M.
L., Ammann, M., Bertram, A. K., Cappa, C. D., Carlton, A. G., Carpenter, L.
J., Crowley, J. N., Dubowski, Y., George, C., Heard, D. E., Herrmann, H.,
Keutsch, F. N., Kroll, J. H., McNeill, V. F., Ng, N. L., Nizkorodov, S. A.,
Orlando, J. J., Percival, C. J., Picquet-Varrault, B., Rudich, Y., Seakins,
P. W., Surratt, J. D., Tanimoto, H., Thornton, J. A., Tong, Z., Tyndall, G.
S., Wahner, A., Weschler, C. J., Wilson, K. R., and Ziemann, P. J.: The
Essential Role for Laboratory Studies in Atmospheric Chemistry,
Environ. Sci. Technol., 51, 2519–2528,
https://doi.org/10.1021/acs.est.6b04947, 2017.
Burkholder, J. B., Abbatt, J. P. D., Cappa, C., Dibble, T. S., Colb, C. E.,
Orkin, C. L., Wilmouth, D. M., Sander, S. P., Barker, J. R., Crounse, J. D.,
Huie, R. E., Kurylo, M. J., Percival, C. J., and Wine, P. H.: Chemical
Kinetics and Photochemical Data for Use in Atmospheric Studies, JPL, JPL,
2020.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt,
K., Eichmann, K. U., and Eisinger, M.: The global ozone monitoring
experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56, 151–175, 1999.
Burrows, J. P., Platt, U., and Borrell, P.: The Remote Sensing of
Tropospheric Composition from Space, Physics of Earth and Space
Environments, Springer-Verlag Berlin, Heidelberg, 551 pp., 2011.
Callendar, G. S.: The artificial production of carbon dioxide and its
influence on temperature, Q. J. Roy. Meteorol.
Soc., 64, 223–240, https://doi.org/10.1002/qj.49706427503, 1938.
Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P.: Mechanism of
the homogeneous oxidation of sulfur dioxide in the troposphere, Atmos. Environ. (1967), 12, 197–226, https://doi.org/10.1016/0004-6981(78)90201-9, 1978.
Calvert, J. G., Heywood, J. B., Sawyer, R. F., and Seinfeld, J. H.:
Achieving acceptable air quality: Some reflections on controlling vehicle
emissions, Science, 261, 37–45, https://doi.org/10.1126/science.261.5117.37, 1993.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the aerodyne aerosol mass
spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115,
2007.
Carslaw, D. C.: Evidence of an increasing NO2 NOX emissions ratio from
road traffic emissions, Atmos. Environ., 39, 4793–4802,
https://doi.org/10.1016/j.atmosenv.2005.06.023, 2005.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric
reactions of organic compounds, Atmos. Environ. Pt. A, 24, 481–518, https://doi.org/10.1016/0960-1686(90)90005-8, 1990.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism,
Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Carter, W. P. L. and Atkinson, R.: A Computer Modeling Study of Incremental
Hydrocarb. Reactiv. Environ. Sci. Technol., 23, 864–880,
1989.
Chamberlain, A. C.: Transport of gases to and from grass and grass-like
surfaces, Proc. R. Soc. Lond. A, 290, 236–265, 1966.
Chameides, W. L. and Walker, J. C. G.: A photochemical theory for
tropospheric ozone, J. Geophys. Res., 78, 8751–8760, 1973.
Chameides, W. L. and Davis, D. D.: Iodine: Its possible role in
tropospheric photochemistry, J. Geophys. Res.-Ocean., 85,
7383–7398, https://doi.org/10.1029/JC085iC12p07383, 1980.
Chameides, W. L. and Davis, D. D.: The free radical chemistry of cloud
droplets and its impact upon the composition of rain, J. Geophys.
Res., 87, 4863–4877, https://doi.org/10.1029/JC087iC07p04863, 1982.
Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S.: The role
of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case
study, Science, 241, 1473–1475, https://doi.org/10.1126/science.3420404, 1988.
Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L.,
Wang, G., Kiang, C. S., Saylor, R. D., Luo, C., Huang, Y., Steiner, A., and
Giorgi, F.: Case study of the effects of atmospheric aerosols and regional
haze on agriculture: An opportunity to enhance crop yields in China through
emission controls?, P. Natl. Acad. Sci. USA, 96, 13626–13633, https://doi.org/10.1073/pnas.96.24.13626, 1999.
Chaney, L. W.: The remote measurement of traffic generated carbon monoxide,
J. Air Pollut. Control Assoc., 33, 220–222,
https://doi.org/10.1080/00022470.1983.10465568, 1983.
Chapman, S.: On ozone and atomic oxygen in the upper atmosphere, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10,
369–383, https://doi.org/10.1080/14786443009461588, 1930.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Charlson, R. J., Langner, J., and Rodhe, H.: Sulphate aerosol and climate,
Nature, 348, p. 22, https://doi.org/10.1038/348022a0, 1990.
Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., and Warren, S. G.:
Perturbation of the Northern Hemisphere radiative balance by backscattering
from anthropogenic sulfate aerosols, Tellus A, 43, 152–163, https://doi.org/10.3402/tellusa.v43i4.11944,
1991.
Chipperfield, M. P. and Pyle, J. A.: Two-dimensional modelling of the
Antarctic lower stratosphere, Geophys. Res. Lett., 15, 875–878,
https://doi.org/10.1029/GL015i008p00875, 1988.
Cicerone, R. J.: Halogens in the atmosphere, Rev. Geophys., 19,
123–139, https://doi.org/10.1029/RG019i001p00123, 1981.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.:
Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene,
Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system H+-NH -SO -NO -H2O at
tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154,
1998a.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system
H+-NH -Na+-SO -NO -Cl−-H2O
at 298.15 K, J. Phys. Chem. A, 102, 2155–2171, 1998b.
Cohen, R. C. and Murphy, J. G.: Photochemistry of NO2 in Earth's
Stratosphere: Constraints from Observations, Chem. Rev., 103,
4985–4998, https://doi.org/10.1021/cr020647x, 2003.
Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P.
H., and Leck, C.: Aerosol number size distributions from 3 to 500 nm
diameter in the arctic marine boundary layer during summer and autumn,
Tellus B, 48, 197–212,
https://doi.org/10.3402/tellusb.v48i2.15886, 1996.
Cox, R. A. and Hayman, G. D.: The stability and photochemistry of dimers of
the ClO radical and implications for Antarctic ozone depletion, Nature, 332,
796–800, https://doi.org/10.1038/332796a0, 1988.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of organic compounds in the atmosphere,
J. Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207,
2013.
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E.,
Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated
kinetic and photochemical data for atmospheric chemistry: Volume V
– heterogeneous reactions on solid substrates, Atmos. Chem.
Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010.
Crutzen, P. J.: A discussion of the chemistry of some minor constituents in the
stratosphere and troposphere, Pure Appl. Geophys., 106, 1385–1399,
https://doi.org/10.1007/BF00881092, 1973a.
Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone
in the unpolluted troposphere, Tellus, 26, 47–57, 1973b.
Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone
content, Q. J. Roy. Meteorol. Soc., 96, 320–325,
https://doi.org/10.1002/qj.49709640815, 1970.
Crutzen, P. J.: Geology of mankind, Nature, 415, p. 23, https://doi.org/10.1038/415023a, 2002.
Crutzen, P. J. and Birks, J. W.: The atmosphere after a nuclear war:
twilight at noon, Ambio, 11, 114–125, 1982.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: Impact
on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678,
1990.
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler,
W.: Biomass burning as a source of atmospheric gases CO, H2, N2O,
NO, CH3Cl and COS, Nature, 282, 253–256, https://doi.org/10.1038/282253a0, 1979.
Dalton, J.: Experimental enquiry into the proportion of the several gases or
elastic fluids, constituting the atmosphere, Memoirs of the Literary and
Philosophical Society of Manchester, 1, 244–258, 1805.
Danielsen, E. F.: Stratospheric-Tropospheric Exchange Based on
Radioactivity, Ozone and Potential Vorticity, J. Atmos.
Sci., 25, 502–518, 1968.
Darnall, K. R., Lloyd, A. C., Winer, A. M., and Pitts, J. N.: Reactivity
scale for atmospheric hydrocarbons based on reaction with hydroxyl radical,
Environ. Sci. Technol., 10, 692–696, https://doi.org/10.1021/es60118a008,
1976.
Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele,
F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B., and McMurry, P.:
Unexpected high levels of NO observed at South Pole, Geophys. Res. Lett., 28, 3625–3628, https://doi.org/10.1029/2000GL012584, 2001.
Davis, D. D.: Project Gametag: An overview, J. Geophys. Res.-Ocean., 85, 7285–7292, https://doi.org/10.1029/JC085iC12p07285,
1980.
Davis, D. D., Heaps, W., and McGee, T.: Direct measurements of natural
tropospheric levels of OH via an aircraft borne tunable dye laser,
Geophys. Res. Lett., 3, 331–333, https://doi.org/10.1029/GL003i006p00331, 1976.
Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO2 oxidation via
the hydroxyl radical: Atmospheric fate of HSOx radicals, Geophys. Res. Lett., 6, 113–116, https://doi.org/10.1029/GL006i002p00113, 1979.
de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W.
C., Roberts, J. M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R.,
Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B., and Bates,
T. S.: Budget of organic carbon in a polluted atmosphere: Results from the
New England Air Quality Study in 2002, J. Geophys. Res.-Atmos., 110, 1–22, https://doi.org/10.1029/2004JD005623, 2005.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard,
G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J. C.,
Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer,
G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the
Detection of Atmospheric Composition Change (NDACC): history, status and
perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018,
2018.
Demerjian, K. L., Kerr, J. A., and Calvert, J. G.: Mechanism of
photochemical smog formation, Adv. Environ. Sci. Technol., 4, 1–262,
1974.
DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J.,
Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical
Kinetics and Photochemical Data for Use in Stratospheric Modeling, NASA,
JPL, 1997.
Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen,
P. J.: Role of mineral aerosol as a reactive surface in the global
troposphere, J. Geophys. Res.-Atmos., 101, 22869–22889,
https://doi.org/10.1029/96JD01818, 1996.
De Zafra, R. L., Jaramillo, M., Parrish, A., Solomon, P., Connor, B., and
Barrett, J.: High concentrations of chlorine monoxide at low altitudes in
the Antarctic spring stratosphere: Diurnal variation, Nature, 328, 408–411,
1988.
Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X.
R., Thornberry, T., Carroll, M. A., Young, V., Shepson, P. B., Riemer, D.,
Apel, E., and Campbell, C.: Missing OH reactivity in a forest: Evidence for
unknown reactive biogenic VOCs, Science, 304, 722–725, 2004.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M.
E., Ferris, B. G., and Speizer, F. E.: An association between air pollution
and mortality in six US cities, New Engl. J. Med., 29, 1753–1759, 1993.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c,
2006.
Draxler, R. R.,and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition, Austr.
Meteorol. Mag., 47, 295–308, 1998.
Ehhalt, D. H.: The atmospheric cycle of methane, Tellus, 26, 58–70,
https://doi.org/10.1111/j.2153-3490.1974.tb01952.x, 1974.
Ehhalt, D. H.: Photooxidation of trace gases in the troposphere, Phys.
Chem. Chem. Phys., 1, 5401–5408, 1999.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.
Eisele, F. L., Mount, G. H., Fehsenfeld, F. C., Harder, J., Marovich, E., Parrish, D. D., Roberts, J., Trainer, M., and Tanner, D.: Intercomparison of tropospheric OH and ancillary trace gas
measurements at Fritz Peak Observatory, Colorado, J. Geophys.
Res., 99, 18605–18626, 1994.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter,
W.: How a century of ammonia synthesis changed the world, Nat. Geosci.,
1, 636–639, https://doi.org/10.1038/ngeo325, 2008.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys. Res.-Atmos., 108, 4426, https://doi.org/10.1029/2002JD002202, 2003.
Fabian, P. and Pruchniewicz, P. G.: Meridional distribution of ozone in the
troposphere and its seasonal variations, J. Geophys. Res. , 82, 2063–2073,
1977.
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx NOx interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt,
C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.:
Emissions of volatile organic compounds from vegetation and the implications
for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430,
https://doi.org/10.1029/92GB02125, 1992.
Finlayson, B. J. and Pitts, J. N.: Photochemistry of the Polluted
Troposphere, Science, 192, 111–119, https://doi.org/10.1126/science.192.4235.111, 1976.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere – theory, experiments, and applications, Academic Press,
San Diego, 969 pp., 2000.
Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation of
chemically active chlorine compounds by reactions of atmospheric NaCl
particles with gaseous N2O5 and ClONO2, Nature, 337, 241–244,
https://doi.org/10.1038/337241a0, 1989.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess,
P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I.
A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van
Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G.,
Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong,
S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson,
J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V.,
Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S.,
Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel
estimates of intercontinental source-receptor relationships for ozone
pollution, J. Geophys. Res.-Atmos., 114, D04301, https://doi.org/10.1029/2008jd010816, 2009.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
Dalsoren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W.,
Josse, B., Lamarque, J. F., MacKenzie, I. A., Nagashima, T., O'Connor, F.
M., Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K.,
Szopa, S., Takemura, T., and Zeng, G.: Global air quality and climate, Chem.
Soc. Rev., 41, 6663–6683, https://doi.org/10.1039/c2cs35095e, 2012.
Fishman, J., Ramanathan, V., Crutzen, P. J., and Liu, S. C.: Tropospheric
ozone and climate, Nature, 282, 818–820, https://doi.org/10.1038/282818a0, 1979.
Fitzgerald, J. W.: Effect of Aerosol Composition on Cloud Droplet Size
Distribution: A Numerical Study, J. Atmos. Sci., 31,
1358–1367, 1974.
Fleming, E. L., Jackman, C. H., Stolarski, R. S., and Considine, D. B.:
Simulation of stratospheric tracers using an improved empirically based
two-dimensional model transport formulation, J. Geophys. Res.-Atmos., 104, 23911–23934, https://doi.org/10.1029/1999JD900332, 1999.
Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen,
D., Simmonds, P., O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider,
J., Trickl, T., Kreipl, S., Jäger, H., and Stohl, A.: Transport of
boreal forest fire emissions from Canada to Europe, J. Geophys. Res., 106,
22887–22906, 2001.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C.,
Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt,
J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G.,
Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti,
E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horvath, L.,
Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz,
E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U.,
Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C.,
Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions,
Atmos. Environ., 43, 5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068,
2009.
Fowler, D., Brimblecombe, P., Burrows, J., Heal, M. R., Grennfelt, P.,
Stevenson, D. S., Jowett, A., Nemitz, E., Coyle, M., Lui, X., Chang, Y.,
Fuller, G. W., Sutton, M. A., Klimont, Z., Unsworth, M. H., and Vieno, M.: A
chronology of global air quality, Philos. T. Roy.
Soc. A, 378, 20190314,
https://doi.org/10.1098/rsta.2019.0314, 2020.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
and ecosystem interactions, Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Fuller, G. W.: The Invisible Killer: The Rising Threat of Global Air
Pollution – and how we can fight back, Melville House, UK 2018.
Galbally, I.: Some measurements of ozone variation and destruction in the
atmospheric surface layer, Nature, 218, 456–457, https://doi.org/10.1038/218456a0, 1968.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vorosmarty, C. J.: Nitrogen cycles: past, present, and future,
Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Garcia, R. R. and Solomon, S.: A numerical model of the zonally averaged
dynamical and chemical structure of the middle atmosphere, J.
Geophys. Res.-Ocean., 88, 1379–1400, https://doi.org/10.1029/JC088iC02p01379, 1983.
Gard, E., Mayer, J. E., Morrical, B. D., Dienes, T., Fergenson, D. P., and
Prather, K. A.: Real-Time Analysis of Individual Atmospheric Aerosol
Particles: Design and Performance of a Portable ATOFMS, Anal.
Chem., 69, 4083–4091, https://doi.org/10.1021/ac970540n, 1997.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic
Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41,
1515–1521, 2007.
Graedel, T. E.: Kinetic photochemistry of the marine atmosphere, J.
Geophys. Res., 84, 273–286, 1979.
Graedel, T. E. and Weschler, C. J.: Chemistry within aqueous atmospheric
aerosols and raindrops, Rev. Geophys., 19, 505–539,
https://doi.org/10.1029/RG019i004p00505, 1981.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled ”online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., and
Cowling, E.: Acid rain and air pollution: 50 years of progress in
environmental science and policy, Ambio, 49, 849–864, https://doi.org/10.1007/s13280-019-01244-4, 2019.
Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, R.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res., 100,
8873–8892, 1995.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., and Fall, R.:
Natural emissions of non-methane volatile organic compounds, carbon
monoxide, and oxides of nitrogen from North America, Atmos. Environ., 34, 2205–2230, https://doi.org/10.1016/S1352-2310(99)00465-3, 2000.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos.
Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: Model evaluations
and sensitivity analyses, J. Geophys. Res.-Atmos., 98,
12609–12617, https://doi.org/10.1029/93jd00527, 1993.
Haagen-Smit, A. J.: Chemistry and Physiology of Los Angeles Smog, Industr.
Eng. Chem., 44, 1342–1346, https://doi.org/10.1021/ie50510a045, 1952.
Haagen-Smit, A. J. and Fox, M. M.: Photochemical ozone formation with
hydrocarbons and automobile exhaust, Air Repair, 4, 105–136,
https://doi.org/10.1080/00966665.1954.10467649, 1954.
Haagen-Smit, A. J., Bradley, C. E., and Fox, M. M.: Ozone Formation in
Photochemical Oxidation of Organic Substances, Industr. Eng.
Chem., 45, 2086–2089, https://doi.org/10.1021/ie50525a044, 1953.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin,
M., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G.,
Mentel, T., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The Formation, Properties and Impact of
Secondary Organic Aerosol: Current and Emerging Issues, Atmos. Chem. Phys. ,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009 2009.
Hampson, J.: Photochemical behavior of the ozone layer, Can. Armament Res.
and Dev. Estab., Valcartier, Quebec, Canada, 1964.
Hanson, D. R. and Ravishankara, A. R.: Reactive uptake of CIONO2 onto
sulfuric acid due to reaction with HCl and H2O, J. Phys. Chem., 98, 5728–5735, https://doi.org/10.1021/j100073a026, 1994.
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.:
Measurement of OH and HO2 radical uptake coefficients on water and
sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985,
https://doi.org/10.1021/j100191a046, 1992.
Hao, W. M. and Liu, M. H.: Spatial and temporal distribution of tropical
biomass burning, Global Biogeochem. Cy., 8, 495–504, 1994.
Harriss, R. C.: The Amazon Boundary Layer Experiment (ABLE 2A): dry season
1985, J. Geophys. Res., 93, 1351–1360,
https://doi.org/10.1029/JD093iD02p01351, 1988.
Hard, T. M., O'Brien, R. J., Chan, C. Y., and Mehrabzadeh, A. A.: Tropospheric free radical determination by fluorescence assay with gas expansion, Environ. Sci. Technol., 18, 768–777, https://doi.org/10.1021/es00128a009, 1984.
Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in the
Troposphere, Chem. Rev., 103, 5163–5198, 2003.
Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling approach to
investigate the global atmospheric methane cycle, Global Biogeochem.
Cy., 11, 43–76, https://doi.org/10.1029/96GB03043, 1997.
Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M.,
Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal in
the Troposphere, Science, 324, 1702–1704, https://doi.org/10.1126/science.1164566, 2009.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys.,
33, 403–439, https://doi.org/10.1029/95rg02097, 1995.
Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., and
Campbell, B.: Evidence of NOx production within or upon ice particles in the
Greenland snow-pack, Geophys. Res. Lett., 26, 695–698, 1999.
Howard, C. J. and Evenson, K. M.: Kinetics of the reaction of HO2 with
NO, Geophys. Res. Lett., 4, 437–440, https://doi.org/10.1029/GL004i010p00437, 1977.
Hudson, R. D. and Reed, E. I.: Stratosphere: present and future, NASA
Reference Publication 1049, available at: https://ntrs.nasa.gov/api/citations/19800006383/downloads/19800006383.pdf (last access: 30 August 2021), 1979.
Husar, R. B., Tratt, D. M., Schichtel, B. A., Falke, S. R., Li, F., Jaffe,
D., Gassó, S., Gill, T., Laulainen, N. S., Lu, F., Reheis, M. C., Chun,
Y., Westphal, D., Holben, B. N., Gueymard, C., McKendry, I., Kuring, N.,
Feldman, G. C., McClain, C., Frouin, R. J., Merrill, J., DuBois, D.,
Vignola, F., Murayama, T., Nickovic, S., Wilson, W. E., Sassen, K.,
Sugimoto, N., and Malm, W. C.: Asian dust events of April 1998, J. Geophys. Res.-Atmos., 106, 18317–18330, https://doi.org/10.1029/2000JD900788,
2001.
IPCC: Climate Change 2013 – The Physical Science Basis, Cambridge
University Press, Cambridge, 1552 pp., 2013.
Jackman, C., Seals, R., and Prather, M.: Two-dimensional intercomparison of
stratospheric models, NASA Conference Publication 3042, available at: https://ntrs.nasa.gov/api/citations/19900002089/downloads/19900002089.pdf (last access: 30 August 2021), 1989.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University
Press, Princeton, USA, 1999.
Jacob, D. J., Munger, J. W., Waldman, J. M., and Hoffmann, M. R.: The
H2SO4 – HNO3 – NH3 system at high humidities and in
fogs, 1. Spatial and temporal patterns in the San Joaquin Valley of
California, J. Geophys. Res., 91, 1073–1088,
https://doi.org/10.1029/JD091iD01p01073, 1986.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
Jacob, D. J., Logan, J. A., and Murti, P. P.: Effect of rising Asian
emissions on surface ozone in the United States, Geophys. Res. Lett., 26, 2175–2178, https://doi.org/10.1029/1999GL900450, 1999.
Jacobson, M. Z.: Atmospheric Pollution: History, Science and Regulation,
Cambridge University Press, Cambridge, UK, 2002.
Jaeglé, L., Jacob, D. J., Wang, Y., Weinheimer, A. J., Ridley, B. A.,
Campos, T. L., Sachse, G. W., and Hagen, D. E.: Sources and chemistry of NOx
in the upper troposphere over the United States, Geophys. Res. Lett., 25, 1705–1708, https://doi.org/10.1029/97gl03591, 1998.
Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere,
Science, 308, p. 73, https://doi.org/10.1126/science.1106335, 2005.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: A protocol for mechanism
development, Atmos. Environ., 31, 81–104, 1997.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for
the development of the Master Chemical Mechanism, MCM v3 (Part B):
tropospheric degradation of aromatic volatile organic compounds, Atmos.
Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525, https://doi.org/10.1126/science.1180353, 2009.
Johnston, H.: Reduction of stratospheric ozone by nitrogen oxide catalysts
from supersonic transport exhaust, Science, 173, 517–522,
https://doi.org/10.1126/science.173.3996.517, 1971.
Junge, C.: The size distribution and aging of natural aerosols as determined
from electrical and optical data on the atmosphere, J. Meteorol.,
12, 13–25, 1955.
Junge, C. E.: Basic considerations about trace constituents in the
atmosphere as related to the fate of global pollutants, Adv. Environ. Sci.
Technol., 8, 7–25, 1975.
Junge, C. E. and Ryan, T. G.: Study of the SO2 oxidation in solution
and its role in atmospheric chemistry, Q. J. Roy. Meteorol. Soc., 84, 46–55, https://doi.org/10.1002/qj.49708435906, 1958.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.
S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and
Baltensperger, U.: Identification of Polymers as Major Components of
Atmospheric Organic Aerosols, Science, 303, 1659–1662,
https://doi.org/10.1126/science.1092185, 2004.
Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C.,
Turnipseed, A., and Jardine, K.: Efficient Atmospheric Cleansing of Oxidized
Organic Trace Gases by Vegetation, Science, 1192534,
https://doi.org/10.1126/science.1192534, 2010.
Keeling, C. D.: The Concentration and Isotopic Abundances of Carbon Dioxide
in the Atmosphere, Tellus, 12, 200–203, https://doi.org/10.1111/j.2153-3490.1960.tb01300.x,
1960.
Keeling, C. D., Mook, W. G., and Tans, P. P.: Recent trends in the
13C 12C ratio of atmospheric carbon dioxide, Nature, 277, 121–123,
https://doi.org/10.1038/277121a0, 1979.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC):
An Overview on Emission, Physiology and Ecology, J. Atmos.
Chem., 33, 23–88, https://doi.org/10.1023/A:1006127516791, 1999.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger,
A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,
D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,
Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D.,
Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo,
K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,
Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P.,
Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M.,
Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y.,
Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler,
P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.:
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
aerosol nucleation, Nature, 476, 429–435, https://doi.org/10.1038/nature10343, 2011.
Kleindienst, T. E.: Epoxying Isoprene Chemistry, Science, 325, 687–688,
https://doi.org/10.1126/science.1178324, 2009.
Kleinman, L. I.: Seasonal dependence of boundary layer peroxide
concentration: the low and high NOx regimes, J. Geophys. Res., 96, 20721–720733, 1991.
Kley, D. and McFarland, M.: Chemiluminescence detector for NO and NO2,
Atmos. Technol., 12, 63–69, 1980.
Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J.,
Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and
simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols,
Science, 288, 301–306, https://doi.org/10.1126/science.288.5464.301, 2000.
Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric
mobility: apparatus, theory, and applications, J. Aerosol Sci.,
6, 443–451, https://doi.org/10.1016/0021-8502(75)90060-9, 1975.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
Trans. Farad. Soc., 32, 1152–1161, https://doi.org/10.1039/TF9363201152,
1936.
Kulmala, M., Pirjola, L., and Mäkelä, J. M.: Stable sulphate
clusters as a source of new atmospheric particles, Nature, 404, 66–69,
https://doi.org/10.1038/35003550, 2000.
Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lörzer,
J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., and Platt, U.:
Investigations of emissions and heterogeneous formation of HONO in a road
traffic tunnel, Atmos. Environ., 35, 3385–3394,
https://doi.org/10.1016/S1352-2310(01)00138-8, 2001.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu,
N. N., Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I.,
Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L.,
Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D.,
Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.
V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F.,
Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C.,
Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart,
R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., and
Zhong, M.: The Lancet Commission on pollution and health, The Lancet, 391,
462–512, https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
Lawson, D. R.: “Passing the test” – human behavior and California's smog
check program, Air Waste, 43, 1567–1575, https://doi.org/10.1080/1073161X.1993.10467226,
1993.
Leighton, P. A.: Photochemistry of Air Pollution, Academic Press, New York,
1961.
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H.,
Ganzeveld, L., Lawrence, M. G., Martinez, M., Taraborrelli, D., and
Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest,
Nature, 452, 737–740 2008.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Leu, M. T.: Laboratory studies of sticking coefficients and heterogeneous
reactions important in the Antarctic stratosphere, Geophys. Res. Lett., 15, 17-20, https://doi.org/10.1029/GL015i001p00017, 1988.
Levy, H.: Normal atmosphere – large radical and formaldehyde concentrations
predicted, Science, 173, 141-&, https://doi.org/10.1126/science.173.3992.141, 1971.
Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Morrison, P.,
Lee, A. L., Bartle, K. D., and Pilling, M. J.: A larger pool of
ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778–781,
https://doi.org/10.1038/35015540, 2000.
Likens, G. E. and Bormann, F. H.: Acid rain: A serious regional
environmental problem, Science, 184, 1176–1179,
https://doi.org/10.1126/science.184.4142.1176, 1974.
Lin, X., Trainer, M., and Liu, S. C.: On the nonlinearity of the
tropospheric ozone production, J. Geophys. Res.-Atmos.,
93, 15879–15888, https://doi.org/10.1029/JD093iD12p15879, 1988.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) – Medical applications, food control and environmental
research, Int. J. Mass Spectrom., 173, 191–241, 1998.
Liu, S. C.: Ozone production in the rural troposphere and the implications
for regional and global ozone distributions, J. Geophys. Res., 92, 4191–4207, https://doi.org/10.1029/JD092iD04p04191, 1987.
Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.:
Mapping annual mean ground-level PM2.5 concentrations using Multiangle
Imaging Spectroradiometer aerosol optical thickness over the contiguous
United States, J. Geophys. Res.-Atmos., 109, D22206, https://doi.org/10.1029/2004JD005025, 2004.
Logan, J. A.: Nitrogen oxides in the troposphere: global and regional
budgets, J. Geophys. Res., 88, 10785–10807,
https://doi.org/10.1029/JC088iC15p10785, 1983.
Logan, J. A.: Tropospheric ozone – seasonal behaviour, trends, and
anthropogenic influence, J. Geophys. Res.-Atmos., 90, 10463–10482, 1985.
Logan, J. A.: Ozone in rural areas of the United States, J. Geophys. Res., 94, 8511–8532, https://doi.org/10.1029/JD094iD06p08511, 1989.
Logan, J. A.: An analysis of ozonesonde data for the troposphere:
Recommendations for testing 3-D models and development of a gridded
climatology for tropospheric ozone, J. Geophys. Res.-Atmos., 104, 16115–16149, https://doi.org/10.1029/1998JD100096, 1999.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric
chemistry: a global perspective, J. Geophys. Res., 86,
7210–7254, https://doi.org/10.1029/JC086iC08p07210, 1981.
Lovelock, J. E.: Atmospheric halocarbons and stratospheric ozone, Nature,
252, 292–294, https://doi.org/10.1038/252292a0, 1974.
Lovelock, J. E. and Lipsky, S. R.: Electron Affinity Spectroscopy—A New
Method for the Identification of Functional Groups in Chemical Compounds
Separated by Gas Chromatography, J. Am. Chem. Soc.,
82, 431–433, https://doi.org/10.1021/ja01487a045, 1960.
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric Dimethyl
Sulphide and the Natural Sulphur Cycle, Nature, 237, 452–453,
https://doi.org/10.1038/237452a0, 1972.
MacKenzie, R. A., Harrison, R. M., Colbeck, I., and Nicholas Hewitt, C.: The
role of biogenic hydrocarbons in the production of ozone in urban plumes in
southeast England, Atmos. Environ., Pt. A, 25,
351–359, https://doi.org/10.1016/0960-1686(91)90306-R, 1991.
Madronich, S. and Flocke, S.: The Role of Solar Radiation in Atmospheric
Chemistry, The Handbook of Environmental Chemistry (Reactions and
Processes), edited by: Boule, P., Springer-Verlag, Berlin, Heidelberg, 1999.
Mäkelä, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A.,
Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H., and Kulmala, M.:
Observations of ultrafine aerosol particle formation and growth in boreal
forest, Geophys. Res. Lett., 24, 1219–1222, https://doi.org/10.1029/97GL00920,
1997.
Martin, R. V.: Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823–7843, https://doi.org/10.1016/j.atmosenv.2008.07.018, 2008.
Mauldin Iii, R. L., Berndt, T., Sipilä, M., Paasonen, P.,
Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V. M.,
and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,
Nature, 488, 193–196, https://doi.org/10.1038/nature11278, 2012.
Maynard, R. L. and Williams, M. L.: Regulation of Air Quality in the
European Union, in: Regulatory Toxicology in the European Union, Roy.
Soc. Chem., Cambridge, UK, 539–556, 2018.
McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A.: Reductions
of Antarctic ozone due to synergistic interactions of chlorine and bromine,
Nature, 321, 759–762, https://doi.org/10.1038/321759a0, 1986.
Melamed, M. L., Monks, P. S., Goldstein, A. H., Lawrence, M. G., and
Jennings, J.: The international global atmospheric chemistry (IGAC) project:
Facilitating atmospheric chemistry research for 25 years, Anthropocene, 12,
17–28, https://doi.org/10.1016/j.ancene.2015.10.001, 2015.
Merrill, J. T., Bleck, R., and Avila, L.: Modeling atmospheric transport to
the Marshall Islands, J. Geophys. Res.-Atmos., 90,
12927–12936, https://doi.org/10.1029/JD090iD07p12927, 1985.
Molina, L. T. and Molina, M. J.: Production of chlorine oxide
(Cl2O2) from the self-reaction of the chlorine oxide (ClO)
radical, The J. Phys. Chem., 91, 433–436,
https://doi.org/10.1021/j100286a035, 1987.
Molina, M. J.: Heterogeneous chemistry on polar stratospheric clouds,
Atmos. Environ. Pt. A, 25, 2535–2537,
https://doi.org/10.1016/0960-1686(91)90170-C, 1991.
Molina, M. J. and Rowland, F. S.: Stratospheric sink for
chlorofluoromethanes: Chlorine atomic-atalysed destruction of ozone, Nature,
249, 810–812, https://doi.org/10.1038/249810a0, 1974.
Molina, M. J., Tso, T. L., Molina, L. T., and Wang, F. C. Y.: Antarctic
stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice:
Release of active chlorine, Science, 238, 1253–1257,
https://doi.org/10.1126/science.238.4831.1253, 1987.
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc. Rev.,
34, 376–395, Doi https://doi.org/10.1039/B307982c, 2005.
Monks, P. S. and Williams, M. L.: What does success look like for air
quality policy? A perspective, Philos. T. R.
Soc. Math. Phys. Eng. Sci., 378, 20190326,
https://doi.org/10.1098/rsta.2019.0326, 2020.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto,
H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake,
R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E.,
Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H.
C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S.
A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj,
P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G.,
Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd, C. D.,
Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Poschl, U., Prevot,
A. S. H., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K.,
Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G.
R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.:
Atmospheric composition change – global and regional air quality,
Atmos. Environ., 43, 5268–5350, https://doi.org/10.1016/j.atmosenv.2009.08.021,
2009.
Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J.,
Tans, P. P., and Sweeney, C.: On the global distribution, seasonality, and
budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2,
J. Geophys. Res.-Atmos., 112, D09302, https://doi.org/10.1029/2006JD007665, 2007.
Moody, J. L., Oltmans, S. J., Levy, H., and Merrill, J. T.: Transport,
climatology of tropospheric ozone – Bermuda, 1988–1991, J. Geophys.
Res.-Atmos., 100, 7179–7194, https://doi.org/10.1029/94jd02830, 1995.
Moody, J. L., Munger, J. W., Goldstein, A. H., Jacob, D. J., and Wofsy, S.
C.: Harvard Forest regional-scale air mass composition by Patterns in
Atmospheric Transport History (PATH), J. Geophys. Res.-Atmos., 103, 13181–13194, https://doi.org/10.1029/98jd00526, 1998.
Mozurkewich, M., McMurry , P. H., Gupta, A., and Calvert, J. G.: Mass
Accomodation Coefficient for HO2 Radicals on Aqueous Particles, J.
Geophys. Res., 92, 4163–4170, 1987.
Murozumi, M., Chow, T. J., and Patterson, C.: Chemical concentrations of
pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and
Antarctic snow strata, Geochim. Cosmochim. Ac., 33, 1247–1294,
https://doi.org/10.1016/0016-7037(69)90045-3, 1969.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M.,
Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber,
R. J.: Single-particle mass spectrometry of tropospheric aerosol particles,
J. Geophys. Res.-Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340,
2006.
Newell, R. E., Thouret, V., Cho, J. Y. N., Stoller, P., Marenco, A., and
Smit, H. G.: Ubiquity of quasi-horizontal layers in the troposphere, Nature,
398, 316–319, 1999.
Norrish, R. G. W. and Neville, G. H. J.: The decomposition of ozone
photosensitised by chlorine, J. Chem. Soc.,
1864–1872, 1934.
O'Dowd, C. D., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämerl, K.,
Pirjola, L., Kulmala, M., and Hoffmann, T.: Marine aerosol formation from
biogenic iodine emissions, Nature, 417, 632–636, https://doi.org/10.1038/nature00775, 2002.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Young, J. Y., and Putaud, J. P.: Biogenically
driven organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Odèn, S.: The acidification of air precipitation and its consequences in
the natural environment, NFR, 1968.
Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and
Seinfeld, J. H.: The atmospheric aerosol forming potential of whole gasoline
vapor, Science., 276, 96–99, 1997.
Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., and Berdowski, J.
J. M.: Emission database for global atmospheric research (Edgar),
Environ. Monit. Ass., 31, 93–106, https://doi.org/10.1007/BF00547184,
1994.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,
https://doi.org/10.1038/ngeo177, 2008.
Pales, J. C. and Keeling, C. D.: The concentration of atmospheric carbon
dioxide in Hawaii, J. Geophys. Res. (1896–1977), 70,
6053–6076, https://doi.org/10.1029/JZ070i024p06053, 1965.
Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J. D.,
Kurosu, T. P., Bey, I., Yantosca, R., Fiore, A., and Li, Q.: Air mass factor
formulation for spectroscopic measurements from satellites: Application to
formaldehyde retrievals from the Global Ozone Monitoring Experiment, J. Geophys. Res.-Atmos., 106, 14539–14550,
https://doi.org/10.1029/2000jd900772, 2001.
Pankow, J. F.: An absorption model of gas/particle partitioning of organic
compounds in the atmosphere, Atmos. Environ., 28, 185–188,
https://doi.org/10.1016/1352-2310(94)90093-0, 1994a.
Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved
in the formation of secondary organic aerosol, Atmos. Environ., 28,
189–193, https://doi.org/10.1016/1352-2310(94)90094-9, 1994b.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., Clair, J. M.
S., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in
the gas-phase photooxidation of isoprene, Science, 325, 730–733,
https://doi.org/10.1126/science.1172910, 2009.
Paulson, S. E. and Orlando, J. J.: The reactions of ozone with alkenes: An
important source of HOx in the boundary layer, Geophys. Res. Lett.,
23, 3727–3730, https://doi.org/10.1029/96gl03477, 1996.
Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regneration in
the oxidation of isoprene, Phys. Chem. Chem Phys., 11, 5935–5939, 2009.
Penkett, S. A., Jones, B. M. R., Brich, K. A., and Eggleton, A. E. J.: The
importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur
dioxide in cloud and rainwater, Atmos. Environ. (1967), 13, 123–137,
https://doi.org/10.1016/0004-6981(79)90251-8, 1979.
Perner, D. and Platt, U.: Detection of nitrous acid in the atmosphere by
differential optical absorption, Geophys. Res. Lett., 6, 917–920,
https://doi.org/10.1029/GL006i012p00917, 1979.
Perner, D., Ehhalt, D. H., Pätz, H. W., Platt, U., Röth, E. P., and
Volz, A.: OH – Radicals in the lower troposphere, Geophys. Res. Lett., 3, 466–468, https://doi.org/10.1029/GL003i008p00466, 1976a.
Perner, D., Ehhalt, D. H., Pätz, H. W., Platt, U., Röth, E. P., and
Volz, A.: OH – Radicals in the lower troposphere, Geophys. Res. Lett., 3, 466–468, https://doi.org/10.1029/GL003i008p00466,
1976b.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotiyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos.
Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pitts, J., Van Cauwenberghe, K., Grosjean, D., Schmid, J., Fitz, D., Belser,
W., Knudson, G., and Hynds, P.: Atmospheric reactions of polycyclic aromatic
hydrocarbons: facile formation of mutagenic nitro derivatives, Science, 202,
515–519, https://doi.org/10.1126/science.705341, 1978.
Pitts, J., N., Sanhueza, E., Atkinson, R., Carter, W. P. L., Winer, A. M.,
Harris, G. W., and Plum, C. N.: An investigation of the dark formation of
nitrous acid in environmental chambers, Int. J. Chem.
Kin., 16, 919–939, https://doi.org/10.1002/kin.550160712,
1984.
Platt, U. and Hönninger, G.: The role of halogen species in the
troposphere, Chemosphere, 52, 325–338, 2003.
Platt, U., Perner, D., and Paetz, H. W.: Simultaneous measurement of
atmospheric CH2O, O3, AND NO2 by differential optical
absorption, J. Geophys. Res., 84, 6329–6335,
https://doi.org/10.1029/JC084iC10p06329, 1979.
Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts Jr, J. N.:
Detection of NO3 in the polluted troposphere by differential optical
absorption, Geophys. Res. Lett., 7, 89–92, https://doi.org/10.1029/GL007i001p00089,
1980.
Porter, G. and Wright, F. J.: Studies of free radical reactivity by the methods of flash photolysis. The photochemical reaction between chlorine and oxygen, Discuss. Faraday Soc., 14, 23–34, https://doi.org/10.1039/DF9531400023, 1953.
Prather, M. J.: Lifetimes and eigenstates in atmospheric chemistry,
Geophys. Res. Lett., 21, 801–804, https://doi.org/10.1029/94GL00840, 1994.
Prather, M. J.: Time scales in atmospheric chemistry: Theory, GWPs for
CH4 and CO, and runaway growth, Geophys. Res. Lett., 23,
2597–2600, https://doi.org/10.1029/96GL02371, 1996.
Preining, O., and Davis, E. J.: History of Aerosol Science, Symposium on the
History of Aerosol Science, Vienna, Austria, 1999.
Prinn, R. G., Weiss, R. F., Miller, B. R., Huang, J., Alyea, F. N., Cunnold,
D. M., Fraser, P. J., Hartley, D. E., and Simmonds, P. G.: Atmospheric
trends and lifetime of CH3CCl3 and global OH concentrations,
Science, 269, 187–192, https://doi.org/10.1126/science.269.5221.187, 1995.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J.,
Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang,
R. H. J., Porter, L., and Miller, B. R.: Evidence for substantial variations
of atmospheric hydroxyl radicals in the past two decades, Science, 292,
1882–1888, https://doi.org/10.1126/science.1058673, 2001.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental characterization of global sources of atmospheric soil dust
identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
absorbing aerosol product, Rev. Geophys., 40, 1002,
https://doi.org/10.1029/2000RG000095, 2002.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via
oceanic phytoplankton sulphur emissions, Nature, 480, 51–56,
https://doi.org/10.1038/nature10580, 2011.
Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T.: Trace gas
trends and their potential role in climate change, J. Geophys. Res., 90, 5547–5566, https://doi.org/10.1029/JD090iD03p05547, 1985.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Atmosphere
– Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124,
https://doi.org/10.1126/science.1064034, 2001.
Rasmussen, R. and Went, F. W.: Volatile organic matter of plant origin in
the atmosphere, Science, 144, p. 566, https://doi.org/10.1126/science.144.3618.566-a, 1964.
Ravishankara, A. R.: Heterogeneous and multiphase chemistry in the
troposphere, Science, 276, 1058–1065, https://doi.org/10.1126/science.276.5315.1058, 1997.
Ravishankara, A. R.: Introduction: Atmospheric ChemistryLong-Term Issues,
Chem. Rev., 103, 4505–4508, https://doi.org/10.1021/cr020463i, 2003.
Ravishankara, A. R., Hancock, G., Kawasaki, M., and Matsumi, Y.:
Photochemistry of ozone: Surprises and recent lessons, Science, 280, 60–61,
https://doi.org/10.1126/science.280.5360.60, 1998.
Ravishankara, A. R., Dunlea, E. J., Blitz, M. A., Dillon, T. J., Heard, D.
E., Pilling, M. J., Strekowski, R. S., Nicovich, J. M., and Wine, P. H.:
Redetermination of the rate coefficient for the reaction of O(1D) with
N2, Geophys. Res. Lett., 29, 1745–1748,
https://doi.org/10.1029/2002GL014850, 2002.
Ravishankara, A. R., Rudich, Y., and Pyle, J. A.: Role of Chemistry in
Earth's Climate, Chem. Rev., 115, 3679–3681,
https://doi.org/10.1021/acs.chemrev.5b00226, 2015.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V.
E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C.,
Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and
Plane, J. M. C.: Extensive halogen-mediated ozone destruction over the
tropical Atlantic Ocean, Nature, 453, 1232–1235, 2008.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products,
and validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/JAS3385.1, 2005.
Reynolds, S. D., Roth, P. M., and Seinfeld, J. H.: Mathematical modeling of
photochemical air pollution – I: Formulation of the model, Atmos. Environ. (1967), 7, 1033–1061, https://doi.org/10.1016/0004-6981(73)90214-X, 1973.
Reynolds, S. D., Liu, M.-K., Hecht, T. A., Roth, P. M., and Seinfeld, J. H.:
Mathematical modeling of photochemical air pollution – III. Evaluation of
the model, Atmos. Environ. (1967), 8, 563–596, https://doi.org/10.1016/0004-6981(74)90143-7, 1974.
Richter, A., Burrows, J. P., Nuss, H., Granier, C., and Niemeier, U.:
Increase in tropospheric nitrogen dioxide over China observed from space,
Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
Robbin, M. L. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by
hydrogen peroxide at low pH, Atmos. Environ. (1967), 15, 1615–1621,
https://doi.org/10.1016/0004-6981(81)90146-3, 1981.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,
Science, 315, 1259–1262, https://doi.org/10.1126/science.1133061, 2007.
Roth, P. M., Roberts, P. J. W., Mei-Kao, L., Reynolds, S. D., and Seinfeld,
J. H.: Mathematical modeling of photochemical air pollution – II. A model
and inventory of pollutant emissions, Atmos. Environ. (1967), 8,
97–130, https://doi.org/10.1016/0004-6981(74)90023-7, 1974.
Sanadze, G. A.: The nature of gaseous substances emitted by leaves of
Robinia pseudoacacia, Soobshch Akad Nauk Gruz SSR, 19, 83–86, 1957.
Sanadze, G. A. and Kursanov, A. N.: Light and temperature curves of the
evolution of C5H8, Fiziol. Rast., 13, 458–461, 1966.
Sander, S. P., Friedl, R. R., and Yung, Y. L.: Rate of formation of the ClO
dimer in the polar stratosphere: Implications for ozone loss, Science, 245,
1095–1098, https://doi.org/10.1126/science.245.4922.1095, 1989.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Schroeder, W. H. and Urone, P.: Formation of nitrosyl chloride from salt
particles in air, Environ. Sci. Technol., 8, 756–758,
https://doi.org/10.1021/es60093a015, 1974.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd Edn., Wiley, 2006.
Seitzinger, S. P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P.,
Claussen, M., Erisman, J. W., Kiefer, T., Lancelot, C., Monks, P. S., Smyth,
K., Syvitski, J., and Uematsu, M.: International Geosphere–Biosphere
Programme and Earth system science: Three decades of co-evolution,
Anthropocene, 12, 3–16, https://doi.org/10.1016/j.ancene.2016.01.001, 2015.
Sharkey, T. D. and Monson, R. K.: Isoprene research – 60 years later, the
biology is still enigmatic, Plant Cell Environ., 40, 1671–1678,
https://doi.org/10.1111/pce.12930, 2017.
Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann,
M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes,
F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K.,
Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks,
K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.:
Simultaneously Mitigating Near-Term Climate Change and Improving Human
Health and Food Security, Science, 335, 183–189, https://doi.org/10.1126/science.1210026,
2012.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/s1352-2310(98)00345-8, 1999.
Sillman, S. and He, D.: Some theoretical results concerning O3-NOx-VOC
chemistry and NOx-VOC indicators, J. Geophys. Res.-Atmos., 107, 4659, https://doi.org/10.1029/2001JD001123, 2002.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Singer, B. C. and Harley, R. A.: A Fuel-Based Motor Vehicle Emission
Inventory, J. Air Waste Manag. Assoc., 46, 581–593,
https://doi.org/10.1080/10473289.1996.10467492, 1996.
Singh, H. B.: Preliminary estimation of average tropospheric HO
concentrations in the northern and southern hemispheres, Geophys. Res. Lett., 4, 453–456, https://doi.org/10.1029/GL004i010p00453, 1977.
Singh, H. B. and Hanst, P. L.: Peroxyacetyl nitrate (PAN) in the unpolluted
atmosphere: An important reservoir for nitrogen oxides, Geophys. Res. Lett., 8, 941–944, https://doi.org/10.1029/GL008i008p00941, 1981.
Sinha, M. P.: Laser-induced volatilization and ionization of microparticles,
Rev. Sci. Instr., 55, 886–891, https://doi.org/10.1063/1.1137851, 1984.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the
depletion of Antarctic ozone, Nature, 321, 755–758, https://doi.org/10.1038/321755a0, 1986.
Spicer, C. W., Chapman, E. G., Finlayson-Pitts, B. J., Plastridge, R. A.,
Hubbe, J. M., Fast, J. D., and Berkowitz, C. M.: Unexpectedly high
concentrations of molecular chlorine in coastal air, Nature, 394, 353–356,
https://doi.org/10.1038/28584, 1998.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.
Sportisse, B.: Fundamentals in Air Pollution, Springer, 293 pp., 2010.
Stelson, A. W., Friedlander, S. K., and Seinfeld, J. H.: A note on the
equilibrium relationship between ammonia and nitric acid and particulate
ammonium nitrate, Atmos. Environ. (1967), 13, 369–371,
https://doi.org/10.1016/0004-6981(79)90293-2, 1979.
Stelson, A. W. and Seinfeld, J. H.: Thermodynamic prediction of the water
activity, NH4NO3 dissociation constant, density and refractive
index for the NH4NO3-(NH4)2SO4-H2O system at
25 ∘C, Atmos. Environ. (1967), 16, 2507–2514,
https://doi.org/10.1016/0004-6981(82)90142-1, 1982.
Stern, A. C.: Air Pollution, 2nd Edn., Academic Press, New York, 1968.
Stevens, P. S., Mather, J. H., and Brune, W. H.: Measurement of tropospheric
OH and HO2 by laser-induced fluorescence at low pressure, J. Geophys. Res., 99, 3543–3557, https://doi.org/10.1029/93JD03342, 1994.
Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije,
T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N.,
Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent,
R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M.,
Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C.,
Lamarque, J. F., Lawrence, M. G., Montanaro, V., Muller, J. F., Pitari, G.,
Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G.,
Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.:
Multimodel ensemble simulations of present-day and near-future tropospheric
ozone, J. Geophys. Res.-Atmos., 111, D08301, https://doi.org/10.1029/2005jd006338, 2006.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
air quality modeling, J. Geophys. Res.-Atmos., 95,
16343–16367, https://doi.org/10.1029/JD095iD10p16343, 1990.
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism
for regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847–25879, https://doi.org/10.1029/97jd00849, 1997.
Stohl, A. and Trickl, T.: A text book example of long range transport:
simultaneous observation of ozone maxima of stratospheric and North American
origin in the FT over Europe, J. Geophys. Res., 104, 30445–430462, 1999.
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the
pathways and timescales of intercontinental air pollution transport, J. Geophys. Res.-Atmos., 107, 4684, https://doi.org/10.1029/2001JD001396, 2002.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere
exchange: A review, and what we have learned from STACCATO, J. Geophys. Res.-Atmos., 108, 8516, https://doi.org/10.1029/2002jd002490, 2003.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stolarski, R. S. and Cicerone, R. J.: Stratospheric Chlorine: a Possible
Sink for Ozone, Can. J. Chem., 52, 1610–1615,
https://doi.org/10.1139/v74-233, 1974.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer
Academic, Dordrecht, 1988.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L.,
Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J.
H.: Reactive intermediates revealed in secondary organic aerosol formation
from isoprene, P. Natl. Acad. Sci. USA, 107,
6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A.,
Grenfelt, P., Grinsven, H. v., and Grizzetti, B.: The European Nitrogen
Assessment: Sources, Effects and Policy Perspectives, Cambridge University
Press, Cambridge, 664 pp., 2011.
Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T.,
Johnson, J. E., Johnson, B. J., Oltmans, S. J., and Weller, R.: A tropical
atlantic paradox: Shipboard and satellite views of a tropospheric ozone
maximum and wave-one in January-February 1999, Geophys. Res. Lett.,
27, 3317–3320, https://doi.org/10.1029/1999GL011273, 2000.
Thompson, A. M., Witte, J. C., Oltmans, S. J., Schmidlin, F. J., Logan, J.
A., Fujiwara, M., Kirchhoff, V. W. J. H., Posny, F., Coetzee, G. J. R.,
Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J. P. F., and Kelder, H. M.:
Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical
ozone climatology 2. Tropospheric variability and the zonal wave-one,
J. Geophys. Res.-Atmos., 108, 8241, https://doi.org/10.1029/2002JD002241,
2003.
Thornton, J. and Abbatt, J. P. D.: Measurements of HO2 uptake to
aqueous aerosol: Mass accomodation coefficients and net reactive loss,
J. Geophys. Res.-Atmos., 110, 1-12,
https://doi.org/10.1029/2004JD005402, 2005.
Thouret, V., Marenco, A., Logan, J. A., Nédélec, P., and Grouhel,
C.: Comparisons of ozone measurements from the MOZAIC airborne program and
the ozone sounding network at eight locations, J. Geophys. Res.-Atmos., 103, 25695–25720, https://doi.org/10.1029/98JD02243, 1998.
Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F.: The Influence
of Light and Temperature on Isoprene Emission Rates from Live Oak,
Physiol. Plantarum, 47, 112–118, https://doi.org/10.1111/j.1399-3054.1979.tb03200.x, 1979.
Tolbert, M. A., Rossi, M. J., Malhotra, R., and Golden, D. M.: Reaction of
chlorine nitrate with hydrogen chloride and water at antarctic stratospheric
temperatures, Science, 238, 1258–1260, https://doi.org/10.1126/science.238.4831.1258, 1987.
Troe, J.: Predictive possibilities of unimolecular rate theory, J. Phys. Chem., 83, 114–126, https://doi.org/10.1021/j100464a019, 1979.
Troe, J.: The Polanyi lecture. The colourful world of complex-forming
bimolecular reactions, Journal of the Chemical Society, Farad.
Trans., 90, 2303–2317, https://doi.org/10.1039/FT9949002303, 1994.
Trolier, M., Mauldin Iii, R. L., and Ravishankara, A. R.: Rate coefficient
for the termolecular channel of the self-reaction of ClO, J. Phys. Chem., 94, 4896–4907, https://doi.org/10.1021/j100375a027, 1990.
Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C.:
Nuclear winter: Global consequences of multiple nuclear explosions, Science,
222, 1283–1292, https://doi.org/10.1126/science.222.4630.1283, 1983.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.
(1967), 8, 1251-1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1152, 1977.
Tyndall, J.: The Bakerian Lecture: On the Absorption and Radiation of Heat
by Gases and Vapours, and on the Physical Connexion of Radiation,
Absorption, and Conduction, Philos. T. Ro. Soc.
Lond., 151, 1–36, 1861.
Urone, P. and Schroeder, W. H.: SO2 in the atmosphere: A wealth of
monitoring data, but few reaction rate studies, Environ. Sci. Technol., 3, 436–445, https://doi.org/10.1021/es60028a006, 1969.
Vaghjiani, G. L. and Ravishankara, A. R.: New measurement of the rate
coefficient for the reaction of OH with methane, Nature, 350, 406–409,
https://doi.org/10.1038/350406a0, 1991.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., Defries, R. S., Jin, Y., and Van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem.
Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Donkelaar, A., Martin, R. V., and Park, R. J.: Estimating ground-level
PM2.5 using aerosol optical depth determined from satellite remote sensing,
J. Geophys. Res.-Atmos., 111, D21201, https://doi.org/10.1029/2005jd006996,
2006.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U.,
Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of
biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release
from sea-salt aerosol in the remote marine boundary layer, Nature, 383,
327–330, 1996.
Volz, A. and Kley, D.: Evaluation of the Montsouris Series of Ozone
Measurements Made in the 19th-Century, Nature, 332, 240–242, 1988.
von Glasow, R.: Pollution meets sea salt, Nat. Geosci., 1, 292,
https://doi.org/10.1038/ngeo192, 2008.
von Glasow, R. and Crutzen, P. J.: Tropospheric halogen chemistry in:
Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K.,
Elsevier-Pergamon, Oxford, 1–67, 2007.
von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster,
P., Fowler, D., Lauer, A., Morgan, W. T., Paasonen, P., Righi, M.,
Sindelarova, K., and Sutton, M. A.: Chemistry and the Linkages between Air
Quality and Climate Change, Chem. Rev., 115, 3856–3897,
https://doi.org/10.1021/acs.chemrev.5b00089, 2015.
Wang, C. C., Davis, L. I., Wu, C. H., Japar, S., Niki, H., and Weinstock,
B.: Hydroxyl Radical Concentrations Measured in Ambient Air, Science, 189,
797–800, https://doi.org/10.1126/science.189.4205.797, 1975.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived
aerosol optical thickness and PM2.5 mass: Implications for air quality
studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Wayne, R. P.: Chemistry of Atmospheres, 3rd Edn., Oxford University Press, Oxford, 2000.
Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-mas, C. E.,
Hjorth, J., LeBras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli,
G., and Sidebottom, H.: The Nitrate Radical – Physics, Chemistry, and the
Atmosphere, Atmos. Environ. Pt. A, 25, 1–203, 1991.
Weinstock, B.: Carbon monoxide: Residence time in the atmosphere, Science,
166, 224–225, https://doi.org/10.1126/science.166.3902.224, 1969.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J.,
Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of
Criegee intermediate (CH2OO) formed by reaction of CH2I with
O2, Science, 335, 204–207, 2012.
Went, F. W.: Blue Hazes in the Atmosphere, Nature, 187, 641–643,
https://doi.org/10.1038/187641a0, 1960.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ.
(1967), 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Whitby, K. T.: The physical characteristics of sulfur aerosols, Atmos. Environ. (1967), 12, 135–159, https://doi.org/10.1016/0004-6981(78)90196-8, 1978.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in-
and below-cloud photolysis in tropospheric chemical models, J.
Atmos. Chem., 37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000.
Williams, M.: Air pollution and policy – 1952–2002, Sci. Total
Environ., 334/335, 15–20, https://doi.org/10.1016/j.scitotenv.2004.04.026, 2004.
WMO: WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023, WMO, Geneva, 2017.
Yienger, J. J. and Levy II, H.: Empirical model of global soil-biogenic
NOχ emissions, J. Geophys. Res.-Atmos., 100,
11447–11464, https://doi.org/10.1029/95jd00370, 1995.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Suni, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, https://doi.org/10.1029/ 2007GL029979, 2007.
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current
status, and outlook, Atmos. Chem. Phys., 8, 2895–2932,
https://doi.org/10.5194/acp-8-2895-2008, 2008.
Short summary
Which published papers have transformed our understanding of the chemical processes in the troposphere and shaped the field of atmospheric chemistry? We explore how these papers have shaped the development of the field of atmospheric chemistry and identify the major landmarks in the field of atmospheric chemistry through the lens of those papers' impact on science, legislation and environmental events.
Which published papers have transformed our understanding of the chemical processes in the...
Altmetrics
Final-revised paper
Preprint