Articles | Volume 21, issue 17
https://doi.org/10.5194/acp-21-12909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-12909-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opinion: Papers that shaped tropospheric chemistry
School of Chemistry, University of Leicester, University Rd., Leicester, LE1
7RH, UK
A. R. Ravishankara
Departments of Chemistry and Atmospheric Science, Colorado State University,
Fort Collins, Colorado 80523, USA
Erika von Schneidemesser
Institute for Advanced Sustainability Studies, Berlinerstrasse 130, 14467
Potsdam, Germany
Roberto Sommariva
School of Chemistry, University of Leicester, University Rd., Leicester, LE1
7RH, UK
Related authors
Jasdeep S. Anand and Paul S. Monks
Atmos. Chem. Phys., 17, 8211–8230, https://doi.org/10.5194/acp-17-8211-2017, https://doi.org/10.5194/acp-17-8211-2017, 2017
Short summary
Short summary
Previous investigations into Chinese urban air quality have been hampered by a lack of available data. In this work we present a new statistical modelling technique, in which sparse ground-based measurements of nitrogen dioxide (NO2) are combined with satellite data and other parameters (e.g. road networks) to create high-resolution maps of daily surface NO2 concentrations over Hong Kong. These maps can be used to estimate population exposure, and to identify at-risk groups.
This article is included in the Encyclopedia of Geosciences
Ajoke R. Onojeghuo, Heiko Balzter, and Paul S. Monks
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1128, https://doi.org/10.5194/acp-2016-1128, 2017
Revised manuscript not accepted
Short summary
Short summary
This research focused on the identifying seasonality and linear trends of NO2 and soil moisture across West Africa using satellite data. A strong effect of soil moisture on tropospheric NO2 variations in arid steppe and desert zones has been shown. Recent increasing trends in NO2 over arid steppe/desert areas are more likely connected to fertilizer induced afforestation from the Sahel green wall initiative than soil moisture variations.
This article is included in the Encyclopedia of Geosciences
Hannah Sonderfeld, Iain R. White, Iain C. A. Goodall, James R. Hopkins, Alastair C. Lewis, Ralf Koppmann, and Paul S. Monks
Atmos. Chem. Phys., 16, 6303–6318, https://doi.org/10.5194/acp-16-6303-2016, https://doi.org/10.5194/acp-16-6303-2016, 2016
Short summary
Short summary
Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed "missing" OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. The effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated.
This article is included in the Encyclopedia of Geosciences
J. P. Lawrence, J. S. Anand, J. D. Vande Hey, J. White, R. R. Leigh, P. S. Monks, and R. J. Leigh
Atmos. Meas. Tech., 8, 4735–4754, https://doi.org/10.5194/amt-8-4735-2015, https://doi.org/10.5194/amt-8-4735-2015, 2015
Short summary
Short summary
An airborne spectrometer was used to produce a high spatial resolution (80 x 20 m) map of nitrogen dioxide over Leicester City (UK) and the surrounding countryside. Clear local hotspots due to traffic, industrial activity and power generation are observable, as are comparative reductions over parks and rural areas. A positive temporal gradient was also observed over the 2-hour flight, possibly indicating traffic build-up over time.
This article is included in the Encyclopedia of Geosciences
P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams
Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, https://doi.org/10.5194/acp-15-8889-2015, 2015
Short summary
Short summary
Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, and yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models.
This article is included in the Encyclopedia of Geosciences
K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, and A. R. MacKenzie
Atmos. Chem. Phys., 15, 8077–8100, https://doi.org/10.5194/acp-15-8077-2015, https://doi.org/10.5194/acp-15-8077-2015, 2015
Short summary
Short summary
This paper describes a new ensemble methodology for the statistical analysis of atmospheric gas- & particle-phase composition data sets. The methodology reduces the huge amount of data derived from many chamber experiments to show that organic reactivity & resultant particle formation can be mapped into unique clusters in statistical space. The model generated is used to map more realistic plant mesocosm oxidation data, the projection of which gives insight into reactive pathways & precursors.
This article is included in the Encyclopedia of Geosciences
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
This article is included in the Encyclopedia of Geosciences
J. S. Anand, P. S. Monks, and R. J. Leigh
Atmos. Meas. Tech., 8, 1519–1535, https://doi.org/10.5194/amt-8-1519-2015, https://doi.org/10.5194/amt-8-1519-2015, 2015
Short summary
Short summary
A new offline technique for retrieving tropospheric NO2 slant columns from space over urban regions is proposed in this work. An Earth radiance reference measurement from a remote unpolluted region is used instead of the standard solar irradiance measurement used by operational retrieval algorithms. Testing with spectra measured by the Ozone Monitoring Instrument (OMI) shows that the technique largely removes the presence of stratospheric NO2 and also greatly suppresses instrumental biases.
This article is included in the Encyclopedia of Geosciences
K. P. Wyche, A. C. Ryan, C. N. Hewitt, M. R. Alfarra, G. McFiggans, T. Carr, P. S. Monks, K. L. Smallbone, G. Capes, J. F. Hamilton, T. A. M. Pugh, and A. R. MacKenzie
Atmos. Chem. Phys., 14, 12781–12801, https://doi.org/10.5194/acp-14-12781-2014, https://doi.org/10.5194/acp-14-12781-2014, 2014
E. von Schneidemesser, M. Vieno, and P. S. Monks
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-1287-2014, https://doi.org/10.5194/acpd-14-1287-2014, 2014
Revised manuscript not accepted
Matthew James Rowlinson, Lucy J. Carpenter, Mat J. Evans, James D. Lee, Simone Andersen, Tomas Sherwen, Anna B. Callaghan, Roberto Sommariva, William Bloss, Siqi Hou, Leigh R. Crilley, Klaus Pfeilsticker, Benjamin Weyland, Thomas B. Ryerson, Patrick R. Veres, Pedro Campuzano-Jost, Hongyu Guo, Benjamin A. Nault, Jose L. Jimenez, and Khanneh Wadinga Fomba
EGUsphere, https://doi.org/10.5194/egusphere-2025-830, https://doi.org/10.5194/egusphere-2025-830, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
HONO is key to tropospheric chemistry. Observations show high HONO concentrations in remote air, possibly explained by nitrate aerosol photolysis. We use observational data to parameterize nitrate photolysis, evaluating simulated HONO against observations from multiple sources. We show improved agreement with observed HONO, but large overestimates in NOx and O3, beyond observational constraints. This implies a large uncertainty in the NOx budget and our understanding of atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Yugo Kanaya, Roberto Sommariva, Alfonso Saiz-Lopez, Andrea Mazzeo, Theodore K. Koenig, Kaori Kawana, James E. Johnson, Aurélie Colomb, Pierre Tulet, Suzie Molloy, Ian E. Galbally, Rainer Volkamer, Anoop Mahajan, John W. Halfacre, Paul B. Shepson, Julia Schmale, Hélène Angot, Byron Blomquist, Matthew D. Shupe, Detlev Helmig, Junsu Gil, Meehye Lee, Sean C. Coburn, Ivan Ortega, Gao Chen, James Lee, Kenneth C. Aikin, David D. Parrish, John S. Holloway, Thomas B. Ryerson, Ilana B. Pollack, Eric J. Williams, Brian M. Lerner, Andrew J. Weinheimer, Teresa Campos, Frank M. Flocke, J. Ryan Spackman, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Ralf M. Staebler, Amir A. Aliabadi, Wanmin Gong, Roeland Van Malderen, Anne M. Thompson, Ryan M. Stauffer, Debra E. Kollonige, Juan Carlos Gómez Martin, Masatomo Fujiwara, Katie Read, Matthew Rowlinson, Keiichi Sato, Junichi Kurokawa, Yoko Iwamoto, Fumikazu Taketani, Hisahiro Takashima, Monica Navarro Comas, Marios Panagi, and Martin G. Schultz
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-566, https://doi.org/10.5194/essd-2024-566, 2025
Preprint under review for ESSD
Short summary
Short summary
The first comprehensive dataset of tropospheric ozone over oceans/polar regions is presented, including 77 ship/buoy and 48 aircraft campaign observations (1977–2022, 0–5000 m altitude), supplemented by ozonesonde and surface data. Air masses isolated from land for 72+ hours are systematically selected as essentially oceanic. Among the 11 global regions, they show daytime decreases of 10–16% in the tropics, while near-zero depletions are rare, unlike in the Arctic, implying different mechanisms.
This article is included in the Encyclopedia of Geosciences
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alexandru Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
EGUsphere, https://doi.org/10.5194/egusphere-2024-3750, https://doi.org/10.5194/egusphere-2024-3750, 2025
Short summary
Short summary
This study showed that the springtime O3 depletion plays a critical role in driving the surface O3 seasonal cycle in Central Arctic. The O3 depletion events, while occurring most notably within the lowest few hundred metres above the Arctic Ocean, can induce a 5–7 % of loss in the pan-Arctic tropospheric O3 burden during springtime. The study also found an enhancement in O3 and NOy (mostly PAN) concentrations in the Arctic due to northern boreal wildfires, particularly at altitudes.
This article is included in the Encyclopedia of Geosciences
Sebastian H. M. Hickman, Makoto Kelp, Paul T. Griffiths, Kelsey Doerksen, Kazuyuki Miyazaki, Elyse A. Pennington, Gerbrand Koren, Fernando Iglesias-Suarez, Martin G. Schultz, Kai-Lan Chang, Owen R. Cooper, Alexander T. Archibald, Roberto Sommariva, David Carlson, Hantao Wang, J. Jason West, and Zhenze Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3739, https://doi.org/10.5194/egusphere-2024-3739, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Machine learning is being more widely used across environmental and climate science. This work reviews the use of machine learning in tropospheric ozone research, focusing on three main application areas in which significant progress has been made. Common challenges in using machine learning across the three areas are highlighted, and future directions for the field are indicated.
This article is included in the Encyclopedia of Geosciences
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
This article is included in the Encyclopedia of Geosciences
Marc von Hobe, Domenico Taraborrelli, Sascha Alber, Birger Bohn, Hans-Peter Dorn, Hendrik Fuchs, Yun Li, Chenxi Qiu, Franz Rohrer, Roberto Sommariva, Fred Stroh, Zhaofeng Tan, Sergej Wedel, and Anna Novelli
Atmos. Chem. Phys., 23, 10609–10623, https://doi.org/10.5194/acp-23-10609-2023, https://doi.org/10.5194/acp-23-10609-2023, 2023
Short summary
Short summary
The trace gas carbonyl sulfide (OCS) transports sulfur from the troposphere to the stratosphere, where sulfate aerosols are formed that influence climate and stratospheric chemistry. An uncertain OCS source in the troposphere is chemical production form dimethyl sulfide (DMS), a gas released in large quantities from the oceans. We carried out experiments in a large atmospheric simulation chamber to further elucidate the chemical mechanism of OCS production from DMS.
This article is included in the Encyclopedia of Geosciences
Jonathan P. D. Abbatt and A. R. Ravishankara
Atmos. Chem. Phys., 23, 9765–9785, https://doi.org/10.5194/acp-23-9765-2023, https://doi.org/10.5194/acp-23-9765-2023, 2023
Short summary
Short summary
With important climate and air quality impacts, atmospheric multiphase chemistry involves gas interactions with aerosol particles and cloud droplets. We summarize the status of the field and discuss potential directions for future growth. We highlight the importance of a molecular-level understanding of the chemistry, along with atmospheric field studies and modeling, and emphasize the necessity for atmospheric multiphase chemists to interact widely with scientists from neighboring disciplines.
This article is included in the Encyclopedia of Geosciences
Changmin Cho, Hendrik Fuchs, Andreas Hofzumahaus, Frank Holland, William J. Bloss, Birger Bohn, Hans-Peter Dorn, Marvin Glowania, Thorsten Hohaus, Lu Liu, Paul S. Monks, Doreen Niether, Franz Rohrer, Roberto Sommariva, Zhaofeng Tan, Ralf Tillmann, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Chem. Phys., 23, 2003–2033, https://doi.org/10.5194/acp-23-2003-2023, https://doi.org/10.5194/acp-23-2003-2023, 2023
Short summary
Short summary
With this study, we investigated the processes leading to the formation, destruction, and recycling of radicals for four seasons in a rural environment. Complete knowledge of their chemistry is needed if we are to predict the formation of secondary pollutants from primary emissions. The results highlight a still incomplete understanding of the paths leading to the formation of the OH radical, which has been observed in several other environments as well and needs to be further investigated.
This article is included in the Encyclopedia of Geosciences
Zhaofeng Tan, Hendrik Fuchs, Andreas Hofzumahaus, William J. Bloss, Birger Bohn, Changmin Cho, Thorsten Hohaus, Frank Holland, Chandrakiran Lakshmisha, Lu Liu, Paul S. Monks, Anna Novelli, Doreen Niether, Franz Rohrer, Ralf Tillmann, Thalassa S. E. Valkenburg, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Roberto Sommariva
Atmos. Chem. Phys., 22, 13137–13152, https://doi.org/10.5194/acp-22-13137-2022, https://doi.org/10.5194/acp-22-13137-2022, 2022
Short summary
Short summary
During the 2019 JULIAC campaign, ClNO2 was measured at a rural site in Germany in different seasons. The highest ClNO2 level was 1.6 ppbv in September. ClNO2 production was more sensitive to the availability of NO2 than O3. The average ClNO2 production efficiency was up to 18 % in February and September and down to 3 % in December. These numbers are at the high end of the values reported in the literature, indicating the importance of ClNO2 chemistry in rural environments in midwestern Europe.
This article is included in the Encyclopedia of Geosciences
Marios Panagi, Roberto Sommariva, Zoë L. Fleming, Paul S. Monks, Gongda Lu, Eloise A. Marais, James R. Hopkins, Alastair C. Lewis, Qiang Zhang, James D. Lee, Freya A. Squires, Lisa K. Whalley, Eloise J. Slater, Dwayne E. Heard, Robert Woodward-Massey, Chunxiang Ye, and Joshua D. Vande Hey
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-379, https://doi.org/10.5194/acp-2022-379, 2022
Revised manuscript not accepted
Short summary
Short summary
A dispersion model and a box model were combined to investigate the evolution of VOCs in Beijing once they are emitted from anthropogenic sources. It was determined that during the winter time the VOC concentrations in Beijing are driven predominantly by sources within Beijing and by a combination of transport and chemistry during the summer. Furthermore, the results in the paper highlight the need for a season specific policy.
This article is included in the Encyclopedia of Geosciences
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
This article is included in the Encyclopedia of Geosciences
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021, https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
Short summary
The last 2 decades have seen substantial technological advances in the development of low-cost air pollution instruments. This study introduces a seven-step methodology for the field calibration of low-cost sensors with user-friendly guidelines, open-access code, and a discussion of common barriers. Our goal with this work is to push for standardized reporting of methods, make critical data processing steps clear for users, and encourage responsible use in the scientific community and beyond.
This article is included in the Encyclopedia of Geosciences
Liji M. David, Mary Barth, Lena Höglund-Isaksson, Pallav Purohit, Guus J. M. Velders, Sam Glaser, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 14833–14849, https://doi.org/10.5194/acp-21-14833-2021, https://doi.org/10.5194/acp-21-14833-2021, 2021
Short summary
Short summary
We calculated the expected concentrations of trifluoroacetic acid (TFA) from the atmospheric breakdown of HFO-1234yf (CF3CF=CH2), a substitute for global warming hydrofluorocarbons, emitted now and in the future by India, China, and the Middle East. We used two chemical transport models. We conclude that the projected emissions through 2040 would not be detrimental, given the current knowledge of the effects of TFA on humans and ecosystems.
This article is included in the Encyclopedia of Geosciences
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
This article is included in the Encyclopedia of Geosciences
Yangang Ren, Li Zhou, Abdelwahid Mellouki, Véronique Daële, Mahmoud Idir, Steven S. Brown, Branko Ruscic, Robert S. Paton, Max R. McGillen, and A. R. Ravishankara
Atmos. Chem. Phys., 21, 13537–13551, https://doi.org/10.5194/acp-21-13537-2021, https://doi.org/10.5194/acp-21-13537-2021, 2021
Short summary
Short summary
Aromatic aldehydes are a family of compounds emitted into the atmosphere from both anthropogenic and biogenic sources that are formed from the degradation of aromatic hydrocarbons. Their atmospheric degradation may impact air quality. We report on their atmospheric degradation through reaction with NO3, which is useful to estimate their atmospheric lifetimes. We have also attempted to elucidate the mechanism of these reactions via studies of isotopic substitution and quantum chemistry.
This article is included in the Encyclopedia of Geosciences
Roberto Sommariva, Louisa J. Kramer, Leigh R. Crilley, Mohammed S. Alam, and William J. Bloss
Atmos. Meas. Tech., 13, 1655–1670, https://doi.org/10.5194/amt-13-1655-2020, https://doi.org/10.5194/amt-13-1655-2020, 2020
Short summary
Short summary
Ozone is a key atmospheric pollutant formed through chemical processing of natural and anthropogenic emissions and removed by reaction with organic compounds emitted by plants. We describe a new instrument – the
This article is included in the Encyclopedia of Geosciences
Total Ozone Reactivity Systemor TORS – that measures the total loss of ozone in the troposphere. The objective of the TORS instrument is to provide an estimate of the organic compounds emitted by plants which are not measured and thus to improve our understanding of the ozone budget.
Roberto Sommariva, Sam Cox, Chris Martin, Kasia Borońska, Jenny Young, Peter K. Jimack, Michael J. Pilling, Vasileios N. Matthaios, Beth S. Nelson, Mike J. Newland, Marios Panagi, William J. Bloss, Paul S. Monks, and Andrew R. Rickard
Geosci. Model Dev., 13, 169–183, https://doi.org/10.5194/gmd-13-169-2020, https://doi.org/10.5194/gmd-13-169-2020, 2020
Short summary
Short summary
This paper presents the AtChem software, which can be used to build box models for atmospheric chemistry studies. The software is designed to facilitate the use of one of the most important chemical mechanisms used by atmospheric scientists, the Master Chemical Mechanism. AtChem exists in two versions: an on-line application for laboratory studies and educational or outreach activities and an offline version for more complex models and batch simulations. AtChem is open source under MIT License.
This article is included in the Encyclopedia of Geosciences
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Erika von Schneidemesser, Boris Bonn, Tim M. Butler, Christian Ehlers, Holger Gerwig, Hannele Hakola, Heidi Hellén, Andreas Kerschbaumer, Dieter Klemp, Claudia Kofahl, Jürgen Kura, Anja Lüdecke, Rainer Nothard, Axel Pietsch, Jörn Quedenau, Klaus Schäfer, James J. Schauer, Ashish Singh, Ana-Maria Villalobos, Matthias Wiegner, and Mark G. Lawrence
Atmos. Chem. Phys., 18, 8621–8645, https://doi.org/10.5194/acp-18-8621-2018, https://doi.org/10.5194/acp-18-8621-2018, 2018
Short summary
Short summary
This paper provides an overview of the measurements done at an urban background site in Berlin from June-August of 2014. Results show that natural source contributions to ozone and particulate matter (PM) air pollutants are substantial. Large contributions of secondary aerosols formed in the atmosphere to PM10 concentrations were quantified. An analysis of the sources also identified contributions to PM from plant-based sources, vehicles, and a small contribution from wood burning.
This article is included in the Encyclopedia of Geosciences
Friderike Kuik, Andreas Kerschbaumer, Axel Lauer, Aurelia Lupascu, Erika von Schneidemesser, and Tim M. Butler
Atmos. Chem. Phys., 18, 8203–8225, https://doi.org/10.5194/acp-18-8203-2018, https://doi.org/10.5194/acp-18-8203-2018, 2018
Short summary
Short summary
Modelled NOx concentrations are often underestimated compared to observations, and measurement studies show that reported NOx emissions in urban areas are often too low when the contribution from traffic is largest. This modelling study quantifies the underestimation of traffic NOx emissions in the Berlin–Brandenburg and finds that they are underestimated by ca. 50 % in the core urban area. More research is needed in order to more accurately understand real-world NOx emissions from traffic.
This article is included in the Encyclopedia of Geosciences
Christopher S. Malley, Erika von Schneidemesser, Sarah Moller, Christine F. Braban, W. Kevin Hicks, and Mathew R. Heal
Atmos. Chem. Phys., 18, 3563–3587, https://doi.org/10.5194/acp-18-3563-2018, https://doi.org/10.5194/acp-18-3563-2018, 2018
Short summary
Short summary
This study quantifies the contribution of hourly nitrogen dioxide (NO2) variation to annual NO2 concentrations at > 2500 sites across Europe. Sites with distinct monthly, hour of day, and hourly NO2 contributions to annual NO2 were not grouped into specific European regions. Within relatively small areas there were sites with similar annual NO2 but with differences in these contributions. Therefore, measures implemented to reduce annual NO2 in one location may not be as effective in others.
This article is included in the Encyclopedia of Geosciences
Alexander Geiß, Matthias Wiegner, Boris Bonn, Klaus Schäfer, Renate Forkel, Erika von Schneidemesser, Christoph Münkel, Ka Lok Chan, and Rainer Nothard
Atmos. Meas. Tech., 10, 2969–2988, https://doi.org/10.5194/amt-10-2969-2017, https://doi.org/10.5194/amt-10-2969-2017, 2017
Short summary
Short summary
Based on measurements with a ceilometer and from an air quality network, the relationship between the mixing layer height (MLH) and near surface concentrations of pollutants was investigated for summer 2014 in Berlin. It was found that the heterogeneity of the concentrations exceeds the differences due to different MLH retrievals. In particular for PM10 it seems to be unrealistic to find correlations between MLH and concentrations representative for an entire metropolitan area in flat terrain.
This article is included in the Encyclopedia of Geosciences
Jasdeep S. Anand and Paul S. Monks
Atmos. Chem. Phys., 17, 8211–8230, https://doi.org/10.5194/acp-17-8211-2017, https://doi.org/10.5194/acp-17-8211-2017, 2017
Short summary
Short summary
Previous investigations into Chinese urban air quality have been hampered by a lack of available data. In this work we present a new statistical modelling technique, in which sparse ground-based measurements of nitrogen dioxide (NO2) are combined with satellite data and other parameters (e.g. road networks) to create high-resolution maps of daily surface NO2 concentrations over Hong Kong. These maps can be used to estimate population exposure, and to identify at-risk groups.
This article is included in the Encyclopedia of Geosciences
Ajoke R. Onojeghuo, Heiko Balzter, and Paul S. Monks
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1128, https://doi.org/10.5194/acp-2016-1128, 2017
Revised manuscript not accepted
Short summary
Short summary
This research focused on the identifying seasonality and linear trends of NO2 and soil moisture across West Africa using satellite data. A strong effect of soil moisture on tropospheric NO2 variations in arid steppe and desert zones has been shown. Recent increasing trends in NO2 over arid steppe/desert areas are more likely connected to fertilizer induced afforestation from the Sahel green wall initiative than soil moisture variations.
This article is included in the Encyclopedia of Geosciences
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
This article is included in the Encyclopedia of Geosciences
Boris Bonn, Erika von Schneidemesser, Dorota Andrich, Jörn Quedenau, Holger Gerwig, Anja Lüdecke, Jürgen Kura, Axel Pietsch, Christian Ehlers, Dieter Klemp, Claudia Kofahl, Rainer Nothard, Andreas Kerschbaumer, Wolfgang Junkermann, Rüdiger Grote, Tobias Pohl, Konradin Weber, Birgit Lode, Philipp Schönberger, Galina Churkina, Tim M. Butler, and Mark G. Lawrence
Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, https://doi.org/10.5194/acp-16-7785-2016, 2016
Short summary
Short summary
The distribution of air pollutants (gases and particles) have been investigated in different environments in Potsdam, Germany. Remarkable variations of the pollutants have been observed for distances of tens of meters by bicycles, vans and aircraft. Vegetated areas caused reductions depending on the pollutants, the vegetation type and dimensions. Our measurements show the pollutants to be of predominantly local origin, resulting in a huge challenge for common models to resolve.
This article is included in the Encyclopedia of Geosciences
Hannah Sonderfeld, Iain R. White, Iain C. A. Goodall, James R. Hopkins, Alastair C. Lewis, Ralf Koppmann, and Paul S. Monks
Atmos. Chem. Phys., 16, 6303–6318, https://doi.org/10.5194/acp-16-6303-2016, https://doi.org/10.5194/acp-16-6303-2016, 2016
Short summary
Short summary
Unknown sinks of OH and oxidation processes in the atmosphere have been attributed to what has been termed "missing" OH reactivity. Often overlooked are the differences in timescales over which the diverse measurement techniques operate. The effect of the sampling time and thus the contribution of unmeasured VOC variability on OH reactivity is investigated.
This article is included in the Encyclopedia of Geosciences
J. P. Lawrence, J. S. Anand, J. D. Vande Hey, J. White, R. R. Leigh, P. S. Monks, and R. J. Leigh
Atmos. Meas. Tech., 8, 4735–4754, https://doi.org/10.5194/amt-8-4735-2015, https://doi.org/10.5194/amt-8-4735-2015, 2015
Short summary
Short summary
An airborne spectrometer was used to produce a high spatial resolution (80 x 20 m) map of nitrogen dioxide over Leicester City (UK) and the surrounding countryside. Clear local hotspots due to traffic, industrial activity and power generation are observable, as are comparative reductions over parks and rural areas. A positive temporal gradient was also observed over the 2-hour flight, possibly indicating traffic build-up over time.
This article is included in the Encyclopedia of Geosciences
P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams
Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, https://doi.org/10.5194/acp-15-8889-2015, 2015
Short summary
Short summary
Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, and yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models.
This article is included in the Encyclopedia of Geosciences
K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, and A. R. MacKenzie
Atmos. Chem. Phys., 15, 8077–8100, https://doi.org/10.5194/acp-15-8077-2015, https://doi.org/10.5194/acp-15-8077-2015, 2015
Short summary
Short summary
This paper describes a new ensemble methodology for the statistical analysis of atmospheric gas- & particle-phase composition data sets. The methodology reduces the huge amount of data derived from many chamber experiments to show that organic reactivity & resultant particle formation can be mapped into unique clusters in statistical space. The model generated is used to map more realistic plant mesocosm oxidation data, the projection of which gives insight into reactive pathways & precursors.
This article is included in the Encyclopedia of Geosciences
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
This article is included in the Encyclopedia of Geosciences
J. S. Anand, P. S. Monks, and R. J. Leigh
Atmos. Meas. Tech., 8, 1519–1535, https://doi.org/10.5194/amt-8-1519-2015, https://doi.org/10.5194/amt-8-1519-2015, 2015
Short summary
Short summary
A new offline technique for retrieving tropospheric NO2 slant columns from space over urban regions is proposed in this work. An Earth radiance reference measurement from a remote unpolluted region is used instead of the standard solar irradiance measurement used by operational retrieval algorithms. Testing with spectra measured by the Ozone Monitoring Instrument (OMI) shows that the technique largely removes the presence of stratospheric NO2 and also greatly suppresses instrumental biases.
This article is included in the Encyclopedia of Geosciences
K. P. Wyche, A. C. Ryan, C. N. Hewitt, M. R. Alfarra, G. McFiggans, T. Carr, P. S. Monks, K. L. Smallbone, G. Capes, J. F. Hamilton, T. A. M. Pugh, and A. R. MacKenzie
Atmos. Chem. Phys., 14, 12781–12801, https://doi.org/10.5194/acp-14-12781-2014, https://doi.org/10.5194/acp-14-12781-2014, 2014
E. von Schneidemesser, M. Vieno, and P. S. Monks
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-1287-2014, https://doi.org/10.5194/acpd-14-1287-2014, 2014
Revised manuscript not accepted
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles
Cloud processing of dimethyl sulfide (DMS) oxidation products limits sulfur dioxide (SO2) and carbonyl sulfide (OCS) production in the eastern North Atlantic marine boundary layer
Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: insights from high-resolution measurements and modeling
Measurement report: Exploring the variations in ambient BTEX in urban Europe and their environmental health implications
Seasonal air concentration variability, gas–particle partitioning, precipitation scavenging, and air–water equilibrium of organophosphate esters in southern Canada
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Marine emissions and trade winds control the atmospheric nitrous oxide in the Galapagos Islands
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Short lifetimes of organic nitrates in a sub-urban temperate forest indicate efficient assimilation of reactive nitrogen by the biosphere
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
The impact of organic nitrates on summer ozone formation in Shanghai, China
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Mechanistic insights into chloroacetic acid production from atmospheric multiphase VOC-chlorine chemistry
Differences in key volatile organic compound species in ozone formation between their initial and measured concentrations
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: Ground-based observations, TROPOMI data, inventory data and inversions
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Accurate Elucidation of Oxidation Under Heavy Ozone Pollution: A Full Suite of Radical Measurement In the Chemical-complex Atmosphere
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Measurement report: TURBAN observation campaign combining street-level low-cost air quality sensors and meteorological profile measurements in Prague
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025, https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary
Short summary
We considered two potential influencing factors of heavy-duty diesel vehicle emissions that are rarely mentioned in the literature: cumulative mileage and ambient temperatures. The results suggest that prolonged use of heavy-duty diesel vehicles and low ambient temperatures leads to reduced engine combustion efficiency, which in turn increases tailpipe emissions significantly.
This article is included in the Encyclopedia of Geosciences
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025, https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
Short summary
As a key source of hydroxyl (OH) radical, nitrous acid (HONO) has attracted much attention for its important role in the atmospheric oxidant capacity (AOC) increase. In this study, we made a comparison of the ambient levels, variation patterns, sources, and formation pathway in the warm season on the basis of continuous intensive observations at an urban site of Beijing. This work highlights the importance of HONO for the AOC in the warm season.
This article is included in the Encyclopedia of Geosciences
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
This article is included in the Encyclopedia of Geosciences
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025, https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary
Short summary
The 18O/16O ratio of atmospheric oxygen, δatm(18O), is higher than that of ocean water due to isotopic effects during biospheric activities. This is known as the Dole–Morita effect, and its millennial-scale variations are recorded in ice cores. However, small variations of δatm(18O) in the present day have never been detected so far. This paper presents the first observations of diurnal, seasonal, and secular variations in δatm(18O) and applies them to evaluate oxygen, carbon, and water cycles.
This article is included in the Encyclopedia of Geosciences
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Shengqian Zhou, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
Atmos. Chem. Phys., 25, 1931–1947, https://doi.org/10.5194/acp-25-1931-2025, https://doi.org/10.5194/acp-25-1931-2025, 2025
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the eastern North Atlantic. We use an observationally constrained box model to show that cloud loss is the dominant sink of HPMTF in this region over 6 weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
This article is included in the Encyclopedia of Geosciences
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025, https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Short summary
We studied carbonyl compounds' role in ozone pollution in the Chengdu Plain Urban Agglomeration, China. During heavy pollution in August 2019, we measured carbonyls at nine sites and analyzed their impact. Areas with higher carbonyl levels, like Chengdu, had worse ozone pollution. While their abundance matters, chemical reactions with other pollutants are the main drivers. Our findings show regional cooperation is vital to reducing ozone pollution effectively.
This article is included in the Encyclopedia of Geosciences
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
Atmos. Chem. Phys., 25, 905–921, https://doi.org/10.5194/acp-25-905-2025, https://doi.org/10.5194/acp-25-905-2025, 2025
Short summary
Short summary
Box modeling with the Master Chemical Mechanism (MCM) was used to explore summertime peroxyacetyl nitrate (PAN) formation and its link to aerosol pollution under high-ozone conditions. The MCM model is effective in the study of PAN photochemical formation and performed better during the clean period than the haze period. Machine learning analysis identified ammonia, nitrate, and fine particulate matter as the top three factors contributing to simulation bias.
This article is included in the Encyclopedia of Geosciences
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
This article is included in the Encyclopedia of Geosciences
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
This article is included in the Encyclopedia of Geosciences
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
This article is included in the Encyclopedia of Geosciences
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3769, https://doi.org/10.5194/egusphere-2024-3769, 2024
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from coastal upwelling systems of Peru and Chile.
This article is included in the Encyclopedia of Geosciences
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
This article is included in the Encyclopedia of Geosciences
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
This article is included in the Encyclopedia of Geosciences
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
This article is included in the Encyclopedia of Geosciences
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
This article is included in the Encyclopedia of Geosciences
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
This article is included in the Encyclopedia of Geosciences
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
This article is included in the Encyclopedia of Geosciences
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
This article is included in the Encyclopedia of Geosciences
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
EGUsphere, https://doi.org/10.5194/egusphere-2024-3437, https://doi.org/10.5194/egusphere-2024-3437, 2024
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for e.g. alkyl nitrates and peroxy nitrates.
This article is included in the Encyclopedia of Geosciences
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
This article is included in the Encyclopedia of Geosciences
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3337, https://doi.org/10.5194/egusphere-2024-3337, 2024
Short summary
Short summary
This study reports an observation of organic nitrate (including total peroxy nitrates and total alkyl nitrates) in Shanghai, China during the summer of 2021, by a homemade thermal dissociation cavity-enhanced absorption spectrometer (TD-CEAS, Atmos. Meas. Tech., 14, 4033–4051, 2021). The distribution of organic nitrates and their effects on local ozone production are analyzed based on the field observation in conjunction with model simulation.
This article is included in the Encyclopedia of Geosciences
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
This article is included in the Encyclopedia of Geosciences
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
This article is included in the Encyclopedia of Geosciences
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
This article is included in the Encyclopedia of Geosciences
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
This article is included in the Encyclopedia of Geosciences
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3137, https://doi.org/10.5194/egusphere-2024-3137, 2024
Short summary
Short summary
Our field campaigns observed a strong diel pattern of chloroacetic acid as well as a strong correlation between its level and those of reactive chlorine species at a coastal site. Using quantum chemical calculations and box model simulation with updated MCM, we found that the formation pathway of chloroacetic acid involved multiphase processes. Our study deepens the understanding of atmospheric VOC-Cl chemistry and highlights the crucial role of multiphase reactions in atmospheric chemistry.
This article is included in the Encyclopedia of Geosciences
Xudong Zheng and Shaodong Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2568, https://doi.org/10.5194/egusphere-2024-2568, 2024
Short summary
Short summary
To reduce uncertainties in identifying key volatile organic compounds (VOCs) affecting ozone (O3) formation, this study focused on identifying key species based on initial VOC concentrations. Using reaction rates and observed VOCs concentrations, we calculated initial VOCs concentrations during the day and the night. Initial concentrations of alkenes and aromatics were higher than observed ones. Conversely, initial oxygenated VOC concentrations were lower than observed concentrations.
This article is included in the Encyclopedia of Geosciences
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
This article is included in the Encyclopedia of Geosciences
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
This article is included in the Encyclopedia of Geosciences
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
This article is included in the Encyclopedia of Geosciences
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
This article is included in the Encyclopedia of Geosciences
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
This article is included in the Encyclopedia of Geosciences
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2162, https://doi.org/10.5194/egusphere-2024-2162, 2024
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas. Northern China contributes a large proportion of CH4 emissions yet large observation gaps are existed. Here we compiled a comprehensive dataset which is publicly available including ground-based, satellite-based, inventory and modeling results, to show the CH4 concentrations, enhancements and spatial-temporal variations. The data can benefit the research community, and policy makers for future observations, atmospheric inversions and policy-making.
This article is included in the Encyclopedia of Geosciences
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
This article is included in the Encyclopedia of Geosciences
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
This article is included in the Encyclopedia of Geosciences
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
This article is included in the Encyclopedia of Geosciences
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2494, https://doi.org/10.5194/egusphere-2024-2494, 2024
Short summary
Short summary
A full suite of radical measurements (OH, HO2, RO2, and kOH) was established to accurately elucidate the limitations of oxidation in chemical-complex atmosphere. Sensitivity tests revealed that the incorporation of complex processes enabled a balance in both radical concentrations and coordinate ratios, and effectively addressing the deficiency in the ozone generation mechanism. The full-chain radical detection untangled a gap-bridge between the photochemistry and the intensive oxidation level.
This article is included in the Encyclopedia of Geosciences
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
This article is included in the Encyclopedia of Geosciences
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
This article is included in the Encyclopedia of Geosciences
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
This article is included in the Encyclopedia of Geosciences
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
This article is included in the Encyclopedia of Geosciences
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
This article is included in the Encyclopedia of Geosciences
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
This article is included in the Encyclopedia of Geosciences
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Jaroslav Resler, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, and Igor Ezau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1222, https://doi.org/10.5194/egusphere-2024-1222, 2024
Short summary
Short summary
We implemented an observation campaign focused on street-level air quality and vertical meteorological profile measurement in Prague using low-cost sensors and remote sensing devices. Low-cost sensors have undergone long-term field testing, own data correction and drift evaluation procedures. A high level of NO2 pollution was confirmed due to the traffic load in streets, peaks of aerosol pollution appeared more under inversion conditions. The data will be further used for PALM model validation.
This article is included in the Encyclopedia of Geosciences
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
This article is included in the Encyclopedia of Geosciences
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
This article is included in the Encyclopedia of Geosciences
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
This article is included in the Encyclopedia of Geosciences
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
This article is included in the Encyclopedia of Geosciences
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
This article is included in the Encyclopedia of Geosciences
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
This article is included in the Encyclopedia of Geosciences
Cited articles
Abbatt, J., George, C., Melamed, M., Monks, P., Pandis, S., and Rudich, Y.:
New Directions: Fundamentals of atmospheric chemistry: Keeping a
three-legged stool balanced, Atmos. Environ., 84, 390–391,
https://doi.org/10.1016/j.atmosenv.2013.10.025, 2014.
Aitken, J.: On the Number of Dust Particles in the Atmosphere, Nature, 37,
428–430, https://doi.org/10.1038/037428a0, 1888.
Akimoto, H., Takagi, H., and Sakamaki, F.: Photoenhancement of the nitrous
acid formation in the surface reaction of nitrogen dioxide and water vapor:
Extra radical source in smog chamber experiments, Int. J.
Chem. Kinet., 19, 539–551, https://doi.org/10.1002/kin.550190606, 1987.
Alicke, B., Hebestreit, K., Stutz, J., and Platt, U.: Iodine oxide in the
marine boundary layer, Nature, 397, 572–573, 1999.
Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., and Plane, J. M. C.:
Observations of the nitrate radical in the marine boundary layer, J.
Atmos. Chem., 33, 129–154, https://doi.org/10.1023/A:1005917203307, 1999.
Anderson, J. G., Toohey, D. W., and Brune, W. H.: Free Radicals Within the
Antarctic Vortex: The Role of CFCs in Antarctic Ozone Loss, Science, 251,
39–46, https://doi.org/10.1126/science.251.4989.39, 1991.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000gb001382, 2001.
Aneja, V. P., Overton, J. H., Cupitt, L. T., Durham, J. L., and Wilson, W.
E.: Carbon disulphide and carbonyl sulphide from biogenic sources and their
contributions to the global sulphur cycle, Nature, 282, 493–496,
https://doi.org/10.1038/282493a0, 1979.
Aneja, V. P., Schlesinger, W. H., and Erisman, J. W.: Effects of agriculture
upon the air quality and climate: Research, policy, and regulations,
Environ. Sci. Technol., 43, 4234–4240, https://doi.org/10.1021/es8024403,
2009.
Arrhenius, S.: On the Influence of Carbonic Acid in the Air upon the
Temperature of the Ground, Philosophical Magazine and Journal of Science, 41,
237–276, 1896.
Atkinson, R.: Kinetics and Mechanisms of the Gas-Phase Reactions of the
Hydroxyl Radical with Organic Compounds under Atmospheric Conditions,
Chem. Rev., 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986.
Atkinson, R.: Atmospheric chemistry of VOCs and NO(x), Atmos. Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4, 2000.
Atkinson, R. and Arey, J.: Atmospheric Degradation of Volatile Organic
Compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr,
J. A., and Troe, J.: Evaluated Kinetic and Photochemical Data for
Atmospheric Chemistry: Supplement III. IUPAC Subcommittee on Gas Kinetic
Data Evaluation for Atmospheric Chemistry, J. Phys. Chem.
Ref. Data, 18, 881–1097, https://doi.org/10.1063/1.555832, 1989.
Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Jr., Kerr, J. A.,
and Troe, J.: Evaluated Kinetic and Photochemical Data for Atmospheric
Chemistry: Supplement IV. IUPAC Subcommittee on Gas Kinetic Data Evaluation
for Atmospheric Chemistry, J. Phys. Chem. Ref. Data,
21, 1125–1568, https://doi.org/10.1063/1.555918, 1992.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F.,
Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:
Evaluated kinetic and photochemical data for atmospheric chemistry: Volume
II – gas phase reactions of organic species, Atmos. Chem. Phys., 6,
3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Galbally, I. E.,
Meyer, C. P., Elsworth, C. M., Bentley, S. T., and Forgan, B. W.: Evidence
for photochemical control of ozone concentrations in unpolluted marine air,
Nature, 360, 446–449, https://doi.org/10.1038/360446a0, 1992.
Ball, S. M., Hancock, G., Murphy, I. J., and Rayner, S. P.: The relative
quantum yields of O2(a1Δg) from the photolysis
of ozone in the wavelength range 270 nm 329 nm, Geophys.
Res. Lett., 20, 2063–2066, https://doi.org/10.1029/93gl02494, 1993.
Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and
Rasmussen, R. A.: Ozone destruction and photochemical reactions at polar
sunrise in the lower Arctic atmosphere, Nature, 334, 138–140, 1988.
Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res. Atmos.,
106, 23073–23095, https://doi.org/10.1029/2001JD000807, 2001.
Bishop, G. A. and Stedman, D. H.: Measuring the Emissions of Passing Cars,
Accounts Chem. Res., 29, 489–495, https://doi.org/10.1021/ar950240x, 1996.
Blake, D. R. and Rowland, F. S.: World-wide increase in tropospheric
methane, 1978–1983, J. Atmos. Chem., 4, 43–62,
https://doi.org/10.1007/BF00053772, 1986.
Bolin, B. and Charlson, R. J.: On the role of the tropospheric sulfur cycle
in the shortwave radiative climate of the earth, Ambio, 5, 47–54, 1976.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Boucher, O. and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus B, 47, 281–300, https://doi.org/10.3402/tellusb.v47i3.16048,
1995.
Boutron, C. F., Görlach, U., Candelone, J.-P., Bolshov, M. A., and
Delmas, R. J.: Decrease in anthropogenic lead, cadmium and zinc in Greenland
snows since the late 1960s, Nature, 353, 153–156, https://doi.org/10.1038/353153a0, 1991.
Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noel, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission
objectives and measurement modes, J. Atmos. Sci., 56,
127–150, 1999.
Brasseur, G.: The Ozone Layer – from Discovery to Recovery, American
Meteorological Society, Boston, USA, 2019.
Brasseur, G. P.: The Importance of Fundamental Science for Society: The
Success Story of Ozone Research, Perspect. Earth Space Sci.,
1, e2020CN000136, https://doi.org/10.1029/2020CN000136, 2020.
Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Chemistry
and Global Change, OUP, 1999.
Brasseur, G. P., Prinn, R. G., and Pszenny, A. A. P.: Atmospheric Chemistry
in a Changing World, Global Change – IGBP Series, Springer, 2003.
Brimblecombe, P.: The Big Smoke: The History of Air Pollution in London
since Medieval Times Methuen & Co., New York, 1987.
Brown, S. S., Stark, H., Ryerson, T. B., Williams, E. J., Nicks Jr, D. K.,
Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Nitrogen oxides in
the nocturnal boundary layer: Simultaneous in situ measurements of NO3,
N2O5, NO2, NO, and O3, J. Geophys. Res., 108, 4299,
https://doi.org/10.1029/2002JD002917, 2003.
Brown, S. S., Ryerson, T. B., Wollny, A. G. C., Brock, A., Peltier, R.,
Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F.,
Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in Nocturnal
Nitrogen Oxide Processing and Its Role in Regional Air Quality, Science,
311, 67–70, 2006.
Burkholder, J. B., Abbatt, J. P. D., Barnes, I., Roberts, J. M., Melamed, M.
L., Ammann, M., Bertram, A. K., Cappa, C. D., Carlton, A. G., Carpenter, L.
J., Crowley, J. N., Dubowski, Y., George, C., Heard, D. E., Herrmann, H.,
Keutsch, F. N., Kroll, J. H., McNeill, V. F., Ng, N. L., Nizkorodov, S. A.,
Orlando, J. J., Percival, C. J., Picquet-Varrault, B., Rudich, Y., Seakins,
P. W., Surratt, J. D., Tanimoto, H., Thornton, J. A., Tong, Z., Tyndall, G.
S., Wahner, A., Weschler, C. J., Wilson, K. R., and Ziemann, P. J.: The
Essential Role for Laboratory Studies in Atmospheric Chemistry,
Environ. Sci. Technol., 51, 2519–2528,
https://doi.org/10.1021/acs.est.6b04947, 2017.
Burkholder, J. B., Abbatt, J. P. D., Cappa, C., Dibble, T. S., Colb, C. E.,
Orkin, C. L., Wilmouth, D. M., Sander, S. P., Barker, J. R., Crounse, J. D.,
Huie, R. E., Kurylo, M. J., Percival, C. J., and Wine, P. H.: Chemical
Kinetics and Photochemical Data for Use in Atmospheric Studies, JPL, JPL,
2020.
Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V.,
Ladstatter-Weissenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt,
K., Eichmann, K. U., and Eisinger, M.: The global ozone monitoring
experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., 56, 151–175, 1999.
Burrows, J. P., Platt, U., and Borrell, P.: The Remote Sensing of
Tropospheric Composition from Space, Physics of Earth and Space
Environments, Springer-Verlag Berlin, Heidelberg, 551 pp., 2011.
Callendar, G. S.: The artificial production of carbon dioxide and its
influence on temperature, Q. J. Roy. Meteorol.
Soc., 64, 223–240, https://doi.org/10.1002/qj.49706427503, 1938.
Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P.: Mechanism of
the homogeneous oxidation of sulfur dioxide in the troposphere, Atmos. Environ. (1967), 12, 197–226, https://doi.org/10.1016/0004-6981(78)90201-9, 1978.
Calvert, J. G., Heywood, J. B., Sawyer, R. F., and Seinfeld, J. H.:
Achieving acceptable air quality: Some reflections on controlling vehicle
emissions, Science, 261, 37–45, https://doi.org/10.1126/science.261.5117.37, 1993.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M.
R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia,
A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb,
C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical
characterization of ambient aerosols with the aerodyne aerosol mass
spectrometer, Mass Spectrom. Rev., 26, 185–222, https://doi.org/10.1002/mas.20115,
2007.
Carslaw, D. C.: Evidence of an increasing NO2 NOX emissions ratio from
road traffic emissions, Atmos. Environ., 39, 4793–4802,
https://doi.org/10.1016/j.atmosenv.2005.06.023, 2005.
Carter, W. P. L.: A detailed mechanism for the gas-phase atmospheric
reactions of organic compounds, Atmos. Environ. Pt. A, 24, 481–518, https://doi.org/10.1016/0960-1686(90)90005-8, 1990.
Carter, W. P. L.: Development of the SAPRC-07 chemical mechanism,
Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010.
Carter, W. P. L. and Atkinson, R.: A Computer Modeling Study of Incremental
Hydrocarb. Reactiv. Environ. Sci. Technol., 23, 864–880,
1989.
Chamberlain, A. C.: Transport of gases to and from grass and grass-like
surfaces, Proc. R. Soc. Lond. A, 290, 236–265, 1966.
Chameides, W. L. and Walker, J. C. G.: A photochemical theory for
tropospheric ozone, J. Geophys. Res., 78, 8751–8760, 1973.
Chameides, W. L. and Davis, D. D.: Iodine: Its possible role in
tropospheric photochemistry, J. Geophys. Res.-Ocean., 85,
7383–7398, https://doi.org/10.1029/JC085iC12p07383, 1980.
Chameides, W. L. and Davis, D. D.: The free radical chemistry of cloud
droplets and its impact upon the composition of rain, J. Geophys.
Res., 87, 4863–4877, https://doi.org/10.1029/JC087iC07p04863, 1982.
Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C. S.: The role
of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case
study, Science, 241, 1473–1475, https://doi.org/10.1126/science.3420404, 1988.
Chameides, W. L., Yu, H., Liu, S. C., Bergin, M., Zhou, X., Mearns, L.,
Wang, G., Kiang, C. S., Saylor, R. D., Luo, C., Huang, Y., Steiner, A., and
Giorgi, F.: Case study of the effects of atmospheric aerosols and regional
haze on agriculture: An opportunity to enhance crop yields in China through
emission controls?, P. Natl. Acad. Sci. USA, 96, 13626–13633, https://doi.org/10.1073/pnas.96.24.13626, 1999.
Chaney, L. W.: The remote measurement of traffic generated carbon monoxide,
J. Air Pollut. Control Assoc., 33, 220–222,
https://doi.org/10.1080/00022470.1983.10465568, 1983.
Chapman, S.: On ozone and atomic oxygen in the upper atmosphere, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10,
369–383, https://doi.org/10.1080/14786443009461588, 1930.
Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: Oceanic
phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326,
655–661, https://doi.org/10.1038/326655a0, 1987.
Charlson, R. J., Langner, J., and Rodhe, H.: Sulphate aerosol and climate,
Nature, 348, p. 22, https://doi.org/10.1038/348022a0, 1990.
Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., and Warren, S. G.:
Perturbation of the Northern Hemisphere radiative balance by backscattering
from anthropogenic sulfate aerosols, Tellus A, 43, 152–163, https://doi.org/10.3402/tellusa.v43i4.11944,
1991.
Chipperfield, M. P. and Pyle, J. A.: Two-dimensional modelling of the
Antarctic lower stratosphere, Geophys. Res. Lett., 15, 875–878,
https://doi.org/10.1029/GL015i008p00875, 1988.
Cicerone, R. J.: Halogens in the atmosphere, Rev. Geophys., 19,
123–139, https://doi.org/10.1029/RG019i001p00123, 1981.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V.,
Cafmeyer, J., Guyon, P., Andreae, M. O., Artaxo, P., and Maenhaut, W.:
Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene,
Science, 303, 1173–1176, https://doi.org/10.1126/science.1092805, 2004.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system H+-NH -SO -NO -H2O at
tropospheric temperatures, J. Phys. Chem. A, 102, 2137–2154,
1998a.
Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic model of
the system
H+-NH -Na+-SO -NO -Cl−-H2O
at 298.15 K, J. Phys. Chem. A, 102, 2155–2171, 1998b.
Cohen, R. C. and Murphy, J. G.: Photochemistry of NO2 in Earth's
Stratosphere: Constraints from Observations, Chem. Rev., 103,
4985–4998, https://doi.org/10.1021/cr020647x, 2003.
Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P.
H., and Leck, C.: Aerosol number size distributions from 3 to 500 nm
diameter in the arctic marine boundary layer during summer and autumn,
Tellus B, 48, 197–212,
https://doi.org/10.3402/tellusb.v48i2.15886, 1996.
Cox, R. A. and Hayman, G. D.: The stability and photochemistry of dimers of
the ClO radical and implications for Antarctic ozone depletion, Nature, 332,
796–800, https://doi.org/10.1038/332796a0, 1988.
Crounse, J. D., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., and
Wennberg, P. O.: Autoxidation of organic compounds in the atmosphere,
J. Phys. Chem. Lett., 4, 3513–3520, https://doi.org/10.1021/jz4019207,
2013.
Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E.,
Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated
kinetic and photochemical data for atmospheric chemistry: Volume V
– heterogeneous reactions on solid substrates, Atmos. Chem.
Phys., 10, 9059–9223, https://doi.org/10.5194/acp-10-9059-2010, 2010.
Crutzen, P. J.: A discussion of the chemistry of some minor constituents in the
stratosphere and troposphere, Pure Appl. Geophys., 106, 1385–1399,
https://doi.org/10.1007/BF00881092, 1973a.
Crutzen, P. J.: Photochemical reactions initiated by and influencing ozone
in the unpolluted troposphere, Tellus, 26, 47–57, 1973b.
Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone
content, Q. J. Roy. Meteorol. Soc., 96, 320–325,
https://doi.org/10.1002/qj.49709640815, 1970.
Crutzen, P. J.: Geology of mankind, Nature, 415, p. 23, https://doi.org/10.1038/415023a, 2002.
Crutzen, P. J. and Birks, J. W.: The atmosphere after a nuclear war:
twilight at noon, Ambio, 11, 114–125, 1982.
Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics: Impact
on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678,
1990.
Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler,
W.: Biomass burning as a source of atmospheric gases CO, H2, N2O,
NO, CH3Cl and COS, Nature, 282, 253–256, https://doi.org/10.1038/282253a0, 1979.
Dalton, J.: Experimental enquiry into the proportion of the several gases or
elastic fluids, constituting the atmosphere, Memoirs of the Literary and
Philosophical Society of Manchester, 1, 244–258, 1805.
Danielsen, E. F.: Stratospheric-Tropospheric Exchange Based on
Radioactivity, Ozone and Potential Vorticity, J. Atmos.
Sci., 25, 502–518, 1968.
Darnall, K. R., Lloyd, A. C., Winer, A. M., and Pitts, J. N.: Reactivity
scale for atmospheric hydrocarbons based on reaction with hydroxyl radical,
Environ. Sci. Technol., 10, 692–696, https://doi.org/10.1021/es60118a008,
1976.
Davis, D., Nowak, J. B., Chen, G., Buhr, M., Arimoto, R., Hogan, A., Eisele,
F., Mauldin, L., Tanner, D., Shetter, R., Lefer, B., and McMurry, P.:
Unexpected high levels of NO observed at South Pole, Geophys. Res. Lett., 28, 3625–3628, https://doi.org/10.1029/2000GL012584, 2001.
Davis, D. D.: Project Gametag: An overview, J. Geophys. Res.-Ocean., 85, 7285–7292, https://doi.org/10.1029/JC085iC12p07285,
1980.
Davis, D. D., Heaps, W., and McGee, T.: Direct measurements of natural
tropospheric levels of OH via an aircraft borne tunable dye laser,
Geophys. Res. Lett., 3, 331–333, https://doi.org/10.1029/GL003i006p00331, 1976.
Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO2 oxidation via
the hydroxyl radical: Atmospheric fate of HSOx radicals, Geophys. Res. Lett., 6, 113–116, https://doi.org/10.1029/GL006i002p00113, 1979.
de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W.
C., Roberts, J. M., Fehsenfeld, F. C., Worsnop, D. R., Canagaratna, M. R.,
Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman, S. B., and Bates,
T. S.: Budget of organic carbon in a polluted atmosphere: Results from the
New England Air Quality Study in 2002, J. Geophys. Res.-Atmos., 110, 1–22, https://doi.org/10.1029/2004JD005623, 2005.
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard,
G., Blumenstock, T., Braathen, G. O., Hannigan, J. W., Lambert, J. C.,
Leblanc, T., McGee, T. J., Nedoluha, G., Petropavlovskikh, I., Seckmeyer,
G., Simon, P. C., Steinbrecht, W., and Strahan, S. E.: The Network for the
Detection of Atmospheric Composition Change (NDACC): history, status and
perspectives, Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018,
2018.
Demerjian, K. L., Kerr, J. A., and Calvert, J. G.: Mechanism of
photochemical smog formation, Adv. Environ. Sci. Technol., 4, 1–262,
1974.
DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J.,
Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical
Kinetics and Photochemical Data for Use in Stratospheric Modeling, NASA,
JPL, 1997.
Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., and Crutzen,
P. J.: Role of mineral aerosol as a reactive surface in the global
troposphere, J. Geophys. Res.-Atmos., 101, 22869–22889,
https://doi.org/10.1029/96JD01818, 1996.
De Zafra, R. L., Jaramillo, M., Parrish, A., Solomon, P., Connor, B., and
Barrett, J.: High concentrations of chlorine monoxide at low altitudes in
the Antarctic spring stratosphere: Diurnal variation, Nature, 328, 408–411,
1988.
Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X.
R., Thornberry, T., Carroll, M. A., Young, V., Shepson, P. B., Riemer, D.,
Apel, E., and Campbell, C.: Missing OH reactivity in a forest: Evidence for
unknown reactive biogenic VOCs, Science, 304, 722–725, 2004.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M.
E., Ferris, B. G., and Speizer, F. E.: An association between air pollution
and mortality in six US cities, New Engl. J. Med., 29, 1753–1759, 1993.
Donahue, N. M., Robinson, A. L., Stanier, C. O., and Pandis, S. N.: Coupled
partitioning, dilution, and chemical aging of semivolatile organics,
Environ. Sci. Technol., 40, 2635–2643, https://doi.org/10.1021/es052297c,
2006.
Draxler, R. R.,and Hess, G. D.: An overview of the HYSPLIT_4
modelling system for trajectories, dispersion and deposition, Austr.
Meteorol. Mag., 47, 295–308, 1998.
Ehhalt, D. H.: The atmospheric cycle of methane, Tellus, 26, 58–70,
https://doi.org/10.1111/j.2153-3490.1974.tb01952.x, 1974.
Ehhalt, D. H.: Photooxidation of trace gases in the troposphere, Phys.
Chem. Chem. Phys., 1, 5401–5408, 1999.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H.,
Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B.,
Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T.,
Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén,
T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M.,
Maso, M. D., Berndt, T., Petäjä, T., Wahner, A., Kerminen, V. M.,
Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of
low-volatility secondary organic aerosol, Nature, 506, 476–479,
https://doi.org/10.1038/nature13032, 2014.
Eisele, F. L., Mount, G. H., Fehsenfeld, F. C., Harder, J., Marovich, E., Parrish, D. D., Roberts, J., Trainer, M., and Tanner, D.: Intercomparison of tropospheric OH and ancillary trace gas
measurements at Fritz Peak Observatory, Colorado, J. Geophys.
Res., 99, 18605–18626, 1994.
Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter,
W.: How a century of ammonia synthesis changed the world, Nat. Geosci.,
1, 636–639, https://doi.org/10.1038/ngeo325, 2008.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM 2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys. Res.-Atmos., 108, 4426, https://doi.org/10.1029/2002JD002202, 2003.
Fabian, P. and Pruchniewicz, P. G.: Meridional distribution of ozone in the
troposphere and its seasonal variations, J. Geophys. Res. , 82, 2063–2073,
1977.
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. J.: Cloud albedo
enhancement by surface-active organic solutes in growing droplets, Nature,
401, 257–259, https://doi.org/10.1038/45758, 1999.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx NOx interaction, Nature, 315,
207–210, https://doi.org/10.1038/315207a0, 1985.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt,
C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.:
Emissions of volatile organic compounds from vegetation and the implications
for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430,
https://doi.org/10.1029/92GB02125, 1992.
Finlayson, B. J. and Pitts, J. N.: Photochemistry of the Polluted
Troposphere, Science, 192, 111–119, https://doi.org/10.1126/science.192.4235.111, 1976.
Finlayson-Pitts, B. J. and Pitts, J. N.: Chemistry of the upper and lower
atmosphere – theory, experiments, and applications, Academic Press,
San Diego, 969 pp., 2000.
Finlayson-Pitts, B. J., Ezell, M. J., and Pitts, J. N.: Formation of
chemically active chlorine compounds by reactions of atmospheric NaCl
particles with gaseous N2O5 and ClONO2, Nature, 337, 241–244,
https://doi.org/10.1038/337241a0, 1989.
Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess,
P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I.
A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van
Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G.,
Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong,
S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson,
J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V.,
Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S.,
Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel
estimates of intercontinental source-receptor relationships for ozone
pollution, J. Geophys. Res.-Atmos., 114, D04301, https://doi.org/10.1029/2008jd010816, 2009.
Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather,
M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., Collins, W. J.,
Dalsoren, S., Eyring, V., Folberth, G. A., Ginoux, P., Horowitz, L. W.,
Josse, B., Lamarque, J. F., MacKenzie, I. A., Nagashima, T., O'Connor, F.
M., Righi, M., Rumbold, S. T., Shindell, D. T., Skeie, R. B., Sudo, K.,
Szopa, S., Takemura, T., and Zeng, G.: Global air quality and climate, Chem.
Soc. Rev., 41, 6663–6683, https://doi.org/10.1039/c2cs35095e, 2012.
Fishman, J., Ramanathan, V., Crutzen, P. J., and Liu, S. C.: Tropospheric
ozone and climate, Nature, 282, 818–820, https://doi.org/10.1038/282818a0, 1979.
Fitzgerald, J. W.: Effect of Aerosol Composition on Cloud Droplet Size
Distribution: A Numerical Study, J. Atmos. Sci., 31,
1358–1367, 1974.
Fleming, E. L., Jackman, C. H., Stolarski, R. S., and Considine, D. B.:
Simulation of stratospheric tracers using an improved empirically based
two-dimensional model transport formulation, J. Geophys. Res.-Atmos., 104, 23911–23934, https://doi.org/10.1029/1999JD900332, 1999.
Forster, C., Wandinger, U., Wotawa, G., James, P., Mattis, I., Althausen,
D., Simmonds, P., O'Doherty, S., Jennings, S. G., Kleefeld, C., Schneider,
J., Trickl, T., Kreipl, S., Jäger, H., and Stohl, A.: Transport of
boreal forest fire emissions from Canada to Europe, J. Geophys. Res., 106,
22887–22906, 2001.
Fowler, D., Pilegaard, K., Sutton, M. A., Ambus, P., Raivonen, M., Duyzer,
J., Simpson, D., Fagerli, H., Fuzzi, S., Schjoerring, J. K., Granier, C.,
Neftel, A., Isaksen, I. S. A., Laj, P., Maione, M., Monks, P. S., Burkhardt,
J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
Butterbach-Bahl, K., Flechard, C., Tuovinen, J. P., Coyle, M., Gerosa, G.,
Loubet, B., Altimir, N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti,
E., Mikkelsen, T. N., Ro-Poulsen, H., Cellier, P., Cape, J. N., Horvath, L.,
Loreto, F., Niinemets, U., Palmer, P. I., Rinne, J., Misztal, P., Nemitz,
E., Nilsson, D., Pryor, S., Gallagher, M. W., Vesala, T., Skiba, U.,
Brueggemann, N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C.,
Facchini, M. C., de Leeuw, G., Flossman, A., Chaumerliac, N., and Erisman,
J. W.: Atmospheric composition change: Ecosystems-Atmosphere interactions,
Atmos. Environ., 43, 5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068,
2009.
Fowler, D., Brimblecombe, P., Burrows, J., Heal, M. R., Grennfelt, P.,
Stevenson, D. S., Jowett, A., Nemitz, E., Coyle, M., Lui, X., Chang, Y.,
Fuller, G. W., Sutton, M. A., Klimont, Z., Unsworth, M. H., and Vieno, M.: A
chronology of global air quality, Philos. T. Roy.
Soc. A, 378, 20190314,
https://doi.org/10.1098/rsta.2019.0314, 2020.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S.
S., Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V.
R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
and ecosystem interactions, Atmos. Res., 182, 346–376, https://doi.org/10.1016/j.atmosres.2016.07.018, 2016.
Fuller, G. W.: The Invisible Killer: The Rising Threat of Global Air
Pollution – and how we can fight back, Melville House, UK 2018.
Galbally, I.: Some measurements of ozone variation and destruction in the
atmospheric surface layer, Nature, 218, 456–457, https://doi.org/10.1038/218456a0, 1968.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R.
W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A.,
Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A.
R., and Vorosmarty, C. J.: Nitrogen cycles: past, present, and future,
Biogeochemistry, 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0, 2004.
Garcia, R. R. and Solomon, S.: A numerical model of the zonally averaged
dynamical and chemical structure of the middle atmosphere, J.
Geophys. Res.-Ocean., 88, 1379–1400, https://doi.org/10.1029/JC088iC02p01379, 1983.
Gard, E., Mayer, J. E., Morrical, B. D., Dienes, T., Fergenson, D. P., and
Prather, K. A.: Real-Time Analysis of Individual Atmospheric Aerosol
Particles: Design and Performance of a Portable ATOFMS, Anal.
Chem., 69, 4083–4091, https://doi.org/10.1021/ac970540n, 1997.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic
Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41,
1515–1521, 2007.
Graedel, T. E.: Kinetic photochemistry of the marine atmosphere, J.
Geophys. Res., 84, 273–286, 1979.
Graedel, T. E. and Weschler, C. J.: Chemistry within aqueous atmospheric
aerosols and raindrops, Rev. Geophys., 19, 505–539,
https://doi.org/10.1029/RG019i004p00505, 1981.
Grannas, A. M., Jones, A. E., Dibb, J., Ammann, M., Anastasio, C., Beine, H. J., Bergin, M., Bottenheim, J., Boxe, C. S., Carver, G., Chen, G., Crawford, J. H., Dominé, F., Frey, M. M., Guzmán, M. I., Heard, D. E., Helmig, D., Hoffmann, M. R., Honrath, R. E., Huey, L. G., Hutterli, M., Jacobi, H. W., Klán, P., Lefer, B., McConnell, J., Plane, J., Sander, R., Savarino, J., Shepson, P. B., Simpson, W. R., Sodeau, J. R., von Glasow, R., Weller, R., Wolff, E. W., and Zhu, T.: An overview of snow photochemistry: evidence, mechanisms and impacts, Atmos. Chem. Phys., 7, 4329–4373, https://doi.org/10.5194/acp-7-4329-2007, 2007.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled ”online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005.
Grennfelt, P., Engleryd, A., Forsius, M., Hov, Ø., Rodhe, H., and
Cowling, E.: Acid rain and air pollution: 50 years of progress in
environmental science and policy, Ambio, 49, 849–864, https://doi.org/10.1007/s13280-019-01244-4, 2019.
Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T.,
Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, R.,
Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global
model of natural volatile organic compound emissions, J. Geophys. Res., 100,
8873–8892, 1995.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., and Fall, R.:
Natural emissions of non-methane volatile organic compounds, carbon
monoxide, and oxides of nitrogen from North America, Atmos. Environ., 34, 2205–2230, https://doi.org/10.1016/S1352-2310(99)00465-3, 2000.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and
Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN
(Model of Emissions of Gases and Aerosols from Nature), Atmos.
Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall,
R.: Isoprene and monoterpene emission rate variability: Model evaluations
and sensitivity analyses, J. Geophys. Res.-Atmos., 98,
12609–12617, https://doi.org/10.1029/93jd00527, 1993.
Haagen-Smit, A. J.: Chemistry and Physiology of Los Angeles Smog, Industr.
Eng. Chem., 44, 1342–1346, https://doi.org/10.1021/ie50510a045, 1952.
Haagen-Smit, A. J. and Fox, M. M.: Photochemical ozone formation with
hydrocarbons and automobile exhaust, Air Repair, 4, 105–136,
https://doi.org/10.1080/00966665.1954.10467649, 1954.
Haagen-Smit, A. J., Bradley, C. E., and Fox, M. M.: Ozone Formation in
Photochemical Oxidation of Organic Substances, Industr. Eng.
Chem., 45, 2086–2089, https://doi.org/10.1021/ie50525a044, 1953.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D.,
Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H.,
Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin,
M., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G.,
Mentel, T., Monod, A., Prevot, A. S. H., Seinfeld, J. H., Surratt, J. D.,
Szmigielski, R., and Wildt, J.: The Formation, Properties and Impact of
Secondary Organic Aerosol: Current and Emerging Issues, Atmos. Chem. Phys. ,
9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009 2009.
Hampson, J.: Photochemical behavior of the ozone layer, Can. Armament Res.
and Dev. Estab., Valcartier, Quebec, Canada, 1964.
Hanson, D. R. and Ravishankara, A. R.: Reactive uptake of CIONO2 onto
sulfuric acid due to reaction with HCl and H2O, J. Phys. Chem., 98, 5728–5735, https://doi.org/10.1021/j100073a026, 1994.
Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R.:
Measurement of OH and HO2 radical uptake coefficients on water and
sulfuric acid surfaces, J. Phys. Chem., 96, 4979–4985,
https://doi.org/10.1021/j100191a046, 1992.
Hao, W. M. and Liu, M. H.: Spatial and temporal distribution of tropical
biomass burning, Global Biogeochem. Cy., 8, 495–504, 1994.
Harriss, R. C.: The Amazon Boundary Layer Experiment (ABLE 2A): dry season
1985, J. Geophys. Res., 93, 1351–1360,
https://doi.org/10.1029/JD093iD02p01351, 1988.
Hard, T. M., O'Brien, R. J., Chan, C. Y., and Mehrabzadeh, A. A.: Tropospheric free radical determination by fluorescence assay with gas expansion, Environ. Sci. Technol., 18, 768–777, https://doi.org/10.1021/es00128a009, 1984.
Heard, D. E. and Pilling, M. J.: Measurement of OH and HO2 in the
Troposphere, Chem. Rev., 103, 5163–5198, 2003.
Hein, R., Crutzen, P. J., and Heimann, M.: An inverse modeling approach to
investigate the global atmospheric methane cycle, Global Biogeochem.
Cy., 11, 43–76, https://doi.org/10.1029/96GB03043, 1997.
Hofzumahaus, A., Rohrer, F., Lu, K. D., Bohn, B., Brauers, T., Chang, C. C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S. R., Shao, M.,
Zeng, L. M., Wahner, A., and Zhang, Y. H.: Amplified Trace Gas Removal in
the Troposphere, Science, 324, 1702–1704, https://doi.org/10.1126/science.1164566, 2009.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B.,
and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys.,
33, 403–439, https://doi.org/10.1029/95rg02097, 1995.
Honrath, R. E., Peterson, M. C., Guo, S., Dibb, J. E., Shepson, P. B., and
Campbell, B.: Evidence of NOx production within or upon ice particles in the
Greenland snow-pack, Geophys. Res. Lett., 26, 695–698, 1999.
Howard, C. J. and Evenson, K. M.: Kinetics of the reaction of HO2 with
NO, Geophys. Res. Lett., 4, 437–440, https://doi.org/10.1029/GL004i010p00437, 1977.
Hudson, R. D. and Reed, E. I.: Stratosphere: present and future, NASA
Reference Publication 1049, available at: https://ntrs.nasa.gov/api/citations/19800006383/downloads/19800006383.pdf (last access: 30 August 2021), 1979.
Husar, R. B., Tratt, D. M., Schichtel, B. A., Falke, S. R., Li, F., Jaffe,
D., Gassó, S., Gill, T., Laulainen, N. S., Lu, F., Reheis, M. C., Chun,
Y., Westphal, D., Holben, B. N., Gueymard, C., McKendry, I., Kuring, N.,
Feldman, G. C., McClain, C., Frouin, R. J., Merrill, J., DuBois, D.,
Vignola, F., Murayama, T., Nickovic, S., Wilson, W. E., Sassen, K.,
Sugimoto, N., and Malm, W. C.: Asian dust events of April 1998, J. Geophys. Res.-Atmos., 106, 18317–18330, https://doi.org/10.1029/2000JD900788,
2001.
IPCC: Climate Change 2013 – The Physical Science Basis, Cambridge
University Press, Cambridge, 1552 pp., 2013.
Jackman, C., Seals, R., and Prather, M.: Two-dimensional intercomparison of
stratospheric models, NASA Conference Publication 3042, available at: https://ntrs.nasa.gov/api/citations/19900002089/downloads/19900002089.pdf (last access: 30 August 2021), 1989.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University
Press, Princeton, USA, 1999.
Jacob, D. J., Munger, J. W., Waldman, J. M., and Hoffmann, M. R.: The
H2SO4 – HNO3 – NH3 system at high humidities and in
fogs, 1. Spatial and temporal patterns in the San Joaquin Valley of
California, J. Geophys. Res., 91, 1073–1088,
https://doi.org/10.1029/JD091iD01p01073, 1986.
Jacob, D. J.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, https://doi.org/10.1016/S1352-2310(99)00462-8, 2000.
Jacob, D. J., Logan, J. A., and Murti, P. P.: Effect of rising Asian
emissions on surface ozone in the United States, Geophys. Res. Lett., 26, 2175–2178, https://doi.org/10.1029/1999GL900450, 1999.
Jacobson, M. Z.: Atmospheric Pollution: History, Science and Regulation,
Cambridge University Press, Cambridge, UK, 2002.
Jaeglé, L., Jacob, D. J., Wang, Y., Weinheimer, A. J., Ridley, B. A.,
Campos, T. L., Sachse, G. W., and Hagen, D. E.: Sources and chemistry of NOx
in the upper troposphere over the United States, Geophys. Res. Lett., 25, 1705–1708, https://doi.org/10.1029/97gl03591, 1998.
Jaenicke, R.: Abundance of cellular material and proteins in the atmosphere,
Science, 308, p. 73, https://doi.org/10.1126/science.1106335, 2005.
Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropospheric
degradation of volatile organic compounds: A protocol for mechanism
development, Atmos. Environ., 31, 81–104, 1997.
Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for
the development of the Master Chemical Mechanism, MCM v3 (Part B):
tropospheric degradation of aromatic volatile organic compounds, Atmos.
Chem. Phys., 3, 181–193, https://doi.org/10.5194/acp-3-181-2003, 2003.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang,
Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken,
A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L.,
Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y.
L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara,
P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J.,
Dunlea, J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I.,
Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S.,
Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi,
T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K.,
Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M.,
Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E.,
Baltensperger, U., and Worsnop, D. R.: Evolution of Organic Aerosols in the
Atmosphere, Science, 326, 1525, https://doi.org/10.1126/science.1180353, 2009.
Johnston, H.: Reduction of stratospheric ozone by nitrogen oxide catalysts
from supersonic transport exhaust, Science, 173, 517–522,
https://doi.org/10.1126/science.173.3996.517, 1971.
Junge, C.: The size distribution and aging of natural aerosols as determined
from electrical and optical data on the atmosphere, J. Meteorol.,
12, 13–25, 1955.
Junge, C. E.: Basic considerations about trace constituents in the
atmosphere as related to the fate of global pollutants, Adv. Environ. Sci.
Technol., 8, 7–25, 1975.
Junge, C. E. and Ryan, T. G.: Study of the SO2 oxidation in solution
and its role in atmospheric chemistry, Q. J. Roy. Meteorol. Soc., 84, 46–55, https://doi.org/10.1002/qj.49708435906, 1958.
Kalberer, M., Paulsen, D., Sax, M., Steinbacher, M., Dommen, J., Prevot, A.
S. H., Fisseha, R., Weingartner, E., Frankevich, V., Zenobi, R., and
Baltensperger, U.: Identification of Polymers as Major Components of
Atmospheric Organic Aerosols, Science, 303, 1659–1662,
https://doi.org/10.1126/science.1092185, 2004.
Karl, T., Harley, P., Emmons, L., Thornton, B., Guenther, A., Basu, C.,
Turnipseed, A., and Jardine, K.: Efficient Atmospheric Cleansing of Oxidized
Organic Trace Gases by Vegetation, Science, 1192534,
https://doi.org/10.1126/science.1192534, 2010.
Keeling, C. D.: The Concentration and Isotopic Abundances of Carbon Dioxide
in the Atmosphere, Tellus, 12, 200–203, https://doi.org/10.1111/j.2153-3490.1960.tb01300.x,
1960.
Keeling, C. D., Mook, W. G., and Tans, P. P.: Recent trends in the
13C 12C ratio of atmospheric carbon dioxide, Nature, 277, 121–123,
https://doi.org/10.1038/277121a0, 1979.
Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC):
An Overview on Emission, Physiology and Ecology, J. Atmos.
Chem., 33, 23–88, https://doi.org/10.1023/A:1006127516791, 1999.
Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S.,
Franchin, A., Gagné, S., Ickes, L., Kürten, A., Kupc, A., Metzger,
A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer,
D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J.,
Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hansel, A., Hauser, D.,
Jud, W., Junninen, H., Kreissl, F., Kvashin, A., Laaksonen, A., Lehtipalo,
K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J.,
Minginette, P., Mogo, S., Nieminen, T., Onnela, A., Pereira, P.,
Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M.,
Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y.,
Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E., Wex, H., Winkler,
P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.:
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric
aerosol nucleation, Nature, 476, 429–435, https://doi.org/10.1038/nature10343, 2011.
Kleindienst, T. E.: Epoxying Isoprene Chemistry, Science, 325, 687–688,
https://doi.org/10.1126/science.1178324, 2009.
Kleinman, L. I.: Seasonal dependence of boundary layer peroxide
concentration: the low and high NOx regimes, J. Geophys. Res., 96, 20721–720733, 1991.
Kley, D. and McFarland, M.: Chemiluminescence detector for NO and NO2,
Atmos. Technol., 12, 63–69, 1980.
Knipping, E. M., Lakin, M. J., Foster, K. L., Jungwirth, P., Tobias, D. J.,
Gerber, R. B., Dabdub, D., and Finlayson-Pitts, B. J.: Experiments and
simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols,
Science, 288, 301–306, https://doi.org/10.1126/science.288.5464.301, 2000.
Knutson, E. O. and Whitby, K. T.: Aerosol classification by electric
mobility: apparatus, theory, and applications, J. Aerosol Sci.,
6, 443–451, https://doi.org/10.1016/0021-8502(75)90060-9, 1975.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
Trans. Farad. Soc., 32, 1152–1161, https://doi.org/10.1039/TF9363201152,
1936.
Kulmala, M., Pirjola, L., and Mäkelä, J. M.: Stable sulphate
clusters as a source of new atmospheric particles, Nature, 404, 66–69,
https://doi.org/10.1038/35003550, 2000.
Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lörzer,
J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., and Platt, U.:
Investigations of emissions and heterogeneous formation of HONO in a road
traffic tunnel, Atmos. Environ., 35, 3385–3394,
https://doi.org/10.1016/S1352-2310(01)00138-8, 2001.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu,
N. N., Baldé, A. B., Bertollini, R., Bose-O'Reilly, S., Boufford, J. I.,
Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L.,
Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D.,
Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K.
V., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F.,
Potočnik, J., Preker, A. S., Ramesh, J., Rockström, J., Salinas, C.,
Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart,
R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., and
Zhong, M.: The Lancet Commission on pollution and health, The Lancet, 391,
462–512, https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
Lawson, D. R.: “Passing the test” – human behavior and California's smog
check program, Air Waste, 43, 1567–1575, https://doi.org/10.1080/1073161X.1993.10467226,
1993.
Leighton, P. A.: Photochemistry of Air Pollution, Academic Press, New York,
1961.
Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H.,
Ganzeveld, L., Lawrence, M. G., Martinez, M., Taraborrelli, D., and
Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest,
Nature, 452, 737–740 2008.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to premature mortality on a
global scale, Nature, 525, 367–371, https://doi.org/10.1038/nature15371, 2015.
Leu, M. T.: Laboratory studies of sticking coefficients and heterogeneous
reactions important in the Antarctic stratosphere, Geophys. Res. Lett., 15, 17-20, https://doi.org/10.1029/GL015i001p00017, 1988.
Levy, H.: Normal atmosphere – large radical and formaldehyde concentrations
predicted, Science, 173, 141-&, https://doi.org/10.1126/science.173.3992.141, 1971.
Lewis, A. C., Carslaw, N., Marriott, P. J., Kinghorn, R. M., Morrison, P.,
Lee, A. L., Bartle, K. D., and Pilling, M. J.: A larger pool of
ozone-forming carbon compounds in urban atmospheres, Nature, 405, 778–781,
https://doi.org/10.1038/35015540, 2000.
Likens, G. E. and Bormann, F. H.: Acid rain: A serious regional
environmental problem, Science, 184, 1176–1179,
https://doi.org/10.1126/science.184.4142.1176, 1974.
Lin, X., Trainer, M., and Liu, S. C.: On the nonlinearity of the
tropospheric ozone production, J. Geophys. Res.-Atmos.,
93, 15879–15888, https://doi.org/10.1029/JD093iD12p15879, 1988.
Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile
organic compounds at pptv levels by means of proton-transfer-reaction mass
spectrometry (PTR-MS) – Medical applications, food control and environmental
research, Int. J. Mass Spectrom., 173, 191–241, 1998.
Liu, S. C.: Ozone production in the rural troposphere and the implications
for regional and global ozone distributions, J. Geophys. Res., 92, 4191–4207, https://doi.org/10.1029/JD092iD04p04191, 1987.
Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.:
Mapping annual mean ground-level PM2.5 concentrations using Multiangle
Imaging Spectroradiometer aerosol optical thickness over the contiguous
United States, J. Geophys. Res.-Atmos., 109, D22206, https://doi.org/10.1029/2004JD005025, 2004.
Logan, J. A.: Nitrogen oxides in the troposphere: global and regional
budgets, J. Geophys. Res., 88, 10785–10807,
https://doi.org/10.1029/JC088iC15p10785, 1983.
Logan, J. A.: Tropospheric ozone – seasonal behaviour, trends, and
anthropogenic influence, J. Geophys. Res.-Atmos., 90, 10463–10482, 1985.
Logan, J. A.: Ozone in rural areas of the United States, J. Geophys. Res., 94, 8511–8532, https://doi.org/10.1029/JD094iD06p08511, 1989.
Logan, J. A.: An analysis of ozonesonde data for the troposphere:
Recommendations for testing 3-D models and development of a gridded
climatology for tropospheric ozone, J. Geophys. Res.-Atmos., 104, 16115–16149, https://doi.org/10.1029/1998JD100096, 1999.
Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B.: Tropospheric
chemistry: a global perspective, J. Geophys. Res., 86,
7210–7254, https://doi.org/10.1029/JC086iC08p07210, 1981.
Lovelock, J. E.: Atmospheric halocarbons and stratospheric ozone, Nature,
252, 292–294, https://doi.org/10.1038/252292a0, 1974.
Lovelock, J. E. and Lipsky, S. R.: Electron Affinity Spectroscopy—A New
Method for the Identification of Functional Groups in Chemical Compounds
Separated by Gas Chromatography, J. Am. Chem. Soc.,
82, 431–433, https://doi.org/10.1021/ja01487a045, 1960.
Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A.: Atmospheric Dimethyl
Sulphide and the Natural Sulphur Cycle, Nature, 237, 452–453,
https://doi.org/10.1038/237452a0, 1972.
MacKenzie, R. A., Harrison, R. M., Colbeck, I., and Nicholas Hewitt, C.: The
role of biogenic hydrocarbons in the production of ozone in urban plumes in
southeast England, Atmos. Environ., Pt. A, 25,
351–359, https://doi.org/10.1016/0960-1686(91)90306-R, 1991.
Madronich, S. and Flocke, S.: The Role of Solar Radiation in Atmospheric
Chemistry, The Handbook of Environmental Chemistry (Reactions and
Processes), edited by: Boule, P., Springer-Verlag, Berlin, Heidelberg, 1999.
Mäkelä, J. M., Aalto, P., Jokinen, V., Pohja, T., Nissinen, A.,
Palmroth, S., Markkanen, T., Seitsonen, K., Lihavainen, H., and Kulmala, M.:
Observations of ultrafine aerosol particle formation and growth in boreal
forest, Geophys. Res. Lett., 24, 1219–1222, https://doi.org/10.1029/97GL00920,
1997.
Martin, R. V.: Satellite remote sensing of surface air quality, Atmos. Environ., 42, 7823–7843, https://doi.org/10.1016/j.atmosenv.2008.07.018, 2008.
Mauldin Iii, R. L., Berndt, T., Sipilä, M., Paasonen, P.,
Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V. M.,
and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,
Nature, 488, 193–196, https://doi.org/10.1038/nature11278, 2012.
Maynard, R. L. and Williams, M. L.: Regulation of Air Quality in the
European Union, in: Regulatory Toxicology in the European Union, Roy.
Soc. Chem., Cambridge, UK, 539–556, 2018.
McElroy, M. B., Salawitch, R. J., Wofsy, S. C., and Logan, J. A.: Reductions
of Antarctic ozone due to synergistic interactions of chlorine and bromine,
Nature, 321, 759–762, https://doi.org/10.1038/321759a0, 1986.
Melamed, M. L., Monks, P. S., Goldstein, A. H., Lawrence, M. G., and
Jennings, J.: The international global atmospheric chemistry (IGAC) project:
Facilitating atmospheric chemistry research for 25 years, Anthropocene, 12,
17–28, https://doi.org/10.1016/j.ancene.2015.10.001, 2015.
Merrill, J. T., Bleck, R., and Avila, L.: Modeling atmospheric transport to
the Marshall Islands, J. Geophys. Res.-Atmos., 90,
12927–12936, https://doi.org/10.1029/JD090iD07p12927, 1985.
Molina, L. T. and Molina, M. J.: Production of chlorine oxide
(Cl2O2) from the self-reaction of the chlorine oxide (ClO)
radical, The J. Phys. Chem., 91, 433–436,
https://doi.org/10.1021/j100286a035, 1987.
Molina, M. J.: Heterogeneous chemistry on polar stratospheric clouds,
Atmos. Environ. Pt. A, 25, 2535–2537,
https://doi.org/10.1016/0960-1686(91)90170-C, 1991.
Molina, M. J. and Rowland, F. S.: Stratospheric sink for
chlorofluoromethanes: Chlorine atomic-atalysed destruction of ozone, Nature,
249, 810–812, https://doi.org/10.1038/249810a0, 1974.
Molina, M. J., Tso, T. L., Molina, L. T., and Wang, F. C. Y.: Antarctic
stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice:
Release of active chlorine, Science, 238, 1253–1257,
https://doi.org/10.1126/science.238.4831.1253, 1987.
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc. Rev.,
34, 376–395, Doi https://doi.org/10.1039/B307982c, 2005.
Monks, P. S. and Williams, M. L.: What does success look like for air
quality policy? A perspective, Philos. T. R.
Soc. Math. Phys. Eng. Sci., 378, 20190326,
https://doi.org/10.1098/rsta.2019.0326, 2020.
Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto,
H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake,
R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E.,
Frost, G. J., Generoso, S., Ginoux, P., Grewe, V., Guenther, A., Hansson, H.
C., Henne, S., Hjorth, J., Hofzumahaus, A., Huntrieser, H., Isaksen, I. S.
A., Jenkin, M. E., Kaiser, J., Kanakidou, M., Klimont, Z., Kulmala, M., Laj,
P., Lawrence, M. G., Lee, J. D., Liousse, C., Maione, M., McFiggans, G.,
Metzger, A., Mieville, A., Moussiopoulos, N., Orlando, J. J., O'Dowd, C. D.,
Palmer, P. I., Parrish, D. D., Petzold, A., Platt, U., Poschl, U., Prevot,
A. S. H., Reeves, C. E., Reimann, S., Rudich, Y., Sellegri, K.,
Steinbrecher, R., Simpson, D., ten Brink, H., Theloke, J., van der Werf, G.
R., Vautard, R., Vestreng, V., Vlachokostas, C., and von Glasow, R.:
Atmospheric composition change – global and regional air quality,
Atmos. Environ., 43, 5268–5350, https://doi.org/10.1016/j.atmosenv.2009.08.021,
2009.
Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway, T. J.,
Tans, P. P., and Sweeney, C.: On the global distribution, seasonality, and
budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2,
J. Geophys. Res.-Atmos., 112, D09302, https://doi.org/10.1029/2006JD007665, 2007.
Moody, J. L., Oltmans, S. J., Levy, H., and Merrill, J. T.: Transport,
climatology of tropospheric ozone – Bermuda, 1988–1991, J. Geophys.
Res.-Atmos., 100, 7179–7194, https://doi.org/10.1029/94jd02830, 1995.
Moody, J. L., Munger, J. W., Goldstein, A. H., Jacob, D. J., and Wofsy, S.
C.: Harvard Forest regional-scale air mass composition by Patterns in
Atmospheric Transport History (PATH), J. Geophys. Res.-Atmos., 103, 13181–13194, https://doi.org/10.1029/98jd00526, 1998.
Mozurkewich, M., McMurry , P. H., Gupta, A., and Calvert, J. G.: Mass
Accomodation Coefficient for HO2 Radicals on Aqueous Particles, J.
Geophys. Res., 92, 4163–4170, 1987.
Murozumi, M., Chow, T. J., and Patterson, C.: Chemical concentrations of
pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and
Antarctic snow strata, Geochim. Cosmochim. Ac., 33, 1247–1294,
https://doi.org/10.1016/0016-7037(69)90045-3, 1969.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M.,
Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber,
R. J.: Single-particle mass spectrometry of tropospheric aerosol particles,
J. Geophys. Res.-Atmos., 111, D23S32, https://doi.org/10.1029/2006JD007340,
2006.
Newell, R. E., Thouret, V., Cho, J. Y. N., Stoller, P., Marenco, A., and
Smit, H. G.: Ubiquity of quasi-horizontal layers in the troposphere, Nature,
398, 316–319, 1999.
Norrish, R. G. W. and Neville, G. H. J.: The decomposition of ozone
photosensitised by chlorine, J. Chem. Soc.,
1864–1872, 1934.
O'Dowd, C. D., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämerl, K.,
Pirjola, L., Kulmala, M., and Hoffmann, T.: Marine aerosol formation from
biogenic iodine emissions, Nature, 417, 632–636, https://doi.org/10.1038/nature00775, 2002.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Young, J. Y., and Putaud, J. P.: Biogenically
driven organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
Odèn, S.: The acidification of air precipitation and its consequences in
the natural environment, NFR, 1968.
Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and
Seinfeld, J. H.: The atmospheric aerosol forming potential of whole gasoline
vapor, Science., 276, 96–99, 1997.
Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., and Berdowski, J.
J. M.: Emission database for global atmospheric research (Edgar),
Environ. Monit. Ass., 31, 93–106, https://doi.org/10.1007/BF00547184,
1994.
Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J.,
Lerner, B. M., Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb,
J. E., Stark, H., Burkholder, J. B., Talukdar, R. K., Meagher, J.,
Fehsenfeld, F. C., and Brown, S. S.: High levels of nitryl chloride in the
polluted subtropical marine boundary layer, Nat. Geosci., 1, 324–328,
https://doi.org/10.1038/ngeo177, 2008.
Pales, J. C. and Keeling, C. D.: The concentration of atmospheric carbon
dioxide in Hawaii, J. Geophys. Res. (1896–1977), 70,
6053–6076, https://doi.org/10.1029/JZ070i024p06053, 1965.
Palmer, P. I., Jacob, D. J., Chance, K., Martin, R. V., Spurr, R. J. D.,
Kurosu, T. P., Bey, I., Yantosca, R., Fiore, A., and Li, Q.: Air mass factor
formulation for spectroscopic measurements from satellites: Application to
formaldehyde retrievals from the Global Ozone Monitoring Experiment, J. Geophys. Res.-Atmos., 106, 14539–14550,
https://doi.org/10.1029/2000jd900772, 2001.
Pankow, J. F.: An absorption model of gas/particle partitioning of organic
compounds in the atmosphere, Atmos. Environ., 28, 185–188,
https://doi.org/10.1016/1352-2310(94)90093-0, 1994a.
Pankow, J. F.: An absorption model of the gas/aerosol partitioning involved
in the formation of secondary organic aerosol, Atmos. Environ., 28,
189–193, https://doi.org/10.1016/1352-2310(94)90094-9, 1994b.
Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., Clair, J. M.
S., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in
the gas-phase photooxidation of isoprene, Science, 325, 730–733,
https://doi.org/10.1126/science.1172910, 2009.
Paulson, S. E. and Orlando, J. J.: The reactions of ozone with alkenes: An
important source of HOx in the boundary layer, Geophys. Res. Lett.,
23, 3727–3730, https://doi.org/10.1029/96gl03477, 1996.
Peeters, J., Nguyen, T. L., and Vereecken, L.: HOx radical regneration in
the oxidation of isoprene, Phys. Chem. Chem Phys., 11, 5935–5939, 2009.
Penkett, S. A., Jones, B. M. R., Brich, K. A., and Eggleton, A. E. J.: The
importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur
dioxide in cloud and rainwater, Atmos. Environ. (1967), 13, 123–137,
https://doi.org/10.1016/0004-6981(79)90251-8, 1979.
Perner, D. and Platt, U.: Detection of nitrous acid in the atmosphere by
differential optical absorption, Geophys. Res. Lett., 6, 917–920,
https://doi.org/10.1029/GL006i012p00917, 1979.
Perner, D., Ehhalt, D. H., Pätz, H. W., Platt, U., Röth, E. P., and
Volz, A.: OH – Radicals in the lower troposphere, Geophys. Res. Lett., 3, 466–468, https://doi.org/10.1029/GL003i008p00466, 1976a.
Perner, D., Ehhalt, D. H., Pätz, H. W., Platt, U., Röth, E. P., and
Volz, A.: OH – Radicals in the lower troposphere, Geophys. Res. Lett., 3, 466–468, https://doi.org/10.1029/GL003i008p00466,
1976b.
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M.,
Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte,
M., Kotiyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin,
L., Ritz, C., Saltzman, E., and Stievenard, M.: Climate and atmospheric
history of the past 420,000 years from the Vostok ice core, Antarctica,
Nature, 399, 429–436, https://doi.org/10.1038/20859, 1999.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of
hygroscopic growth and cloud condensation nucleus activity, Atmos.
Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Pitts, J., Van Cauwenberghe, K., Grosjean, D., Schmid, J., Fitz, D., Belser,
W., Knudson, G., and Hynds, P.: Atmospheric reactions of polycyclic aromatic
hydrocarbons: facile formation of mutagenic nitro derivatives, Science, 202,
515–519, https://doi.org/10.1126/science.705341, 1978.
Pitts, J., N., Sanhueza, E., Atkinson, R., Carter, W. P. L., Winer, A. M.,
Harris, G. W., and Plum, C. N.: An investigation of the dark formation of
nitrous acid in environmental chambers, Int. J. Chem.
Kin., 16, 919–939, https://doi.org/10.1002/kin.550160712,
1984.
Platt, U. and Hönninger, G.: The role of halogen species in the
troposphere, Chemosphere, 52, 325–338, 2003.
Platt, U., Perner, D., and Paetz, H. W.: Simultaneous measurement of
atmospheric CH2O, O3, AND NO2 by differential optical
absorption, J. Geophys. Res., 84, 6329–6335,
https://doi.org/10.1029/JC084iC10p06329, 1979.
Platt, U., Perner, D., Winer, A. M., Harris, G. W., and Pitts Jr, J. N.:
Detection of NO3 in the polluted troposphere by differential optical
absorption, Geophys. Res. Lett., 7, 89–92, https://doi.org/10.1029/GL007i001p00089,
1980.
Porter, G. and Wright, F. J.: Studies of free radical reactivity by the methods of flash photolysis. The photochemical reaction between chlorine and oxygen, Discuss. Faraday Soc., 14, 23–34, https://doi.org/10.1039/DF9531400023, 1953.
Prather, M. J.: Lifetimes and eigenstates in atmospheric chemistry,
Geophys. Res. Lett., 21, 801–804, https://doi.org/10.1029/94GL00840, 1994.
Prather, M. J.: Time scales in atmospheric chemistry: Theory, GWPs for
CH4 and CO, and runaway growth, Geophys. Res. Lett., 23,
2597–2600, https://doi.org/10.1029/96GL02371, 1996.
Preining, O., and Davis, E. J.: History of Aerosol Science, Symposium on the
History of Aerosol Science, Vienna, Austria, 1999.
Prinn, R. G., Weiss, R. F., Miller, B. R., Huang, J., Alyea, F. N., Cunnold,
D. M., Fraser, P. J., Hartley, D. E., and Simmonds, P. G.: Atmospheric
trends and lifetime of CH3CCl3 and global OH concentrations,
Science, 269, 187–192, https://doi.org/10.1126/science.269.5221.187, 1995.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J.,
Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang,
R. H. J., Porter, L., and Miller, B. R.: Evidence for substantial variations
of atmospheric hydroxyl radicals in the past two decades, Science, 292,
1882–1888, https://doi.org/10.1126/science.1058673, 2001.
Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E.:
Environmental characterization of global sources of atmospheric soil dust
identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
absorbing aerosol product, Rev. Geophys., 40, 1002,
https://doi.org/10.1029/2000RG000095, 2002.
Quinn, P. K. and Bates, T. S.: The case against climate regulation via
oceanic phytoplankton sulphur emissions, Nature, 480, 51–56,
https://doi.org/10.1038/nature10580, 2011.
Ramanathan, V., Cicerone, R. J., Singh, H. B., and Kiehl, J. T.: Trace gas
trends and their potential role in climate change, J. Geophys. Res., 90, 5547–5566, https://doi.org/10.1029/JD090iD03p05547, 1985.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Atmosphere
– Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124,
https://doi.org/10.1126/science.1064034, 2001.
Rasmussen, R. and Went, F. W.: Volatile organic matter of plant origin in
the atmosphere, Science, 144, p. 566, https://doi.org/10.1126/science.144.3618.566-a, 1964.
Ravishankara, A. R.: Heterogeneous and multiphase chemistry in the
troposphere, Science, 276, 1058–1065, https://doi.org/10.1126/science.276.5315.1058, 1997.
Ravishankara, A. R.: Introduction: Atmospheric ChemistryLong-Term Issues,
Chem. Rev., 103, 4505–4508, https://doi.org/10.1021/cr020463i, 2003.
Ravishankara, A. R., Hancock, G., Kawasaki, M., and Matsumi, Y.:
Photochemistry of ozone: Surprises and recent lessons, Science, 280, 60–61,
https://doi.org/10.1126/science.280.5360.60, 1998.
Ravishankara, A. R., Dunlea, E. J., Blitz, M. A., Dillon, T. J., Heard, D.
E., Pilling, M. J., Strekowski, R. S., Nicovich, J. M., and Wine, P. H.:
Redetermination of the rate coefficient for the reaction of O(1D) with
N2, Geophys. Res. Lett., 29, 1745–1748,
https://doi.org/10.1029/2002GL014850, 2002.
Ravishankara, A. R., Rudich, Y., and Pyle, J. A.: Role of Chemistry in
Earth's Climate, Chem. Rev., 115, 3679–3681,
https://doi.org/10.1021/acs.chemrev.5b00226, 2015.
Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V.
E., Heard, D. E., Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C.,
Mendes, L., McQuaid, J. B., Oetjen, H., Saiz-Lopez, A., Pilling, M. J., and
Plane, J. M. C.: Extensive halogen-mediated ozone destruction over the
tropical Atlantic Ocean, Nature, 453, 1232–1235, 2008.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T.
F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products,
and validation, J. Atmos. Sci., 62, 947–973,
https://doi.org/10.1175/JAS3385.1, 2005.
Reynolds, S. D., Roth, P. M., and Seinfeld, J. H.: Mathematical modeling of
photochemical air pollution – I: Formulation of the model, Atmos. Environ. (1967), 7, 1033–1061, https://doi.org/10.1016/0004-6981(73)90214-X, 1973.
Reynolds, S. D., Liu, M.-K., Hecht, T. A., Roth, P. M., and Seinfeld, J. H.:
Mathematical modeling of photochemical air pollution – III. Evaluation of
the model, Atmos. Environ. (1967), 8, 563–596, https://doi.org/10.1016/0004-6981(74)90143-7, 1974.
Richter, A., Burrows, J. P., Nuss, H., Granier, C., and Niemeier, U.:
Increase in tropospheric nitrogen dioxide over China observed from space,
Nature, 437, 129–132, https://doi.org/10.1038/nature04092, 2005.
Robbin, M. L. and Damschen, D. E.: Aqueous oxidation of sulfur dioxide by
hydrogen peroxide at low pH, Atmos. Environ. (1967), 15, 1615–1621,
https://doi.org/10.1016/0004-6981(81)90146-3, 1981.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage,
A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.:
Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging,
Science, 315, 1259–1262, https://doi.org/10.1126/science.1133061, 2007.
Roth, P. M., Roberts, P. J. W., Mei-Kao, L., Reynolds, S. D., and Seinfeld,
J. H.: Mathematical modeling of photochemical air pollution – II. A model
and inventory of pollutant emissions, Atmos. Environ. (1967), 8,
97–130, https://doi.org/10.1016/0004-6981(74)90023-7, 1974.
Sanadze, G. A.: The nature of gaseous substances emitted by leaves of
Robinia pseudoacacia, Soobshch Akad Nauk Gruz SSR, 19, 83–86, 1957.
Sanadze, G. A. and Kursanov, A. N.: Light and temperature curves of the
evolution of C5H8, Fiziol. Rast., 13, 458–461, 1966.
Sander, S. P., Friedl, R. R., and Yung, Y. L.: Rate of formation of the ClO
dimer in the polar stratosphere: Implications for ozone loss, Science, 245,
1095–1098, https://doi.org/10.1126/science.245.4922.1095, 1989.
Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, https://doi.org/10.5194/acp-3-161-2003, 2003.
Schroeder, W. H. and Urone, P.: Formation of nitrosyl chloride from salt
particles in air, Environ. Sci. Technol., 8, 756–758,
https://doi.org/10.1021/es60093a015, 1974.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, 2nd Edn., Wiley, 2006.
Seitzinger, S. P., Gaffney, O., Brasseur, G., Broadgate, W., Ciais, P.,
Claussen, M., Erisman, J. W., Kiefer, T., Lancelot, C., Monks, P. S., Smyth,
K., Syvitski, J., and Uematsu, M.: International Geosphere–Biosphere
Programme and Earth system science: Three decades of co-evolution,
Anthropocene, 12, 3–16, https://doi.org/10.1016/j.ancene.2016.01.001, 2015.
Sharkey, T. D. and Monson, R. K.: Isoprene research – 60 years later, the
biology is still enigmatic, Plant Cell Environ., 40, 1671–1678,
https://doi.org/10.1111/pce.12930, 2017.
Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann,
M., Klimont, Z., Anenberg, S. C., Muller, N., Janssens-Maenhout, G., Raes,
F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K.,
Höglund-Isaksson, L., Emberson, L., Streets, D., Ramanathan, V., Hicks,
K., Oanh, N. T. K., Milly, G., Williams, M., Demkine, V., and Fowler, D.:
Simultaneously Mitigating Near-Term Climate Change and Improving Human
Health and Food Security, Science, 335, 183–189, https://doi.org/10.1126/science.1210026,
2012.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/s1352-2310(98)00345-8, 1999.
Sillman, S. and He, D.: Some theoretical results concerning O3-NOx-VOC
chemistry and NOx-VOC indicators, J. Geophys. Res.-Atmos., 107, 4659, https://doi.org/10.1029/2001JD001123, 2002.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O.,
Fraser, M. P., Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for
cellulose in biomass burning and atmospheric particles, Atmos. Environ., 33, 173–182, https://doi.org/10.1016/S1352-2310(98)00145-9, 1999.
Singer, B. C. and Harley, R. A.: A Fuel-Based Motor Vehicle Emission
Inventory, J. Air Waste Manag. Assoc., 46, 581–593,
https://doi.org/10.1080/10473289.1996.10467492, 1996.
Singh, H. B.: Preliminary estimation of average tropospheric HO
concentrations in the northern and southern hemispheres, Geophys. Res. Lett., 4, 453–456, https://doi.org/10.1029/GL004i010p00453, 1977.
Singh, H. B. and Hanst, P. L.: Peroxyacetyl nitrate (PAN) in the unpolluted
atmosphere: An important reservoir for nitrogen oxides, Geophys. Res. Lett., 8, 941–944, https://doi.org/10.1029/GL008i008p00941, 1981.
Sinha, M. P.: Laser-induced volatilization and ionization of microparticles,
Rev. Sci. Instr., 55, 886–891, https://doi.org/10.1063/1.1137851, 1984.
Solomon, S., Garcia, R. R., Rowland, F. S., and Wuebbles, D. J.: On the
depletion of Antarctic ozone, Nature, 321, 755–758, https://doi.org/10.1038/321755a0, 1986.
Spicer, C. W., Chapman, E. G., Finlayson-Pitts, B. J., Plastridge, R. A.,
Hubbe, J. M., Fast, J. D., and Berkowitz, C. M.: Unexpectedly high
concentrations of molecular chlorine in coastal air, Nature, 394, 353–356,
https://doi.org/10.1038/28584, 1998.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.
Sportisse, B.: Fundamentals in Air Pollution, Springer, 293 pp., 2010.
Stelson, A. W., Friedlander, S. K., and Seinfeld, J. H.: A note on the
equilibrium relationship between ammonia and nitric acid and particulate
ammonium nitrate, Atmos. Environ. (1967), 13, 369–371,
https://doi.org/10.1016/0004-6981(79)90293-2, 1979.
Stelson, A. W. and Seinfeld, J. H.: Thermodynamic prediction of the water
activity, NH4NO3 dissociation constant, density and refractive
index for the NH4NO3-(NH4)2SO4-H2O system at
25 ∘C, Atmos. Environ. (1967), 16, 2507–2514,
https://doi.org/10.1016/0004-6981(82)90142-1, 1982.
Stern, A. C.: Air Pollution, 2nd Edn., Academic Press, New York, 1968.
Stevens, P. S., Mather, J. H., and Brune, W. H.: Measurement of tropospheric
OH and HO2 by laser-induced fluorescence at low pressure, J. Geophys. Res., 99, 3543–3557, https://doi.org/10.1029/93JD03342, 1994.
Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije,
T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N.,
Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent,
R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M.,
Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C.,
Lamarque, J. F., Lawrence, M. G., Montanaro, V., Muller, J. F., Pitari, G.,
Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G.,
Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.:
Multimodel ensemble simulations of present-day and near-future tropospheric
ozone, J. Geophys. Res.-Atmos., 111, D08301, https://doi.org/10.1029/2005jd006338, 2006.
Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
air quality modeling, J. Geophys. Res.-Atmos., 95,
16343–16367, https://doi.org/10.1029/JD095iD10p16343, 1990.
Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S.: A new mechanism
for regional atmospheric chemistry modeling, J. Geophys. Res.-Atmos., 102, 25847–25879, https://doi.org/10.1029/97jd00849, 1997.
Stohl, A. and Trickl, T.: A text book example of long range transport:
simultaneous observation of ozone maxima of stratospheric and North American
origin in the FT over Europe, J. Geophys. Res., 104, 30445–430462, 1999.
Stohl, A., Eckhardt, S., Forster, C., James, P., and Spichtinger, N.: On the
pathways and timescales of intercontinental air pollution transport, J. Geophys. Res.-Atmos., 107, 4684, https://doi.org/10.1029/2001JD001396, 2002.
Stohl, A., Bonasoni, P., Cristofanelli, P., Collins, W., Feichter, J.,
Frank, A., Forster, C., Gerasopoulos, E., Gäggeler, H., James, P.,
Kentarchos, T., Kromp-Kolb, H., Krüger, B., Land, C., Meloen, J.,
Papayannis, A., Priller, A., Seibert, P., Sprenger, M., Roelofs, G. J.,
Scheel, H. E., Schnabel, C., Siegmund, P., Tobler, L., Trickl, T., Wernli,
H., Wirth, V., Zanis, P., and Zerefos, C.: Stratosphere-troposphere
exchange: A review, and what we have learned from STACCATO, J. Geophys. Res.-Atmos., 108, 8516, https://doi.org/10.1029/2002jd002490, 2003.
Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G.: Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474, https://doi.org/10.5194/acp-5-2461-2005, 2005.
Stolarski, R. S. and Cicerone, R. J.: Stratospheric Chlorine: a Possible
Sink for Ozone, Can. J. Chem., 52, 1610–1615,
https://doi.org/10.1139/v74-233, 1974.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer
Academic, Dordrecht, 1988.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L.,
Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J.
H.: Reactive intermediates revealed in secondary organic aerosol formation
from isoprene, P. Natl. Acad. Sci. USA, 107,
6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Sutton, M. A., Howard, C. M., Erisman, J. W., Billen, G., Bleeker, A.,
Grenfelt, P., Grinsven, H. v., and Grizzetti, B.: The European Nitrogen
Assessment: Sources, Effects and Policy Perspectives, Cambridge University
Press, Cambridge, 664 pp., 2011.
Thompson, A. M., Doddridge, B. G., Witte, J. C., Hudson, R. D., Luke, W. T.,
Johnson, J. E., Johnson, B. J., Oltmans, S. J., and Weller, R.: A tropical
atlantic paradox: Shipboard and satellite views of a tropospheric ozone
maximum and wave-one in January-February 1999, Geophys. Res. Lett.,
27, 3317–3320, https://doi.org/10.1029/1999GL011273, 2000.
Thompson, A. M., Witte, J. C., Oltmans, S. J., Schmidlin, F. J., Logan, J.
A., Fujiwara, M., Kirchhoff, V. W. J. H., Posny, F., Coetzee, G. J. R.,
Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J. P. F., and Kelder, H. M.:
Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical
ozone climatology 2. Tropospheric variability and the zonal wave-one,
J. Geophys. Res.-Atmos., 108, 8241, https://doi.org/10.1029/2002JD002241,
2003.
Thornton, J. and Abbatt, J. P. D.: Measurements of HO2 uptake to
aqueous aerosol: Mass accomodation coefficients and net reactive loss,
J. Geophys. Res.-Atmos., 110, 1-12,
https://doi.org/10.1029/2004JD005402, 2005.
Thouret, V., Marenco, A., Logan, J. A., Nédélec, P., and Grouhel,
C.: Comparisons of ozone measurements from the MOZAIC airborne program and
the ozone sounding network at eight locations, J. Geophys. Res.-Atmos., 103, 25695–25720, https://doi.org/10.1029/98JD02243, 1998.
Tingey, D. T., Manning, M., Grothaus, L. C., and Burns, W. F.: The Influence
of Light and Temperature on Isoprene Emission Rates from Live Oak,
Physiol. Plantarum, 47, 112–118, https://doi.org/10.1111/j.1399-3054.1979.tb03200.x, 1979.
Tolbert, M. A., Rossi, M. J., Malhotra, R., and Golden, D. M.: Reaction of
chlorine nitrate with hydrogen chloride and water at antarctic stratospheric
temperatures, Science, 238, 1258–1260, https://doi.org/10.1126/science.238.4831.1258, 1987.
Troe, J.: Predictive possibilities of unimolecular rate theory, J. Phys. Chem., 83, 114–126, https://doi.org/10.1021/j100464a019, 1979.
Troe, J.: The Polanyi lecture. The colourful world of complex-forming
bimolecular reactions, Journal of the Chemical Society, Farad.
Trans., 90, 2303–2317, https://doi.org/10.1039/FT9949002303, 1994.
Trolier, M., Mauldin Iii, R. L., and Ravishankara, A. R.: Rate coefficient
for the termolecular channel of the self-reaction of ClO, J. Phys. Chem., 94, 4896–4907, https://doi.org/10.1021/j100375a027, 1990.
Turco, R. P., Toon, O. B., Ackerman, T. P., Pollack, J. B., and Sagan, C.:
Nuclear winter: Global consequences of multiple nuclear explosions, Science,
222, 1283–1292, https://doi.org/10.1126/science.222.4630.1283, 1983.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ.
(1967), 8, 1251-1256, https://doi.org/10.1016/0004-6981(74)90004-3, 1974.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1152, 1977.
Tyndall, J.: The Bakerian Lecture: On the Absorption and Radiation of Heat
by Gases and Vapours, and on the Physical Connexion of Radiation,
Absorption, and Conduction, Philos. T. Ro. Soc.
Lond., 151, 1–36, 1861.
Urone, P. and Schroeder, W. H.: SO2 in the atmosphere: A wealth of
monitoring data, but few reaction rate studies, Environ. Sci. Technol., 3, 436–445, https://doi.org/10.1021/es60028a006, 1969.
Vaghjiani, G. L. and Ravishankara, A. R.: New measurement of the rate
coefficient for the reaction of OH with methane, Nature, 350, 406–409,
https://doi.org/10.1038/350406a0, 1991.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, https://doi.org/10.5194/acp-6-3423-2006, 2006.
Van Der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., Defries, R. S., Jin, Y., and Van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem.
Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
van Donkelaar, A., Martin, R. V., and Park, R. J.: Estimating ground-level
PM2.5 using aerosol optical depth determined from satellite remote sensing,
J. Geophys. Res.-Atmos., 111, D21201, https://doi.org/10.1029/2005jd006996,
2006.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirilä, P.,
Leskinen, J., Mäkelä, J. M., Holopainen, J. K., Pöschl, U.,
Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of
biogenic secondary organic aerosol particles, Nature, 467, 824–827,
https://doi.org/10.1038/nature09455, 2010.
Vogt, R., Crutzen, P. J., and Sander, R.: A mechanism for halogen release
from sea-salt aerosol in the remote marine boundary layer, Nature, 383,
327–330, 1996.
Volz, A. and Kley, D.: Evaluation of the Montsouris Series of Ozone
Measurements Made in the 19th-Century, Nature, 332, 240–242, 1988.
von Glasow, R.: Pollution meets sea salt, Nat. Geosci., 1, 292,
https://doi.org/10.1038/ngeo192, 2008.
von Glasow, R. and Crutzen, P. J.: Tropospheric halogen chemistry in:
Treatise on Geochemistry, edited by: Holland, H. D. and Turekian, K. K.,
Elsevier-Pergamon, Oxford, 1–67, 2007.
von Schneidemesser, E., Monks, P. S., Allan, J. D., Bruhwiler, L., Forster,
P., Fowler, D., Lauer, A., Morgan, W. T., Paasonen, P., Righi, M.,
Sindelarova, K., and Sutton, M. A.: Chemistry and the Linkages between Air
Quality and Climate Change, Chem. Rev., 115, 3856–3897,
https://doi.org/10.1021/acs.chemrev.5b00089, 2015.
Wang, C. C., Davis, L. I., Wu, C. H., Japar, S., Niki, H., and Weinstock,
B.: Hydroxyl Radical Concentrations Measured in Ambient Air, Science, 189,
797–800, https://doi.org/10.1126/science.189.4205.797, 1975.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived
aerosol optical thickness and PM2.5 mass: Implications for air quality
studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Wayne, R. P.: Chemistry of Atmospheres, 3rd Edn., Oxford University Press, Oxford, 2000.
Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-mas, C. E.,
Hjorth, J., LeBras, G., Moortgat, G. K., Perner, D., Poulet, G., Restelli,
G., and Sidebottom, H.: The Nitrate Radical – Physics, Chemistry, and the
Atmosphere, Atmos. Environ. Pt. A, 25, 1–203, 1991.
Weinstock, B.: Carbon monoxide: Residence time in the atmosphere, Science,
166, 224–225, https://doi.org/10.1126/science.166.3902.224, 1969.
Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J.,
Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of
Criegee intermediate (CH2OO) formed by reaction of CH2I with
O2, Science, 335, 204–207, 2012.
Went, F. W.: Blue Hazes in the Atmosphere, Nature, 187, 641–643,
https://doi.org/10.1038/187641a0, 1960.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ.
(1967), 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Whitby, K. T.: The physical characteristics of sulfur aerosols, Atmos. Environ. (1967), 12, 135–159, https://doi.org/10.1016/0004-6981(78)90196-8, 1978.
Wild, O., Zhu, X., and Prather, M. J.: Fast-J: Accurate simulation of in-
and below-cloud photolysis in tropospheric chemical models, J.
Atmos. Chem., 37, 245–282, https://doi.org/10.1023/A:1006415919030, 2000.
Williams, M.: Air pollution and policy – 1952–2002, Sci. Total
Environ., 334/335, 15–20, https://doi.org/10.1016/j.scitotenv.2004.04.026, 2004.
WMO: WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016–2023, WMO, Geneva, 2017.
Yienger, J. J. and Levy II, H.: Empirical model of global soil-biogenic
NOχ emissions, J. Geophys. Res.-Atmos., 100,
11447–11464, https://doi.org/10.1029/95jd00370, 1995.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H.,
Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Suni, Y. L.,
Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch,
T., Jayne, J., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K.,
Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J.,
Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and
dominance of oxygenated species in organic aerosols in
anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res.
Lett., 34, L13801, https://doi.org/10.1029/ 2007GL029979, 2007.
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current
status, and outlook, Atmos. Chem. Phys., 8, 2895–2932,
https://doi.org/10.5194/acp-8-2895-2008, 2008.
Short summary
Which published papers have transformed our understanding of the chemical processes in the troposphere and shaped the field of atmospheric chemistry? We explore how these papers have shaped the development of the field of atmospheric chemistry and identify the major landmarks in the field of atmospheric chemistry through the lens of those papers' impact on science, legislation and environmental events.
Which published papers have transformed our understanding of the chemical processes in the...
Altmetrics
Final-revised paper
Preprint