Articles | Volume 20, issue 12
https://doi.org/10.5194/acp-20-7307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-20-7307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Cloud condensation nuclei characteristics during the Indian summer monsoon over a rain-shadow region
Venugopalan Nair Jayachandran
CORRESPONDING AUTHOR
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Mercy Varghese
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Palani Murugavel
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Kiran S. Todekar
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Shivdas P. Bankar
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Neelam Malap
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Gurnule Dinesh
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Pramod D. Safai
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Jaya Rao
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Mahen Konwar
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Shivsai Dixit
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Thara V. Prabha
Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India
Related authors
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Mukunda Madhab Gogoi, Venugopalan Nair Jayachandran, Aditya Vaishya, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 8593–8610, https://doi.org/10.5194/acp-20-8593-2020, https://doi.org/10.5194/acp-20-8593-2020, 2020
Short summary
Short summary
Extensive airborne measurements of aerosol number–size distribution and black carbon (BC) profiles are carried out for the first time across the IGP prior to the onset of the Indian summer monsoon. These measurements, combined with spaceborne sensors and model results, provided an east–west transect of the role of mineral dust (local and transported) in the aerosol loading across the IGP, with an increase in coarse mode concentration and coarse mode mass fraction with altitude.
Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Sobhan Kumar Kompalli, Mukunda M. Gogoi, and S. Suresh Babu
Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, https://doi.org/10.5194/acp-20-3135-2020, 2020
Short summary
Short summary
Extensive measurements of the aerosol and cloud condensation nuclei (CCN) properties in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. At high supersaturations, most of the aerosols in the South Asian outflow become activated as CCN, whereas the aerosol system over the equatorial Indian Ocean is less CCN efficient even at higher supersaturations.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
Aditya Vaishya, Surendran Nair Suresh Babu, Venugopalan Jayachandran, Mukunda M. Gogoi, Naduparambil Bharathan Lakshmi, Krishnaswamy Krishna Moorthy, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, https://doi.org/10.5194/acp-18-17669-2018, 2018
Short summary
Short summary
Aircraft-based measurements of vertical profiles of aerosol properties, across the Indo-Gangetic Plain (IGP), prior to onset of the Indian summer monsoon reveal a highly absorbing aerosol system over the IGP. Aerosols over the west IGP are mostly natural, larger in size and scatter light efficiently. Those over the central and eastern IGP are mostly anthropogenic in origin, smaller in size and absorb more light. Elevated absorbing aerosol layers may modulate regional precipitation patterns.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Nair Krishnan Kala, Narayana Sarma Anand, Mohanan R. Manoj, Srinivasan Prasanth, Harshavardhana S. Pathak, Thara Prabhakaran, Pramod D. Safai, Krishnaswamy K. Moorthy, and Sreedharan K. Satheesh
Atmos. Chem. Phys., 23, 12801–12819, https://doi.org/10.5194/acp-23-12801-2023, https://doi.org/10.5194/acp-23-12801-2023, 2023
Short summary
Short summary
We present a 3D data set of aerosol black carbon over the Indian mainland by assimilating data from surface, aircraft, and balloon measurements, along with multi-satellite observations. Radiative transfer computations using height-resolved aerosol absorption show higher warming in the free troposphere and will have large implications for atmospheric stability. This data set will help reduce the uncertainty in aerosol radiative effects in climate model simulations over the Indian region.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Mukunda Madhab Gogoi, Venugopalan Nair Jayachandran, Aditya Vaishya, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 8593–8610, https://doi.org/10.5194/acp-20-8593-2020, https://doi.org/10.5194/acp-20-8593-2020, 2020
Short summary
Short summary
Extensive airborne measurements of aerosol number–size distribution and black carbon (BC) profiles are carried out for the first time across the IGP prior to the onset of the Indian summer monsoon. These measurements, combined with spaceborne sensors and model results, provided an east–west transect of the role of mineral dust (local and transported) in the aerosol loading across the IGP, with an increase in coarse mode concentration and coarse mode mass fraction with altitude.
Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Sobhan Kumar Kompalli, Mukunda M. Gogoi, and S. Suresh Babu
Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, https://doi.org/10.5194/acp-20-3135-2020, 2020
Short summary
Short summary
Extensive measurements of the aerosol and cloud condensation nuclei (CCN) properties in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. At high supersaturations, most of the aerosols in the South Asian outflow become activated as CCN, whereas the aerosol system over the equatorial Indian Ocean is less CCN efficient even at higher supersaturations.
Venugopalan Nair Jayachandran, Surendran Nair Suresh Babu, Aditya Vaishya, Mukunda M. Gogoi, Vijayakumar S. Nair, Sreedharan Krishnakumari Satheesh, and Krishnaswamy Krishna Moorthy
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, https://doi.org/10.5194/acp-20-561-2020, 2020
Short summary
Short summary
Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCNs), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the 2016 Indian summer monsoon (ISM). A high CCN concentration is observed up to 2.5 km across the IGP, indicating the significant possibility of aerosol indirect effects.
Aditya Vaishya, Surendran Nair Suresh Babu, Venugopalan Jayachandran, Mukunda M. Gogoi, Naduparambil Bharathan Lakshmi, Krishnaswamy Krishna Moorthy, and Sreedharan Krishnakumari Satheesh
Atmos. Chem. Phys., 18, 17669–17685, https://doi.org/10.5194/acp-18-17669-2018, https://doi.org/10.5194/acp-18-17669-2018, 2018
Short summary
Short summary
Aircraft-based measurements of vertical profiles of aerosol properties, across the Indo-Gangetic Plain (IGP), prior to onset of the Indian summer monsoon reveal a highly absorbing aerosol system over the IGP. Aerosols over the west IGP are mostly natural, larger in size and scatter light efficiently. Those over the central and eastern IGP are mostly anthropogenic in origin, smaller in size and absorb more light. Elevated absorbing aerosol layers may modulate regional precipitation patterns.
Lois Thomas, Neelam Malap, Wojciech W. Grabowski, Kundan Dani, and Thara V. Prabha
Atmos. Chem. Phys., 18, 7473–7488, https://doi.org/10.5194/acp-18-7473-2018, https://doi.org/10.5194/acp-18-7473-2018, 2018
Short summary
Short summary
A thermodynamic parcel analysis of several high-resolution soundings from Pune, India, investigating pre-monsoon and monsoon conditions, is carried out in this study. A simple theoretical approach for cloud base height estimation is illustrated. Results illustrate the role of surface forcing in contrasting conditions of the pre-monsoon and monsoon. Large eddy simulations, observational data, and theoretical explanation are presented.
Vasudevan Anil Kumar, Govindan Pandithurai, Parakkatt Parambil Leena, Kundan K. Dani, Palani Murugavel, Sunil M. Sonbawne, Rohit D. Patil, and Rajamma Sukumaran Maheskumar
Atmos. Chem. Phys., 16, 8423–8430, https://doi.org/10.5194/acp-16-8423-2016, https://doi.org/10.5194/acp-16-8423-2016, 2016
Short summary
Short summary
The effect of atmospheric aerosols on cloud properties is not very well understood in the Indian region, especially over Western Ghats, which is influenced by natural and anthropogenic aerosols. Collocated measurements of aerosol and cloud properties were used to estimate aerosol indirect effects using two methods: one with cloud drop number concentration and the other with cloud droplet size. Discrepancy between both methods is discussed, and the necessity of dispersion offset is emphasized.
W. W. Grabowski, L.-P. Wang, and T. V. Prabha
Atmos. Chem. Phys., 15, 913–926, https://doi.org/10.5194/acp-15-913-2015, https://doi.org/10.5194/acp-15-913-2015, 2015
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Ice-nucleating particles active below -24 °C in a Finnish boreal forest and their relationship to bioaerosols
Atmospheric Black Carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Aerosol Size Distribution Properties Associated with Cold-Air Outbreaks in the Norwegian Arctic
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Long range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
Measurement report: In-situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Emerging extreme Saharan-dust events expand northward over the Atlantic and Europe prompting record-breaking PM10 and PM2.5 episodes
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Variations of the atmospheric polycyclic aromatic hydrocarbon concentrations, sources, and health risk and the direct medical costs of lung cancer around the Bohai Sea against a background of pollution prevention and control in China
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei and radiative forcing: Results from five-year observations in Central Europe
Characterization of aerosol over the Eastern Mediterranean by polarization sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Changing optical properties of Black Carbon and Brown Carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Introducing the novel concept of cumulative concentration roses for studying the transport of ultrafine particles from an airport to adjacent residential areas
Significant spatial gradients in new particle formation frequency in Greece during summer
Impact of desert dust on new particle formation events and the cloud condensation nuclei budget in dust-influenced areas
Active thermokarst regions contain rich sources of ice-nucleating particles
Examining the vertical heterogeneity of aerosols over the Southern Great Plains
Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic
Opinion: The strength of long-term comprehensive observations to meet multiple grand challenges in different environments and in the atmosphere
Measurement report: Size-resolved mass concentration of equivalent black carbon-containing particles larger than 700 nm and their role in radiation
Aerosol absorption using in situ filter-based photometers and ground-based sun photometry in the Po Valley urban atmosphere
Aerosol and dynamical contributions to cloud droplet formation in Arctic low-level clouds
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
EGUsphere, https://doi.org/10.5194/egusphere-2024-1254, https://doi.org/10.5194/egusphere-2024-1254, 2024
Short summary
Short summary
Sea spray aerosol whipped up from the sea surface, is an important compound of the atmospheric boundary layer. Our research provides new insights into the study of sea spray emission in the Baltic Sea and North Atlantic. We investigated the impact of environmental factors on sea spray fluxes. We observed that in case of increased marine biological activity in the Baltic Sea, sea spray flux is suppressed. We also observed evidence of sea surface temperature influence on sea spray emission.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
EGUsphere, https://doi.org/10.5194/egusphere-2024-1272, https://doi.org/10.5194/egusphere-2024-1272, 2024
Short summary
Short summary
Ice nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known concerning the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer, and occasionally reach the free troposphere.
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Rebecca Katharina Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Satoru Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
EGUsphere, https://doi.org/10.5194/egusphere-2024-1224, https://doi.org/10.5194/egusphere-2024-1224, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
EGUsphere, https://doi.org/10.5194/egusphere-2024-880, https://doi.org/10.5194/egusphere-2024-880, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) during the FIREX-AQ campaign. This study revealed the compositions, abundance, sizes, and mixing states of TBs and showed that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass burning and ages and enhances the knowledge of TB emissions and our understanding of their climate impact.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
EGUsphere, https://doi.org/10.5194/egusphere-2024-853, https://doi.org/10.5194/egusphere-2024-853, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties, hence it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INP we observe are, at least some of the time, of biological origin.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Widensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
EGUsphere, https://doi.org/10.5194/egusphere-2024-770, https://doi.org/10.5194/egusphere-2024-770, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the southern hemisphere, especially in high-altitude conditions. This study provides insight on the concentration level, variability, and optical properties of BC in the cities of La Paz and El Alto, and at the station GAW Chacaltaya Mountain station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, additionally to biomass and open waste burning.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
EGUsphere, https://doi.org/10.5194/egusphere-2024-584, https://doi.org/10.5194/egusphere-2024-584, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentration, smaller Hoppel minima, lower effective supersaturations, and accumulation mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol-cloud interactions in order to improve their accurate representation in models.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Natalie Georgina Ratcliffe, Claire Louise Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Bernadett Weinzierl, Lisa-Maria Wieland, and Josef Gasteiger
EGUsphere, https://doi.org/10.5194/egusphere-2024-806, https://doi.org/10.5194/egusphere-2024-806, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
EGUsphere, https://doi.org/10.5194/egusphere-2024-733, https://doi.org/10.5194/egusphere-2024-733, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud-aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Sergio Rodríguez and Jessica López-Darias
EGUsphere, https://doi.org/10.5194/egusphere-2023-3083, https://doi.org/10.5194/egusphere-2023-3083, 2024
Short summary
Short summary
Extreme Saharan-dust events have expanded northward to the Atlantic and Europe, prompting the most intense PM10 and PM2.5 events ever recorded in the governmental air quality network of Spain. The events occurred during hemispheric anomalies characterised by subtropical anticyclones shifted to higher latitudes, anomalous low pressures expanding beyond the tropic and a mid-latitude amplified Rossby-waves undulation, resembling the circulation anomalies due to the anthropogenic global warming.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
EGUsphere, https://doi.org/10.5194/egusphere-2023-2359, https://doi.org/10.5194/egusphere-2023-2359, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine, and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. The NPF features differ between site categories, implying the crucial role of local environments such as degree of emissions and meteorological conditions. The results also underscore the importance of the local environments when assessing the impact of NPF on climate in models.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Krishnakant Budhavant, Mohanan Remani Manoj, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan K. Satheesh, and Orjan Gustafsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-104, https://doi.org/10.5194/egusphere-2024-104, 2024
Short summary
Short summary
The South Asian Pollution Experiment-2018 utilized access to 3 strategically located atmospheric receptor observatories. These observational constraints revealed opposite trends during long-range transport in BC-MAC and BrC-MAC. Models estimating the climate effects of particularly BC aerosols may have underestimated the ambient BC-MAC over distant and extensive receptor areas, which could contribute to the discrepancy between aerosol absorption predicted by models constrained by observations.
Julius Seidler, Markus N. Friedrich, Christoph K. Thomas, and Anke C. Nölscher
Atmos. Chem. Phys., 24, 137–153, https://doi.org/10.5194/acp-24-137-2024, https://doi.org/10.5194/acp-24-137-2024, 2024
Short summary
Short summary
Here, we study the transport of ultrafine particles (UFPs) from an airport to two new adjacent measuring sites for 1 year. The number of UFPs in the air and the diurnal variation are typical urban. Winds from the airport show increased number concentrations. Additionally, considering wind frequencies, we estimate that, from all UFPs measured at the two sites, 10 %–14 % originate from the airport and/or other UFP sources from between the airport and site.
Andreas Aktypis, Christos Kaltsonoudis, David Patoulias, Panayiotis Kalkavouras, Angeliki Matrali, Christina N. Vasilakopoulou, Evangelia Kostenidou, Kalliopi Florou, Nikos Kalivitis, Aikaterini Bougiatioti, Konstantinos Eleftheriadis, Stergios Vratolis, Maria I. Gini, Athanasios Kouras, Constantini Samara, Mihalis Lazaridis, Sofia-Eirini Chatoutsidou, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 65–84, https://doi.org/10.5194/acp-24-65-2024, https://doi.org/10.5194/acp-24-65-2024, 2024
Short summary
Short summary
Extensive continuous particle number size distribution measurements took place during two summers (2020 and 2021) at 11 sites in Greece for the investigation of the frequency and the spatial extent of new particle formation. The frequency during summer varied from close to zero in southwestern Greece to more than 60 % in the northern, central, and eastern regions. The spatial variability can be explained by the proximity of the sites to coal-fired power plants and agricultural areas.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Kevin R. Barry, Thomas C. J. Hill, Marina Nieto-Caballero, Thomas A. Douglas, Sonia M. Kreidenweis, Paul J. DeMott, and Jessie M. Creamean
Atmos. Chem. Phys., 23, 15783–15793, https://doi.org/10.5194/acp-23-15783-2023, https://doi.org/10.5194/acp-23-15783-2023, 2023
Short summary
Short summary
Ice-nucleating particles (INPs) are important for the climate due to their influence on cloud properties. To understand potential land-based sources of them in the Arctic, we carried out a survey near the northernmost point of Alaska, a landscape connected to the permafrost (thermokarst). Permafrost contained high concentrations of INPs, with the largest values near the coast. The thermokarst lakes were found to emit INPs, and the water contained elevated concentrations.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci
Atmos. Chem. Phys., 23, 15589–15607, https://doi.org/10.5194/acp-23-15589-2023, https://doi.org/10.5194/acp-23-15589-2023, 2023
Short summary
Short summary
Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Weilun Zhao, Ying Li, Gang Zhao, Song Guo, Nan Ma, Shuya Hu, and Chunsheng Zhao
Atmos. Chem. Phys., 23, 14889–14902, https://doi.org/10.5194/acp-23-14889-2023, https://doi.org/10.5194/acp-23-14889-2023, 2023
Short summary
Short summary
Studies have concentrated on particles containing black carbon (BC) smaller than 700 nm because of technical limitations. In this study, BC-containing particles larger than 700 nm (BC>700) were measured, highlighting their importance to total BC mass and absorption. The contribution of BC>700 to the BC direct radiative effect was estimated, highlighting the necessity to consider the whole size range of BC-containing particles in the model estimation of BC radiative effects.
Alessandro Bigi, Giorgio Veratti, Elisabeth Andrews, Martine Collaud Coen, Lorenzo Guerrieri, Vera Bernardoni, Dario Massabò, Luca Ferrero, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 23, 14841–14869, https://doi.org/10.5194/acp-23-14841-2023, https://doi.org/10.5194/acp-23-14841-2023, 2023
Short summary
Short summary
Atmospheric particles include compounds that play a key role in the greenhouse effect and air toxicity. Concurrent observations of these compounds by multiple instruments are presented, following deployment within an urban environment in the Po Valley, one of Europe's pollution hotspots. The study compares these data, highlighting the impact of ground emissions, mainly vehicular traffic and biomass burning, on the absorption of sun radiation and, ultimately, on climate change and air quality.
Ghislain Motos, Gabriel Freitas, Paraskevi Georgakaki, Jörg Wieder, Guangyu Li, Wenche Aas, Chris Lunder, Radovan Krejci, Julie Thérèse Pasquier, Jan Henneberger, Robert Oscar David, Christoph Ritter, Claudia Mohr, Paul Zieger, and Athanasios Nenes
Atmos. Chem. Phys., 23, 13941–13956, https://doi.org/10.5194/acp-23-13941-2023, https://doi.org/10.5194/acp-23-13941-2023, 2023
Short summary
Short summary
Low-altitude clouds play a key role in regulating the climate of the Arctic, a region that suffers from climate change more than any other on the planet. We gathered meteorological and aerosol physical and chemical data over a year and utilized them for a parameterization that help us unravel the factors driving and limiting the efficiency of cloud droplet formation. We then linked this information to the sources of aerosol found during each season and to processes of cloud glaciation.
Cited articles
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245,
1227–1230, 1989.
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol
optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556,
https://doi.org/10.5194/acp-9-543-2009, 2009.
Andreae, M. O. and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part
1. The nature and sources of cloud-active aerosols, Earth-Sci. Rev., 89, 13–41, 2008.
Anil Kumar, V., Pandithurai, G., Leena, P. P., Dani, K. K., Murugavel, P., Sonbawne,
S. M., Patil, R. D., and Maheskumar, R. S.: Investigation of aerosol indirect effects on monsoon
clouds using ground-based measurements over a high-altitude site in Western Ghats,
Atmos. Chem. Phys., 16, 8423–8430, https://doi.org/10.5194/acp-16-8423-2016, 2016.
Arnott, W. P., Hamasha, K., Moosmüller, H., Sheridan, P. J., and Ogren, J. A.:
Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a
photoacoustic instrument and 3-wavelength nephelometer, Aerosol Sci. Technol., 39, 17–29, 2005.
Asa-Awuku, A., Moore, R. H., Nenes, A., Bahreini, R., Holloway, J. S., Brock, C. A.,
Middlebrook, A. M., Ryerson, T., Jimenez, J., DeCarlo, P., Hecobian, A., Weber, R., Stickel, R.,
Tanner, D. J., and Huey, L. G.: Airborne cloud condensation nuclei measurements during the 2006
Texas Air Quality Study, J. Geophys. Res., 116, D11201, https://doi.org/10.1029/2010JD014874, 2011.
Asmi, E., Freney, E., Hervo, M., Picard, D., Rose, C., Colomb, A., and Sellegri, K.:
Aerosol cloud activation in summer and winter at puy-de-Dôme high altitude site in France,
Atmos. Chem. Phys., 12, 11589–11607, https://doi.org/10.5194/acp-12-11589-2012, 2012.
Babu, S. S. and Moorthy, K. K.: Aerosol black carbon over a tropical coastal station in
India, Geophys. Res. Lett., 29, 2098, https://doi.org/10.1029/2002GL015662, 2002.
Babu, S. S., Manoj, M. R., Moorthy, K. K., Gogoi, M. M., Nair, V. S., Kompalli, S. K.,
Satheesh, S. K., Niranjan, K., Ramagopal, K., Bhuyan, P. K., and Singh, D.: Trends in aerosol
optical depth over Indian region: Potential causes and impact indicators, J. Geophys. Res.-Atmos.,
118, 11794–11806, https://doi.org/10.1002/2013JD020507, 2013.
Babu, S. S., Kompalli, S. K., and Moorthy, K. K.: Aerosol number size distributions over
a coastal semi urban location: seasonal changes and ultrafine particle bursts, Sci. Total
Environ., 563, 351–365, 2016.
Bègue, N., Tulet, P., Pelon, J., Aouizerats, B., Berger, A., and Schwarzenboeck,
A.: Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008
campaign, Atmos. Chem. Phys., 15, 3497–3516, https://doi.org/10.5194/acp-15-3497-2015, 2015.
Bera, S. and Prabha, T. V.: Parameterization of Entrainment Rate and Mass Flux in
Continental Cumulus Clouds: Inference From Large Eddy Simulation, J. Geophys. Res. Atmos., 124,
13127–13139, https://doi.org/10.1029/2018JD031078, 2019.
Bhattu, D. and Tripathi, S. N.: Inter-seasonal variability in size-resolved CCN
properties at Kanpur, India, Atmos. Environ., 85, 161–168, 2014.
Bhattu, D. and Tripathi, S. N.: CCN closure study: Effects of aerosol chemical
composition and mixing state, J. Geophys. Res.-Atmos., 120, 766–783, 2015.
Birmili, W., Wiedensohler, A., Heintzenberg, J., and Lehmann, K.: Atmospheric particle
number size distribution in central Europe: Statistical relations to air masses and meteorology,
J. Geophys. Res.-Atmos., 106, 32005–32018, 2001.
Broekhuizen, K., Chang, R. Y.-W., Leaitch, W. R., Li, S.-M., and Abbatt, J. P. D.:
Closure between measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol
compositions in downtown Toronto, Atmos. Chem. Phys., 6, 2513–2524,
https://doi.org/10.5194/acp-6-2513-2006, 2006.
Burkart, J., Steiner, G., Reischl, G., and Hitzenberger, R.: Longterm study of cloud
condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna, Atmos. Environ., 45,
5751–5759, https://doi.org/10.1016/j.atmosenv.2011.07.022, 2011.
Chung, C. E., Kim, S.-W., Lee, M., Yoon, S.-C., and Lee, S.: Carbonaceous aerosol AAE
inferred from in-situ aerosol measurements at the Gosan ABC super site, and the implications for
brown carbon aerosol, Atmos. Chem. Phys., 12, 6173–6184, https://doi.org/10.5194/acp-12-6173-2012, 2012.
Cohard, J.-M., Pinty, J.-P., and Bedos, C.: Extending Twomey's analytical estimate of
nucleated cloud droplet concentrations from CCN spectra, J. Atmos. Sci., 55, 3348–3357, 1998.
Crosbie, E., Youn, J.-S., Balch, B., Wonaschütz, A., Shingler, T., Wang, Z.,
Conant, W. C., Betterton, E. A., and Sorooshian, A.: On the competition among aerosol number, size
and composition in predicting CCN variability: a multi-annual field study in an urbanized desert,
Atmos. Chem. Phys., 15, 6943–6958, https://doi.org/10.5194/acp-15-6943-2015, 2015.
Cubison, M. J., Ervens, B., Feingold, G., Docherty, K. S., Ulbrich, I. M., Shields, L.,
Prather, K., Hering, S., and Jimenez, J. L.: The influence of chemical composition and mixing
state of Los Angeles urban aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8,
5649–5667, https://doi.org/10.5194/acp-8-5649-2008, 2008.
Deng, Z. Z., Zhao, C. S., Ma, N., Liu, P. F., Ran, L., Xu, W. Y., Chen, J., Liang, Z.,
Liang, S., Huang, M. Y., Ma, X. C., Zhang, Q., Quan, J. N., Yan, P., Henning, S., Mildenberger,
K., Sommerhage, E., Schäfer, M., Stratmann, F., and Wiedensohler, A.: Size-resolved and bulk
activation properties of aerosols in the North China Plain, Atmos. Chem. Phys., 11, 3835–3846,
https://doi.org/10.5194/acp-11-3835-2011, 2011.
Deng, Z. Z., Zhao, C. S., Ma, N., Ran, L., Zhou, G. Q., Lu, D. R., and Zhou, X. J.: An
examination of parameterizations for the CCN number concentration based on in situ measurements of
aerosol activation properties in the North China Plain, Atmos. Chem. Phys., 13, 6227–6237,
https://doi.org/10.5194/acp-13-6227-2013, 2013.
Draxler, R. R. and Rolph, G. D.: HYSPLIT (HYbrid single-particle Lagrangian Integrated
Trajectory) model via NOAA ARL READY, NOAA Air Resources Laboratory: Silver Spring, MD, available
at: http://www.arl.noaa.gov/ready/hysplit4.html (last access: 2 June 2019), 2014.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz,
E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The
“dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading
compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Du, Z., Hu, M., Peng, J., Zhang, W., Zheng, J., Gu, F., Qin, Y., Yang, Y., Li, M., Wu,
Y., Shao, M., and Shuai, S.: Comparison of primary aerosol emission and secondary aerosol
formation from gasoline direct injection and port fuel injection vehicles, Atmos. Chem. Phys., 18,
9011–9023, https://doi.org/10.5194/acp-18-9011-2018, 2018.
Dumka, U. C., Bhattu, D., Tripathi, S. N., Kaskaoutis, D. G., and Madhavan, B. L.:
Seasonal inhomogeneity in cloud precursors over Gangetic Himalayan region during GVAX campaign,
Atmos. Res., 155, 158–175, 2015.
Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S.,
Chand, D., Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size Matters More
Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles, Science, 312, 1375–1378,
https://doi.org/10.1126/science.1125261, 2006.
Ervens, B., Feingold, G., and Kreidenweis, S. M.: Influence of water-soluble organic
carbon on cloud drop number concentration, J. Geophys. Res.-Atmos., 110, D18211,
https://doi.org/10.1029/2004JD005634, 2005.
Ervens, B., Cubison, M. J., Andrews, E., Feingold, G., Ogren, J. A., Jimenez, J. L.,
Quinn, P. K., Bates, T. S., Wang, J., Zhang, Q., Coe, H., Flynn, M., and Allan, J. D.: CCN
predictions using simplified assumptions of organic aerosol composition and mixing state: a
synthesis from six different locations, Atmos. Chem. Phys., 10, 4795–4807,
https://doi.org/10.5194/acp-10-4795-2010, 2010.
Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A.,
Martin, S. T., Yang, Y., Wang, J., Artaxo, P., and Barbosa, H. M.: Substantial convection and
precipitation enhancements by ultrafine aerosol particles, Science, 359, 411–418, 2018.
Fang, S., Han, Y., Chen, K., Lu, C., Yin, Y., Tan, H., Wang, J.: Parameterization and
comparative evaluation of the CCN number concentration on Mt. Huang, China, Atmos. Res., 181,
300–311, 2016.
Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation
parameterization for global climate models, J. Geophys. Res., 110, D11212,
https://doi.org/10.1029/2004JD005591, 2005.
Furutani, H., Dall'osto, M., Roberts, G. C., and Prather, K. A.:Assessment of the
relative importance of atmospheric aging on CCN activity derived from field observations,
Atmos. Environ., 42, 3130–3142, 2008.
Gayatri, K., Patade, S., and Prabha, T. V.: Aerosol–Cloud interaction in deep
convective clouds over the Indian Peninsula using spectral (bin) microphysics, J. Atmos. Sci., 74,
3145–3166, 2017.
Gelencser, A., Hoffer, A., Kiss, G., Tombacz, E., Kurdi, R., and Bencze, L.: In-situ
formation of light-absorbing organic matter in cloud water, J. Atmos. Chem., 45, 25–33, 2003.
Gogoi, M. M., Babu, S. S., Jayachandran, V., Moorthy, K. K., Satheesh, S. K., Naja, M.,
and Kotamarthi, V. R.: Optical properties and CCN activity of aerosols in a high-altitude
Himalayan environment: Results from RAWEX-GVAX, J. Geophys. Res.-Atmos., 120, 2453–2469, 2015.
Grossman, R. L. and Durran, D. R.: Interaction of low-level flow with the western Ghat
Mountains and offshore convection in the summer monsoon, Mon. Weather Rev., 112, 652–672, 1984.
Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez,
J. L., Artaxo, P., Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in
pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of
atmospheric aerosol composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575,
https://doi.org/10.5194/acp-9-7551-2009, 2009.
Gyawali, M., Arnott, W. P., Lewis, K., and Moosmüller, H.: In situ aerosol optics
in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of
absorbing and non-absorbing organic coatings on spectral light absorption, Atmos. Chem. Phys., 9,
8007–8015, https://doi.org/10.5194/acp-9-8007-2009, 2009.
Hansen, A. D. A., Rosen, H., and Novakov, T.: The aethalometer – an instrument for the
real-time measurement of optical absorption by aerosol particles, Sci. Total Env. 36, 191–196,
1984.
Hegg, D. A., Ferek, R. J., Hobbs, P. V., and Radke, L. F.:. Dimethyl sulfide and cloud
condensation nucleus correlations in the northeast Pacific Ocean, J. Geophys. Res.-Atmos., 96,
13189–13191. 1991.
Hitzenberger, R., Giebl, H., Petzold, A., Gysel, M., Nyeki, S., Weingartner, E.,
Baltensperger, U., and Wilson, C. W.: Properties of jet engine combustion particles during the
PartEmis experiment. Hygroscopic growth at supersaturated conditions, Geophys. Res. Lett., 30,
1779, https://doi.org/10.1029/2003GL017294, 2003.
Hoppel, W. A., Dinger, J. E., and Ruskin, R. E.: Vertical profiles of CCN at various
geographical locations, J. Atmos. Sci., 30, 1410–1420, 1973.
Hudson, J. G. and Xie, Y.: Vertical distributions of cloud condensation nuclei spectra
over the summertime northeast Pacific and Atlantic Oceans, J. Geophys. Res.-Atmos., 104,
30219–30229, 1999.
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK and New York, NY, USA, 2013.
Jayachandran, V., Nair, V. S., and Babu, S. S.: CCN characteristics over a tropical
coastal station during south-west monsoon: observations and closure studies, Atmos. Environ., 164,
299–308, 2017.
Jayachandran, V., Nair, V. S., and Babu, S. S.: CCN activation properties at a tropical
hill station in Western Ghats during south-west summer monsoon: Vertical heterogeneity,
Atmos. Res., 214, 36–45, 2018.
Jayachandran, V. N., Suresh Babu, S. N., Vaishya, A., Gogoi, M. M., Nair, V. S.,
Satheesh, S. K., and Krishna Moorthy, K.: Altitude profiles of cloud condensation nuclei
characteristics across the Indo-Gangetic Plain prior to the onset of the Indian summer monsoon,
Atmos. Chem. Phys., 20, 561–576, https://doi.org/10.5194/acp-20-561-2020, 2020.
Jefferson, A.: Empirical estimates of CCN from aerosol optical properties at four
remote sites, Atmos. Chem. Phys., 10, 6855–6861, https://doi.org/10.5194/acp-10-6855-2010, 2010.
Jurányi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L. and
Baltensperger, U.: A 17 month climatology of the cloud condensation nuclei number concentration at
the high alpine site Jungfraujoch, J. Geophys. Res.-Atmos., 116, D10204, https://doi.org/10.1029/2010JD015199, 2011.
Kalivitis, N., Kerminen, V.-M., Kouvarakis, G., Stavroulas, I., Bougiatioti, A., Nenes,
A., Manninen, H. E., Petäjä, T., Kulmala, M., and Mihalopoulos, N.: Atmospheric new
particle formation as a source of CCN in the eastern Mediterranean marine boundary layer,
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, 2015.
Kammermann, L., Gysel, M., Weingartner, E., Herich, H., Cziczo, D. J., Holst, T.,
Svenningsson, B., Arneth, A., and Baltensperger, U.: Subarctic atmospheric aerosol composition:
3. Measured and modeled properties of cloud condensation nuclei, J. Geophys. Res.-Atmos., 115,
D04202, https://doi.org/10.1029/2009JD012447, 2010.
Kanawade, V. P., Shika, S., Pöhlker, C., Rose, D., Suman, M. N. S., Gadhavi, H.,
Kumar, A., Nagendra, S. S., Ravikrishna, R., Yu, H., and Sahu, L. K.: Infrequent occurrence of new
particle formation at a semi-rural location, Gadanki, in tropical Southern India, Atmos. Environ.,
94, 264–273, 2014.
Khvorostyanov, V. I. and Curry, J. A.: Aerosol size spectra and CCN activity spectra:
Reconciling the lognormal, algebraic, and power laws, J. Geophys. Res., 111, D12202,
https://doi.org/10.1029/2005JD006532, 2006
Kim, S., Shen, S., Sioutas, C., Zhu, Y., and Hinds, W. C.: Size distribution and
diurnal and seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles
basin, J. Air Waste Manag. Assoc., 52, 297–307, 2002.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral
dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res.-Atmos.,
109, 208, https://doi.org/10.1029/2004JD004999, 2004.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Trans. Faraday
Soc., 32, 1152–1161, 1936.
Kompalli, S. K., Babu, S. S., Moorthy, K. K., Manoj, M. R., Kumar, N. K.,
Shaeb, K. H. B., and Joshi, A. K.: Aerosol black carbon characteristics over Central India:
Temporal variation and its dependence on mixed layer height, Atmos. Res., 147, 27–37, 2014.
Kompalli, S. K., Suresh Babu, S. N., Satheesh, S. K., Krishna Moorthy, K., Das, T.,
Boopathy, R., Liu, D., Darbyshire, E., Allan, J. D., Brooks, J., Flynn, M. J., and Coe, H.:
Seasonal contrast in size distributions and mixing state of black carbon and its association with
PM1.0 chemical composition from the eastern coast of India, Atmos. Chem. Phys., 20,
3965–3985, https://doi.org/10.5194/acp-20-3965-2020, 2020.
Komppula, M., Lihavainen, H., Hyvärinen, A. P., Kerminen, V. M., Panwar, T. S.,
Sharma, V. P., and Viisanen, Y.: Physical properties of aerosol particles at a Himalayan
background site in India, J. Geophys. Res.-Atmos., 114, D12202, https://doi.org/10.1029/2008JD011007, 2009.
Konwar, M., Maheskumar, R. S., Kulkarni, J. R., Freud, E., Goswami, B. N., and
Rosenfeld, D.: Aerosol control on depth of warm rain in convective clouds,
J. Geophys. Res.-Atmos., 117, D13204, https://doi.org/10.1029/2012JD017585, 2012.
Kulkarni, J. R., Maheskumar, R. S., Morwal, S. B., Padmakumari, B., Konwar, M.,
Deshpande, C. G., Joshi, R. R., Bhalwankar, R. V., Pandithurai, G., Safai, P. D., and
Narkhedkar, S. G.: The cloud aerosol interactions and precipitation enhancement experiment
(CAIPEEX): overview and preliminary results, Curr. Sci., 102, 413–425, 2012.
Kumar, R., Barth, M. C., Pfister, G. G., Nair, V. S., Ghude, S. D., and Ojha, N.: What
controls the seasonal cycle of black carbon aerosols in India?, J. Geophys. Res.-Atmos., 120,
7788–7812, https://doi.org/10.1002/2015JD023298, 2015.
Kuwata, M., Kondo, Y., and Takegawa, N.: Critical condensed mass for activation of
black carbon as cloud condensation nuclei in Tokyo, J. Geophys. Res.-Atmos., 114,
D20202, https://doi.org/10.1029/2009JD012086, 2009.
Laaksonen, A., Korhonen, P., Kulmala, M., and Charlson, R. J.: Modification of the
Köhler equation to include soluble trace gases and slightly soluble substances,
J. Atmos. Sci., 55, 853–862, 1998.
Lammel, G. and Novakov, T.: Water nucleation properties of carbon black and diesel soot
particles, Atmos. Environ., 29, 813–823, 1995.
Lance, S., Medina, J., Smith, J. N., and Nenes, A.: Mapping the Operation of the DMT
Continuous Flow CCN Counter, Aeros. Sci. Tech., 40, 242–254, https://doi.org/10.1080/02786820500543290,
2006.
Lance, S., Nenes, A., Mazzoleni, C., Dubey, M. K., Gates, H., Varutbangkul, V.,
Rissman, T. A., Murphy, S. M., Sorooshian, A., Flagan, R. C., and Seinfeld, J. H.: Cloud
condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the
Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res.-Atmos., 114,
D00F15, https://doi.org/10.1029/2008JD011699, 2009.
Lathem, T. L. and Nenes, A.: Water vapor depletion in the DMT continuous-flow CCN
chamber: Effects on supersaturation and droplet growth, Aerosol Sci. Technol., 45, 604–615,
2011.
Leena, P. P., Pandithurai, G., Anilkumar, V., Murugavel, P., Sonbawne, S. M., and
Dani, K. K.: Seasonal variability in aerosol, CCN and their relationship observed at a high
altitude site in Western Ghats, Meteorol. Atmos. Phys., 128, 143–153, 2016.
Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., and
Ramanathan, V.: Effects of fossil fuel and total anthropogenic emission removal on public health
and climate, P. Natl. Acad. Sci. USA, 116, 7192–7197, https://doi.org/10.1073/pnas.1819989116, 2019.
Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M., Coe, H., McFiggans, G.,
Fleming, Z. L., and Bandy, B.: Ambient black carbon particle hygroscopic properties controlled by
mixing state and composition, Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013,
2013.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review,
Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Lohmann, U., Feichter, J., Penner, J. E., and Leaitch, W. R.: Indirect effect of
sulfate and carbonaceous aerosols: A mechanistic treatment, J. Geophys. Res., 105, 12193–12206,
2000.
Maheskumar, R. S., Narkhedkar, S. G., Morwal, S. B., Padmakumari, B., Kothawale, D. R.,
Joshi, R. R., Deshpande, C. G., Bhalwankar, R. V., and Kulkarni, J. R.: Mechanism of high rainfall
over the Indian west coast region during the monsoon season, Clim. Dynam., 43, 1513–1529, 2014.
Manoj, M. R., Satheesh, S. K., Moorthy, K. K., Gogoi, M. M., and Babu, S. S.:
Decreasing Trend in Black Carbon Aerosols Over the Indian Region, Geophys. Res. Lett., 46,
2903–2910, 2019.
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G.,
Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D.,
Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm
cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006.
Mikhailov, E., Vlasenko, S., Martin, S. T., Koop, T., and Pöschl, U.: Amorphous and
crystalline aerosol particles interacting with water vapor: conceptual framework and experimental
evidence for restructuring, phase transitions and kinetic limitations, Atmos. Chem. Phys., 9,
9491–9522, https://doi.org/10.5194/acp-9-9491-2009, 2009.
Mircea, M., Facchini, M. C., Decesari, S., Fuzzi, S., and Charlson, R. J.: The
influence of the organic aerosol component on CCN supersaturation spectra for different aerosol
types, Tellus B, 54, 74–81, 2002.
Morawska, L., Jayaratne, E. R., Mengersen, K., Jamriska, M., and Thomas, S.:
Differences in airborne particle and gaseous concentrations in urban air between weekdays and
weekends, Atmos. Environ., 36, 4375–4383, 2002.
Moore, R. H., Karydis, V. A., Capps, S. L., Lathem, T. L., and Nenes, A.: Droplet
number uncertainties associated with CCN: an assessment using observations and a global model
adjoint, Atmos. Chem. Phys., 13, 4235–4251, https://doi.org/10.5194/acp-13-4235-2013, 2013.
Moorthy, K. K., Babu, S. S., Manoj, M. R., and Satheesh, S. K.: Buildup of aerosols
over the Indian Region, Geophys. Res. Lett., 40, 1011–1014, https://doi.org/10.1002/grl.50165, 2013.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian,
H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D.,
Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G.,
Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier,
P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang,
K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II
simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Nair, V. S., Moorthy, K. K., Alappattu, D. P., Kunhikrishnan, P. K., George, S.,
Nair, P. R., Babu, S. S., Abish, B., Satheesh, S. K., Tripathi, S. N., and Niranjan, K.:
Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary
layer processes and long-range transport, J. Geophys. Res.-Atmos., 112, D13205, https://doi.org/10.1029/2006jd008099, 2007.
Nair, V. S., Jayachandran, V. N., Kompalli, S. K., Gogoi, M. M., and Babu, S. S.: Cloud
condensation nuclei properties of South Asian outflow over the northern Indian Ocean during
winter, Atmos. Chem. Phys., 20, 3135–3149, https://doi.org/10.5194/acp-20-3135-2020, 2020.
Nenes, A., Charlson, R. J., Facchini, M. C., Kulmala, M., Laaksonen, A., and Seinfeld,
J. H.: Can chemical effects on cloud droplet number rival the first indirect effect?,
Geophys. Res. Lett., 29, 1848, https://doi.org/10.1029/2002GL015295, 2002.
Noble, S. R. and Hudson, J. G.: Effects of Continental Clouds on Surface Aitken and
Accumulation Modes, J. Geophys. Res.-Atmos., 124, 5479–5502, https://doi.org/10.1029/2019JD030297, 2019.
Novakov, T. and Penner, J. E.: Large contribution of organic aerosols to
cloud-condensation-nuclei concentrations, Nature, 365, 823–826, 1993.
O'Dowd, C. D., Smith, M. H., Consterdine, I. E., and Lowe, J. A.: Marine aerosol,
sea-salt, and the marine sulphur cycle: A short review, Atmos. Environ., 31, 73–80, 1997.
Padmakumari, B., Maheskumar, R. S., Harikishan, G., Morwal, S. B., Prabha, T. V., and
Kulkarni, J. R.: In situ measurements of aerosol vertical and spatial distributions over
continental India during the major drought year 2009, Atmos. Environ., 80, 107–121, 2013.
Padmakumari, B., Maheskumar, R. S., Harikishan, G., Morwal, S. B., and Kulkarni, J. R.:
Rain-shadow: An area harboring “Gray Ocean” clouds, Atmos. Res., 205, 70–79, 2018.
Pandithurai, G., Dipu, S., Prabha, T. V., Maheskumar, R. S., Kulkarni, J. R., and
Goswami, B. N.: Aerosol effect on droplet spectral dispersion in warm continental cumuli,
J. Geophys. Res.-Atmos., 117, D16202, https://doi.org/10.1029/2011JD016532, 2012.
Paramonov, M., Aalto, P. P., Asmi, A., Prisle, N., Kerminen, V.-M., Kulmala, M., and
Petäjä, T.: The analysis of size-segregated cloud condensation nuclei counter (CCNC) data
and its implications for cloud droplet activation, Atmos. Chem. Phys., 13, 10285–10301,
https://doi.org/10.5194/acp-13-10285-2013, 2013.
Paramonov, M., Kerminen, V.-M., Gysel, M., Aalto, P. P., Andreae, M. O., Asmi, E.,
Baltensperger, U., Bougiatioti, A., Brus, D., Frank, G. P., Good, N., Gunthe, S. S., Hao, L.,
Irwin, M., Jaatinen, A., Jurányi, Z., King, S. M., Kortelainen, A., Kristensson, A.,
Lihavainen, H., Kulmala, M., Lohmann, U., Martin, S. T., McFiggans, G., Mihalopoulos, N., Nenes,
A., O'Dowd, C. D., Ovadnevaite, J., Petäjä, T., Pöschl, U., Roberts, G. C., Rose, D.,
Svenningsson, B., Swietlicki, E., Weingartner, E., Whitehead, J., Wiedensohler, A., Wittbom, C.,
and Sierau, B.: A synthesis of cloud condensation nuclei counter (CCNC) measurements within the
EUCAARI network, Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, 2015.
Parthasarathy, B. and Yang, S.: Relationships between regional Indian summer monsoon
rainfall and Eurasian snow cover, Adv. Atmos. Sci., 12, 143–150, 1995.
Patade, S., Kulkarni, G., Patade, S., Deshmukh, A., Dangat, P., Axisa, D., Fan, J.,
Pradeepkumar, P., and Prabha, T. V.:. Role of liquid phase in the development of ice phase in
monsoon clouds: Aircraft observations and numerical simulations, Atmos. Res., 229, 157–174, 2019.
Patidar, V., Tripathi, S. N., Bharti, P. K., and Gupta, T.: First surface measurement
of cloud condensation nuclei over Kanpur, IGP: role of long range transport, Aerosol
Sci. Technol., 46, 973–982, 2012.
Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M.,
Su, H., Artaxo, P., Chen, Q., Cheng, Y., and Elbert, W.: Biogenic potassium salt particles as
seeds for secondary organic aerosol in the Amazon, Science, 337, 1075–1078, 2012.
Pöhlker, M. L., Pöhlker, C., Ditas, F., Klimach, T., Hrabe de Angelis, I.,
Araújo, A., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Kesselmeier,
J., Könemann, T., Lavrič, J. V., Martin, S. T., Mikhailov, E., Moran-Zuloaga, D., Rose,
D., Saturno, J., Su, H., Thalman, R., Walter, D., Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo,
P., Andreae, M. O., and Pöschl, U.: Long-term observations of cloud condensation nuclei in the
Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model
parametrizations for CCN prediction, Atmos. Chem. Phys., 16, 15709–15740,
https://doi.org/10.5194/acp-16-15709-2016, 2016.
Pöhlker, M. L., Ditas, F., Saturno, J., Klimach, T., Hrabě de Angelis, I.,
Araùjo, A. C., Brito, J., Carbone, S., Cheng, Y., Chi, X., Ditz, R., Gunthe, S. S., Holanda,
B. A., Kandler, K., Kesselmeier, J., Könemann, T., Krüger, O. O., Lavrič, J. V., Martin,
S. T., Mikhailov, E., Moran-Zuloaga, D., Rizzo, L. V., Rose, D., Su, H., Thalman, R., Walter, D.,
Wang, J., Wolff, S., Barbosa, H. M. J., Artaxo, P., Andreae, M. O., Pöschl, U., and
Pöhlker, C.: Long-term observations of cloud condensation nuclei over the Amazon rain forest
– Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine
rain forest aerosols, Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, 2018.
Prabha, T. V., Khain, A., Maheshkumar, R. S., Pandithurai, G., Kulkarni, J. R.,
Konwar, M., and Goswami, B. N.:. Microphysics of premonsoon and monsoon clouds as seen from in
situ measurements during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment
(CAIPEEX), J. Atmos. Sci., 68, 1882–1901, 2011.
Prabha, T. V., Patade, S., Pandithurai, G., Khain, A., Axisa, D., Pradeep-Kumar, P.,
Maheshkumar, R. S., Kulkarni, J. R., and Goswami, B. N.: Spectral width of premonsoon and monsoon
clouds over Indo-Gangetic valley, J. Geophys. Res.-Atmos., 117, D20205, https://doi.org/10.1029/2011JD016837, 2012.
Prakash, J. W. J., Ramachandran, R., Nair, K. N., Gupta, K. S., and
Kunhikrishnan, P. K.: On the structure of sea-breeze fronts observed near the coastline of Thumba,
India, Bound.-Layer Meteorol., 59, 111–124, 1992.
Quinn, P. K., Bates, T. S., Coffman, D. J., and Covert, D. S.: Influence of particle
size and chemistry on the cloud nucleating properties of aerosols, Atmos. Chem. Phys., 8,
1029–1042, https://doi.org/10.5194/acp-8-1029-2008, 2008.
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson,
J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., and Clarke, A. D.: Indian Ocean
Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian
haze, J. Geophys. Res.-Atmos., 106, 28371–28398, 2001.
Raymond, T. M. and Pandis, S. N.: Formation of cloud droplets by multicomponent
organic particles, J. Geophys. Res., 108, 4469–4476, 2003.
Roberts, G. C. and Nenes, A.: A continuous-flow streamwise thermal-gradient CCN
chamber for atmospheric measurements, Aerosol Sci. Technol., 39, 206–221, 2005.
Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and
Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation
nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol
particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179,
https://doi.org/10.5194/acp-8-1153-2008, 2008.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S.,
Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?,
Science, 321, 1309–1313, 2008.
Roy, A., Chatterjee, A., Sarkar, C., Das, S. K., Ghosh, S. K., and Raha, S.: A study
on aerosol-cloud condensation nuclei (CCN) activation over eastern Himalaya in India, Atmos. Res.,
189, 69–81, 2017.
Safai, P., Kewat, S., Praveen, P., Rao, P., Momin, G., Ali, K., and Devara, P.:
Seasonal variation of black carbon aerosols over a tropical urbanbcity of Pune, India,
Atmos. Environ., 41, 2699–2709, https://doi.org/10.1016/j.atmosenv.2006.11.044, 2007.
Safai, P. D., Raju, M. P., Budhavant, K. B., Rao, P. S. P., and Devara, P. C. S.: Long
term studies on characteristics of black carbon aerosols over a tropical urban station Pune,
India, Atmos. Res., 132, 173–184, 2013.
Sandeep, A., Narayana Rao, T., Ramkiran, C. N., and Rao, S. V. B.: Differences in
atmospheric boundary-layer characteristics between wet and dry episodes of the Indian summer
monsoon, Bound.-Layer Meteorol., 153, 217–236, 2014.
Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K.,
Ovadnevaite, J., Pöhlker, M. L., Brito, J., Bougiatioti, A., Kristensson, A., Kalivitis, N.,
Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., Aalto, P.,
Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A.,
Herrmann, E., Herrmann, H., Holzinger, R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, A.,
O'Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., Poulain, L.,
Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J.,
Matsuki, A., Yum, S. S., Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud
condensation nuclei number concentration, particle number size distribution and chemical
composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18,
2853–2881, https://doi.org/10.5194/acp-18-2853-2018, 2018.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air
pollution to climate change, John Wiley & Sons, New York,
2016.
Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E.:
Dissolution behavior and surface tension effects of organic compounds in nucleating cloud
droplets, Geophys. Res. Lett., 23, 277–280, 1996.
Sijikumar, S., John, L., and Manjusha, K.: Sensitivity study on the role of Western
Ghats in simulating the Asian summer monsoon characteristics, Meteorol. Atmos. Phys., 120, 53–60,
2013.
Singla, V., Mukherjee, S., Safai, P., Meena, G., Dani, K., and Pandithurai, G.: Role
of organic aerosols in CCN activation and closure over a rural background site in Western Ghats,
India, Atmos. Environ., 158, 148–159, 2017.
Sotiropoulou, R.-E. P., Nenes, A., Adams, P. J., and Seinfeld, J. H.: Cloud
condensation nuclei prediction error from application of Kohler theory: Importance for the aerosol
indirect effect, J. Geophys. Res., 112, D12202, https://doi.org/10.1029/2006JD007834, 2007.
Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A., and Forster, P. M.: Global
cloud condensation nuclei influenced by carbonaceous combustion aerosol, Atmos. Chem. Phys., 11,
9067–9087, https://doi.org/10.5194/acp-11-9067-2011, 2011.
Twomey, S.: The nuclei of natural cloud formation part II: The supersaturation in
natural clouds and the variation of cloud droplet concentration, Geofis. Pura Appl., 43, 243–249,
1959.
Twomey, S. A.: The influence of pollution on the shortwave albedo of clouds,
J. Atmos. Sci., 34, 1149–1152, 1977.
Twomey, S. and Warner, J.: Comparison of measurements of cloud droplets and cloud
nuclei, J. Atmos. Sci., 24, 702–703, 1967.
Udayasoorian, C., Jayabalakrishnan, R. M., Suguna, A. R., Gogoi, M. M., and Suresh
Babu, S.: Aerosol black carbon characteristics over a high-altitude Western Ghats location in
Southern India, Ann. Geophys., 32, 1361–1371, https://doi.org/10.5194/angeo-32-1361-2014, 2014.
Ueda, S., Miura, K., Kawata, R., Furutani, H., Uematsu, M., Omori, Y., and Tanimoto,
H.: Number-size distribution of aerosol particles and new particle formation events in tropical
and subtropical Pacific Oceans, Atmos. Environ., 142, 324–339, 2016.
Vaishya, A., Singh, P., Rastogi, S., and Babu, S. S.: Aerosol black carbon
quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source
apportionment, Atmos. Res., 185, 13–21, 2017.
Varghese, M., Prabha, T. V., Malap, N., Resmi, E. A., Murugavel, P., Safai, P. D.,
Axisa, D., Pandithurai, G., and Dani, K.: Airborne and ground based CCN spectral characteristics:
Inferences from CAIPEEX–2011, Atmos. Environ., 125, 324–336, 2016.
Varghese, M., Prabha, T. V., Murugavel, P., Anu, A. S., Resmi, E. A., Dinesh, G.,
Rao, Y. J., Nagare, B., Safai, P. D., Nair, S., and Nandakumar, K.: Aerosol and cloud droplet
characteristics over Ganges Valley during break phase of monsoon: A case study, Atmos. Res., 220,
125–140, 2019.
Wang, S. C. and Flagan, R. C.: Scanning electrical mobility spectrometer, Aerosol
Sci. Technol. 13, 2230–2240, https://doi.org/10.1080/02786829008959441, 1990.
Wehner, B. and Wiedensohler, A.: Long term measurements of submicrometer urban
aerosols: statistical analysis for correlations with meteorological conditions and trace gases,
Atmos. Chem. Phys., 3, 867–879, https://doi.org/10.5194/acp-3-867-2003, 2003.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and
Baltensperger, U.: Absorption of light by soot particles: determination of the absorption
coefficient by means of aethalometers, J. Aerosol Sci., 34, 1445–1463, 2003.
Wiedensohler, A.: An approximation of the bipolar charge distribution for particles in
the submicron size range, J. Aerosol Sci., 19, 387–389, 1988.
Willis, M. D., Burkart, J., Thomas, J. L., Köllner, F., Schneider, J., Bozem, H.,
Hoor, P. M., Aliabadi, A. A., Schulz, H., Herber, A. B., Leaitch, W. R., and Abbatt, J. P. D.:
Growth of nucleation mode particles in the summertime Arctic: a case study, Atmos. Chem. Phys.,
16, 7663–7679, https://doi.org/10.5194/acp-16-7663-2016, 2016.
Short summary
Continuous aerosol and cloud condensation nuclei (CCN) measurements carried out at the ground observational facility of a CAIPEEX campaign, situated in the rain-shadow region of the Indian subcontinent, are illustrated. The variations in CCN characteristics within the monsoon period are investigated along with the aerosol physical and optical properties. The change in the dependency of CCN activity on aerosol size and composition due to the variations in air mass and meteorology is brought out.
Continuous aerosol and cloud condensation nuclei (CCN) measurements carried out at the ground...
Altmetrics
Final-revised paper
Preprint