Articles | Volume 20, issue 9
Atmos. Chem. Phys., 20, 5697–5727, 2020
https://doi.org/10.5194/acp-20-5697-2020
Atmos. Chem. Phys., 20, 5697–5727, 2020
https://doi.org/10.5194/acp-20-5697-2020

Research article 13 May 2020

Research article | 13 May 2020

The role of plume-scale processes in long-term impacts of aircraft emissions

Thibaud M. Fritz et al.

Related authors

Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-130,https://doi.org/10.5194/gmd-2021-130, 2021
Preprint under review for GMD
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of organic molecular structure on the estimation of atmospherically relevant physicochemical parameters
Gabriel Isaacman-VanWertz and Bernard Aumont
Atmos. Chem. Phys., 21, 6541–6563, https://doi.org/10.5194/acp-21-6541-2021,https://doi.org/10.5194/acp-21-6541-2021, 2021
Short summary
Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021,https://doi.org/10.5194/acp-21-6481-2021, 2021
Short summary
Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations
Pooja V. Pawar, Sachin D. Ghude, Chinmay Jena, Andrea Móring, Mark A. Sutton, Santosh Kulkarni, Deen Mani Lal, Divya Surendran, Martin Van Damme, Lieven Clarisse, Pierre-François Coheur, Xuejun Liu, Gaurav Govardhan, Wen Xu, Jize Jiang, and Tapan Kumar Adhya
Atmos. Chem. Phys., 21, 6389–6409, https://doi.org/10.5194/acp-21-6389-2021,https://doi.org/10.5194/acp-21-6389-2021, 2021
Short summary
Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021,https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Background conditions for an urban greenhouse gas network in the Washington, DC, and Baltimore metropolitan region
Anna Karion, Israel Lopez-Coto, Sharon M. Gourdji, Kimberly Mueller, Subhomoy Ghosh, William Callahan, Michael Stock, Elizabeth DiGangi, Steve Prinzivalli, and James Whetstone
Atmos. Chem. Phys., 21, 6257–6273, https://doi.org/10.5194/acp-21-6257-2021,https://doi.org/10.5194/acp-21-6257-2021, 2021
Short summary

Cited articles

Airbus: Global market forecast 2017–2036, available at: https://www.airbus.com/aircraft/market/global-market-forecast.html (last access: 10 April 2019), 2017. a
Beard, K. V. and Ochs III, H. T.: Collisions between small precipitation drops, Part II: Formulas for coalescence, temporary coalescence, and satellites, J. Atmos. Sci., 52, 3977–3996, 1995. a
Boeing: Commercial Market Outlook 2018-2037, available at: https://www.boeing.com/commercial/market/commercial-market-outlook (last access: 10 April 2019), 2017. a
Brasseur, G., Cox, R., Hauglustaine, D., Isaksen, I., Lelieveld, J., Lister, D., Sausen, R., Schumann, U., Wahner, A., and Wiesen, P.: European scientific assessment of the atmospheric effects of aircraft emissions, Atmos. Environ., 32, 2329–2418, 1998. a
Brasseur, G. P., Müller, J.-F., and Granier, C.: Atmospheric impact of NOx emissions by subsonic aircraft: A three-dimensional model study, J. Geophys. Res.-Atmos., 101, 1423–1428, 1996. a
Download
Short summary
Aircraft exhaust drives formation of ozone and is a dominant anthropogenic influence in the upper troposphere. These impacts are mitigated by non-linear chemistry inside the aircraft plume, which cuts off part of the ozone production pathway and reduces the long-term impact of aircraft in a way which is not captured by current models. The ice clouds which form in aircraft exhaust ("contrails") also play a role, converting emitted nitrogen oxides into more stable forms such as nitric acid.
Altmetrics
Final-revised paper
Preprint