Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15341-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A link between the ice nucleation activity and the biogeochemistry of seawater
Martin J. Wolf
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Yale Center for Environmental Law and Policy, Yale School of the
Environment, Yale University, G32 Kroon Hall, 195 Prospect Street, New
Haven, CT 06511, USA
Megan Goodell
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Eric Dong
School of Engineering, Brown University, 75 Waterman St, Providence, RI 02912, USA
Lilian A. Dove
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Division of Geological and Planetary Sciences, California Institute of
Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
Cuiqi Zhang
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
School of Energy and Power Engineering, Beihang University, Beijing,
China
Lesly J. Franco
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Chuanyang Shen
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Department of Atmospheric and Oceanic Sciences, Peking University,
Beijing, China
Emma G. Rutkowski
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Domenic N. Narducci
Department of Biological Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Room 56-651, Cambridge, MA
02139, USA
Susan Mullen
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Department of Earth and Planetary Science, University of California
Berkeley, 307 McCone Hall, Berkeley, CA 94720, USA
Andrew R. Babbin
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Daniel J. Cziczo
CORRESPONDING AUTHOR
Department of Earth, Atmospheric, and Planetary Sciences,
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 54-918,
Cambridge, MA 02139, USA
Department of Civil and Environmental Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Room 66-350, Cambridge, MA
02139, USA
Department of Earth, Atmospheric, and Planetary Sciences, Purdue
University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
Related authors
Cuiqi Zhang, Yue Zhang, Martin J. Wolf, Leonid Nichman, Chuanyang Shen, Timothy B. Onasch, Longfei Chen, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020, https://doi.org/10.5194/acp-20-13957-2020, 2020
Short summary
Short summary
Black carbon (BC) is considered the second most important global warming agent. However, the role of BC aerosol–cloud–climate interactions in the cirrus formation remains uncertain. Our study of selected BC types and sizes suggests that increases in diameter, compactness, and/or surface oxidation of BC particles lead to more efficient ice nucleation (IN) via pore condensation freezing (PCF) pathways,and that coatings of common secondary organic aerosol (SOA) materials can inhibit ice formation.
Marilena Gidarakou, Alexandros Papayannis, Kunfeng Gao, Panagiotis Gidarakos, Benoit Crouzy, Romanos Foskinis, Sophie Erb, Cuiqi Zhang, Gian Lieberherr, Martine Collaud Coen, Branko Sikoparija, Zamin A. Kanji, Bernard Clot, Bertrand Calpini, Eugenia Giagka, and Athanasios Nenes
EGUsphere, https://doi.org/10.5194/egusphere-2025-2978, https://doi.org/10.5194/egusphere-2025-2978, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vertical profiles of pollen and biomass burning particles were obtained at a semi-rural site at the MeteoSwiss station near Payerne (Switzerland) using a novel multi-channel elastic-fluorescence lidar system combined with in situ measurements during the spring 2023 wildfires and pollination season during the PERICLES (PayernE lidaR and Insitu detection of fluorescent bioaerosol and dust partiCLES and their cloud impacts) campaign.
Christopher N. Rapp, Sining Niu, N. Cazimir Armstrong, Xiaoli Shen, Thomas Berkemeier, Jason D. Surratt, Yue Zhang, and Daniel J. Cziczo
Atmos. Chem. Phys., 25, 5519–5536, https://doi.org/10.5194/acp-25-5519-2025, https://doi.org/10.5194/acp-25-5519-2025, 2025
Short summary
Short summary
Atmospheric ice formation is initiated by particulate matter suspended in air and has profound impacts on Earth's climate. This study focuses on examining the effectiveness of ice formation by a subset of particles composed of organic matter and sulfate. We used experiments and computer modeling to obtain the result that these particles are not effective ice-nucleating particles, suggesting that molecular structure is important for ice formation on these types of particles.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
Atmos. Chem. Phys., 25, 4703–4718, https://doi.org/10.5194/acp-25-4703-2025, https://doi.org/10.5194/acp-25-4703-2025, 2025
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from the coastal upwelling systems of Peru and Chile.
Paul J. DeMott, Jessica A. Mirrielees, Sarah Suda Petters, Daniel J. Cziczo, Markus D. Petters, Heinz G. Bingemer, Thomas C. J. Hill, Karl Froyd, Sarvesh Garimella, A. Gannet Hallar, Ezra J. T. Levin, Ian B. McCubbin, Anne E. Perring, Christopher N. Rapp, Thea Schiebel, Jann Schrod, Kaitlyn J. Suski, Daniel Weber, Martin J. Wolf, Maria Zawadowicz, Jake Zenker, Ottmar Möhler, and Sarah D. Brooks
Atmos. Meas. Tech., 18, 639–672, https://doi.org/10.5194/amt-18-639-2025, https://doi.org/10.5194/amt-18-639-2025, 2025
Short summary
Short summary
The Fifth International Ice Nucleation Workshop Phase 3 (FIN-03) compared the ambient atmospheric performance of ice-nucleating particle (INP) measuring systems and explored general methods for discerning atmospheric INP compositions. Mirroring laboratory results, INP concentrations agreed within 5–10 factors. Measurements of total aerosol properties and investigations of INP compositions supported a dominant role of soil and plant organic aerosol elements as INPs during the study.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Carynelisa Haspel, Cuiqi Zhang, Martin J. Wolf, Daniel J. Cziczo, and Maor Sela
Atmos. Chem. Phys., 23, 10091–10115, https://doi.org/10.5194/acp-23-10091-2023, https://doi.org/10.5194/acp-23-10091-2023, 2023
Short summary
Short summary
Small particles, commonly termed aerosols, can be found throughout the atmosphere and come from both natural and anthropogenic sources. One important type of aerosol is black carbon (BC). In this study, we conducted laboratory measurements of light scattering by particles meant to mimic atmospheric BC and compared them to calculations of scattering. We find that it is likely that calculations underpredict the scattering by BC particles of certain polarizations of light in certain directions.
John C. Tracey, Andrew R. Babbin, Elizabeth Wallace, Xin Sun, Katherine L. DuRussel, Claudia Frey, Donald E. Martocello III, Tyler Tamasi, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 20, 2499–2523, https://doi.org/10.5194/bg-20-2499-2023, https://doi.org/10.5194/bg-20-2499-2023, 2023
Short summary
Short summary
Nitrogen (N) is essential for life; thus, its availability plays a key role in determining marine productivity. Using incubations of seawater spiked with a rare form of N measurable on a mass spectrometer, we quantified microbial pathways that determine marine N availability. The results show that pathways that recycle N have higher rates than those that result in its loss from biomass and present new evidence for anaerobic nitrite oxidation, a process long thought to be strictly aerobic.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Libby Koolik, Michael Roesch, Carmen Dameto de Espana, Christopher Nathan Rapp, Lesly J. Franco Deloya, Chuanyang Shen, A. Gannet Hallar, Ian B. McCubbin, and Daniel J. Cziczo
Atmos. Meas. Tech., 15, 3213–3222, https://doi.org/10.5194/amt-15-3213-2022, https://doi.org/10.5194/amt-15-3213-2022, 2022
Short summary
Short summary
A new inlet for studying the small particles, droplets, and ice crystals that constitute mixed-phase clouds has been constructed and is described here. This new inlet was tested in the laboratory. We present the performance of the new inlet to demonstrate its capability of separating ice, droplets, and small particles.
Weilun Zhao, Wangshu Tan, Gang Zhao, Chuanyang Shen, Yingli Yu, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1319–1331, https://doi.org/10.5194/amt-14-1319-2021, https://doi.org/10.5194/amt-14-1319-2021, 2021
Chuanyang Shen, Gang Zhao, and Chunsheng Zhao
Atmos. Meas. Tech., 14, 1293–1301, https://doi.org/10.5194/amt-14-1293-2021, https://doi.org/10.5194/amt-14-1293-2021, 2021
Short summary
Short summary
Aerosol hygroscopicity measured by the humidified tandem differential mobility analyzer (HTDMA) is affected by multiply charged particles from two aspects: (1) number contribution and (2) the weakening effect. An algorithm is proposed to do the multi-charge correction and applied to a field measurement. Results show that the difference between corrected and measured size-resolved κ can reach 0.05, highlighting that special attention needs to be paid to the multi-charge effect when using HTDMA.
Chuanyang Shen, Gang Zhao, Weilun Zhao, Ping Tian, and Chunsheng Zhao
Atmos. Chem. Phys., 21, 1375–1388, https://doi.org/10.5194/acp-21-1375-2021, https://doi.org/10.5194/acp-21-1375-2021, 2021
Short summary
Short summary
Submicron particles larger than 300 nm dominate the aerosol light extinction and mass concentration in the urban environment. Aerosol hygroscopic properties extended to 600 nm were investigated at an urban site. Our results find that there exists a large fraction of a less hygroscopic group above 300 nm, and the hygroscopicity in this size range is enhanced significantly with the development of pollution levels. The hygroscopicity variation contributes greatly to the low visibility.
Michael Rösch and Daniel J. Cziczo
Atmos. Meas. Tech., 13, 6807–6812, https://doi.org/10.5194/amt-13-6807-2020, https://doi.org/10.5194/amt-13-6807-2020, 2020
Short summary
Short summary
The need for a simple atomizer with a high-output stability combined with the capabilities of CAD software and high-resolution 3D printing has allowed for the design, production and testing of the PRinted drOpleT Generator (PROTeGE) to generate liquid particles from solutions. The size and number concentrations of the generated particles have been characterized with different ammonium sulfate and PSL solutions. PROTeGE is easy to operate, requires minimal maintenance and is cost-effective.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Cuiqi Zhang, Yue Zhang, Martin J. Wolf, Leonid Nichman, Chuanyang Shen, Timothy B. Onasch, Longfei Chen, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020, https://doi.org/10.5194/acp-20-13957-2020, 2020
Short summary
Short summary
Black carbon (BC) is considered the second most important global warming agent. However, the role of BC aerosol–cloud–climate interactions in the cirrus formation remains uncertain. Our study of selected BC types and sizes suggests that increases in diameter, compactness, and/or surface oxidation of BC particles lead to more efficient ice nucleation (IN) via pore condensation freezing (PCF) pathways,and that coatings of common secondary organic aerosol (SOA) materials can inhibit ice formation.
Cited articles
Agustí, S. and Duarte, C. M.: Phytoplankton lysis predicts dissolved organic carbon release in marine plankton communities, Biogeosciences, 10, 1259–1264, https://doi.org/10.5194/bg-10-1259-2013, 2013.
Andronache, C.: Mixed-Phase Clouds, Elsevier, Amsterdam, the Netherlands, 2018.
Azam, F. and Malfatti, F.: Microbial structuring of marine ecosystems, Nat.
Rev. Microbiol., 5, 782–791, https://doi.org/10.1038/nrmicro1747, 2007.
Barahona, D., Rodriguez, J., and Nenes, A.: Sensitivity of the global
distribution of cirrus ice crystal concentration to heterogeneous freezing,
J. Geophys. Res., 115, D23213, https://doi.org/10.1029/2010JD014273, 2010.
Bates, T. S., Quinn, P. K., Coffman, D. J., Johnson, J. E., Upchurch, L.,
Saliba, G., Lewis, S., Graff, J., Russell, L. M., and Behrenfeld, M. J.:
Variability in Marine Plankton Ecosystems Are Not Observed in Freshly
Emitted Sea Spray Aerosol Over the North Atlantic Ocean, Geophys. Res.
Lett., 47, 1, https://doi.org/10.1029/2019GL085938, 2020.
Beaupré, S. R., Kieber, D. J., Keene, W. C., Long, M. S., Maben, J. R.,
Lu, X., Zhu, Y., Frossard, A. A., Kinsey, J. D., Duplessis, P., Chang, R.
Y.-W., and Bisgrove, J.: Oceanic efflux of ancient marine dissolved organic
carbon in primary marine aerosol, Sci. Adv., 5, eaax6535,
https://doi.org/10.1126/sciadv.aax6535, 2019.
Bertilsson, S., Berglund, O., Pullin, M. J., and Chisholm, S. W.: Release of
Dissolved Organic Matter by Prochlorococcus, Vie Millieu, 55, 3–4, 2005.
Bigg, E. K.: Long-term trends in ice nucleus concentrations, Atmos. Res.,
25, 409–415, https://doi.org/10.1016/0169-8095(90)90025-8, 1990.
Biller, S. J., Schubotz, F., Roggensack, S. E., Thompson, A. W., Summons, R.
E., and Chisholm, S. W.: Bacterial vesicles in marine ecosystems, Science,
343, 183–186, https://doi.org/10.1126/science.1243457, 2014.
Braman, R. S. and Hendrix, S. A.: Nanogram nitrite and nitrate determination
in environmental and biological materials by vanadium(III) reduction with
chemiluminescence detection, Anal. Chem., 61, 2715–2718,
https://doi.org/10.1021/ac00199a007, 1989.
Brooks, S. D. and Thornton, D. C. O.: Marine Aerosols and Clouds, Ann. Rev.
Mar. Sci., 10, 289–313, https://doi.org/10.1146/annurev-marine-121916-063148, 2018.
Burrows, S. M., Hoose, C., Pöschl, U., and Lawrence, M. G.: Ice nuclei in marine air: biogenic particles or dust?, Atmos. Chem. Phys., 13, 245–267, https://doi.org/10.5194/acp-13-245-2013, 2013.
Ceburnis, D., Masalaite, A., Ovadnevaite, J., Garbaras, A., Remeikis, V.,
Maenhaut, W., Claeys, M., Sciare, J., Baisnée, D., and O'Dowd, C. D.:
Stable isotopes measurements reveal dual carbon pools contributing to
organic matter enrichment in marine aerosol, Sci. Rep., 6, 36675,
https://doi.org/10.1038/srep36675, 2016.
Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J.
B., and Welschmeyer, N. A.: A novel free-living prochlorophyte abundant in
the oceanic euphotic zone, Nature, 334, 340–343,
https://doi.org/10.1038/334340a0, 1988.
Clayton, T. D. and Byrne, R. H.: Spectrophotometric seawater pH
measurements: total hydrogen ion concentration scale calibration of m-cresol
purple and at-sea results, Deep-Sea Res. Pt. I, 40,
2115–2129, https://doi.org/10.1016/0967-0637(93)90048-8, 1993.
Cochran, R. E., Laskina, O., Trueblood, J. V., Estillore, A. D., Morris, H.
S., Jayarathne, T., Sultana, C. M., Lee, C., Lin, P., Laskin, J., Laskin,
A., Dowling, J. A., Qin, Z., Cappa, C. D., Bertram, T. H., Tivanski, A. V.,
Stone, E. A., Prather, K. A., and Grassian, V. H.: Molecular Diversity of Sea
Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and
Hygroscopicity, Chem, 2, 655–667, https://doi.org/10.1016/j.chempr.2017.03.007,
2017.
Collins, D. B., Zhao, D. F., Ruppel, M. J., Laskina, O., Grandquist, J. R., Modini, R. L., Stokes, M. D., Russell, L. M., Bertram, T. H., Grassian, V. H., Deane, G. B., and Prather, K. A.: Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes, Atmos. Meas. Tech., 7, 3667–3683, https://doi.org/10.5194/amt-7-3667-2014, 2014.
Creamean, J. M., Cross, J. N., Pickart, R., McRaven, L., Lin, P., Pacini,
A., Hanlon, R., Schmale, D. G., Ceniceros, J., Aydell, T., Colombi, N.,
Bolger, E., and DeMott, P. J.: Ice Nucleating Particles Carried From Below a
Phytoplankton Bloom to the Arctic Atmosphere, Geophys. Res. Lett., 46,
8572–8581, https://doi.org/10.1029/2019GL083039, 2019.
Cunliffe, M., Engel, A., Frka, S., Gašparović, B., Guitart, C.,
Murrell, J. C., Salter, M., Stolle, C., Upstill-Goddard, R., and Wurl, O.:
Sea surface microlayers: A unified physicochemical and biological
perspective of the air-ocean interface, Prog. Oceanogr., 109, 104–116,
https://doi.org/10.1016/j.pocean.2012.08.004, 2013.
Cziczo, D. J. and Abbatt, J. P. D.: Infrared Observations of the Response of
NaCl, MgCl2, NH4HSO4, and NH4NO3 Aerosols to Changes in Relative
Humidity from 298 to 238 K, J. Phys. Chem. A, 104, 2038–2047,
https://doi.org/10.1021/jp9931408, 2000.
Cziczo, D. J., Thomson, D. S., Thompson, T. L., DeMott, P. J., and Murphy, D.
M.: Particle analysis by laser mass spectrometry (PALMS) studies of ice
nuclei and other low number density particles, Int. J. Mass Spectrom.,
258, 21–29, https://doi.org/10.1016/j.ijms.2006.05.013, 2006.
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M.
A., Smith, J. B., Twohy, C. H., and Murphy, D. M.: Clarifying the Dominant
Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320–1324, 2013.
DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O., Snider, J. R., Wang, Z., and Kreidenweis, S. M.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles, Atmos. Chem. Phys., 15, 393–409, https://doi.org/10.5194/acp-15-393-2015, 2015.
DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D.
B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., Irish, V. E., Lee, T.,
Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S.,
Lewis, E. R., Wentzell, J. J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault,
A. P., Axson, J. L., Diaz Martinez, M., Venero, I., Santos-Figueroa, G.,
Stokes, M. D., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram,
T. H., Bertram, A. K., Moffett, B. F., and Franc, G. D.: Sea spray aerosol as
a unique source of ice nucleating particles, P. Natl. Acad. Sci.,
113, 5797–5803, https://doi.org/10.1073/pnas.1514034112, 2016.
Dutkiewicz, S., Cermeno, P., Jahn, O., Follows, M. J., Hickman, A. E., Taniguchi, D. A. A., and Ward, B. A.: Dimensions of marine phytoplankton diversity, Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, 2020
Engel, A. and Galgani, L.: The organic sea-surface microlayer in the upwelling region off the coast of Peru and potential implications for air–sea exchange processes, Biogeosciences, 13, 989–1007, https://doi.org/10.5194/bg-13-989-2016, 2016.
Engel, A., Sperling, M., Sun, C., Grosse, J., and Friedrichs, G.: Organic
Matter in the Surface Microlayer: Insights From a Wind Wave Channel
Experiment, Front. Mar. Sci., 5, 182, https://doi.org/10.3389/fmars.2018.00182, 2018.
Erickson, D. J. and Duce, R. A.: On the global flux of atmospheric sea salt,
J. Geophys. Res., 93, 14079, https://doi.org/10.1029/JC093iC11p14079, 1988.
Evans, N., Boles, E., Kwiecinski, J. V. J. V., Mullen, S., Wolf, M.,
Devol, A. H. A. H., Moriyasu, R., Nam, S., Babbin, A. R. A. R., and Moffett,
J. W. J. W.: The role of water masses in shaping the distribution of redox
active compounds in the Eastern Tropical North Pacific oxygen deficient zone
and influencing low oxygen concentrations in the eastern Pacific Ocean,
Limnol. Oceanogr., 65, 11412, https://doi.org/10.1002/lno.11412, 2020.
Facchini, M. C., Decesari, S., Rinaldi, M., Carbone, C., Finessi, E.,
Mircea, M., Fuzzi, S., Moretti, F., Tagliavini, E., Ceburnis, D., and O'Dowd,
C. D.: Important Source of Marine Secondary Organic Aerosol from Biogenic
Amines, Environ. Sci. Technol., 42, 9116–9121, https://doi.org/10.1021/es8018385,
2008.
Fu, P. Q., Kawamura, K., Chen, J., Charrière, B., and Sempéré, R.: Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation, Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, 2013.
Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated primary marine aerosol via bubble-bursting and atomization, Atmos. Meas. Tech., 3, 141–162, https://doi.org/10.5194/amt-3-141-2010, 2010.
Garimella, S., Kristensen, T. B., Ignatius, K., Welti, A., Voigtländer, J., Kulkarni, G. R., Sagan, F., Kok, G. L., Dorsey, J., Nichman, L., Rothenberg, D. A., Rösch, M., Kirchgäßner, A. C. R., Ladkin, R., Wex, H., Wilson, T. W., Ladino, L. A., Abbatt, J. P. D., Stetzer, O., Lohmann, U., Stratmann, F., and Cziczo, D. J.: The SPectrometer for Ice Nuclei (SPIN): an instrument to investigate ice nucleation, Atmos. Meas. Tech., 9, 2781–2795, https://doi.org/10.5194/amt-9-2781-2016, 2016.
Garimella, S., Rothenberg, D. A., Wolf, M. J., David, R. O., Kanji, Z. A., Wang, C., Rösch, M., and Cziczo, D. J.: Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers, Atmos. Chem. Phys., 17, 10855–10864, https://doi.org/10.5194/acp-17-10855-2017, 2017.
Gaston, C. J., Furutani, H., Guazzotti, S. A., Coffee, K. R., Bates, T. S.,
Quinn, P. K., Aluwihare, L. I., Mitchell, B. G., and Prather, K. A.: Unique
ocean-derived particles serve as a proxy for changes in ocean chemistry, J.
Geophys. Res., 116, D18310, https://doi.org/10.1029/2010JD015289, 2011.
Gong, X., Wex, H., van Pinxteren, M., Triesch, N., Fomba, K. W., Lubitz, J., Stolle, C., Robinson, T.-B., Müller, T., Herrmann, H., and Stratmann, F.: Characterization of aerosol particles at Cabo Verde close to sea level and at the cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater, Atmos. Chem. Phys., 20, 1451–1468, https://doi.org/10.5194/acp-20-1451-2020, 2020.
Harvey, G. W. and Burzell, L. A.: A simple microlayer method for small
samples, Limnol. Oceanogr., 17, 156–157, https://doi.org/10.4319/lo.1972.17.1.0156,
1972.
Hoose, C. and Möhler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817–9854, https://doi.org/10.5194/acp-12-9817-2012, 2012.
Ickes, L., Porter, G. C. E., Wagner, R., Adams, M. P., Bierbauer, S., Bertram, A. K., Bilde, M., Christiansen, S., Ekman, A. M. L., Gorokhova, E., Höhler, K., Kiselev, A. A., Leck, C., Möhler, O., Murray, B. J., Schiebel, T., Ullrich, R., and Salter, M. E.: The ice-nucleating activity of Arctic sea surface microlayer samples and marine algal cultures, Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, 2020.
Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., Murray, B. J., Polishchuk, E., Abbatt, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-nucleating particles in Canadian Arctic sea-surface microlayer and bulk seawater, Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, 2017.
Jickells, T. D.: Global Iron Connections Between Desert Dust, Ocean
Biogeochemistry, and Climate, Science, 308, 67–71,
https://doi.org/10.1126/science.1105959, 2005.
Junge, K. and Swanson, B. D.: High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments, Biogeosciences, 5, 865–873, https://doi.org/10.5194/bg-5-865-2008, 2008.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo,
D. J., Krämer, M., Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y.,
Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice
Nucleating Particles, Meteorol. Monogr., 58, 11133,
https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Kärcher, B.: Cirrus Clouds and Their Response to Anthropogenic
Activities, Curr. Clim. Change Reports, 3, 45–57,
https://doi.org/10.1007/s40641-017-0060-3, 2017.
Kattner, G., Gercken, G., and Hammer, K. D.: Development of lipids during a
spring plankton bloom in the northern North Sea, Mar. Chem., 14,
163–173, https://doi.org/10.1016/0304-4203(83)90039-7, 1983.
Kirchman, D. L.: Phytoplankton death in the sea, Nature, 398,
293–294, https://doi.org/10.1038/18570, 1999.
Knopf, D. A., Alpert, P. A., Wang, B., and Aller, J. Y.: Stimulation of ice
nucleation by marine diatoms, Nat. Geosci., 4, 88–90,
https://doi.org/10.1038/ngeo1037, 2011.
oop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the
determinant for homogeneous ice nucleation in aqueoussolutions, Nature,
406, 611–614, https://doi.org/10.1038/35020537, 2000.
Kulkarni, G. and Kok, G.: Mobile Ice Nucleus Spectrometer, Pacific Northwest
Natl. Lab. Richland, WA, USA, available at: https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-21384.pdf (last access: 9 December 2020), 2012.
Kuznetsova, M. and Lee, C.: Dissolved free and combined amino acids in
nearshore seawater, sea surface microlayers and foams: Influence of
extracellular hydrolysis, Aquat. Sci., 64, 252–268, 2002.
Kuznetsova, M., Lee, C., Aller, J., and Frew, N.: Enrichment of amino acids
in the sea surface microlayer at coastal and open ocean sites in the North
Atlantic Ocean, Limnol. Oceanogr., 49, 1605–1619,
https://doi.org/10.4319/lo.2004.49.5.1605, 2004.
Ladino, L. A., Yakobi-Hancock, J. D., Kilthau, W. P., Mason, R. H., Si, M.,
Li, J., Miller, L. A., Schiller, C. L., Huffman, J. A., Aller, J. Y., Knopf,
D. A., Bertram, A. K., and Abbatt, J. P. D.: Addressing the ice nucleating
abilities of marine aerosol: A combination of deposition mode laboratory and
field measurements, Atmos. Environ., 132, 1–10,
https://doi.org/10.1016/j.atmosenv.2016.02.028, 2016.
Ladino, L. A., Raga, G. B., Alvarez-Ospina, H., Andino-Enríquez, M. A., Rosas, I., Martínez, L., Salinas, E., Miranda, J., Ramírez-Díaz, Z., Figueroa, B., Chou, C., Bertram, A. K., Quintana, E. T., Maldonado, L. A., García-Reynoso, A., Si, M., and Irish, V. E.: Ice-nucleating particles in a coastal tropical site, Atmos. Chem. Phys., 19, 6147–6165, https://doi.org/10.5194/acp-19-6147-2019, 2019.
Lau, K. M. and Wu, H. T.: Warm rain processes over tropical oceans and
climate implications, Geophys. Res. Lett., 30, 24, https://doi.org/10.1029/2003GL018567,
2003.
Lefèvre, N., Taylor, A. H., Gilbert, F. J., and Geider, R. J.: Modeling
carbon to nitrogen and carbon to chlorophyll a ratios in the ocean at low
latitudes: Evaluation of the role of physiological plasticity, Limnol.
Oceanogr., 48, 1796–1807, https://doi.org/10.4319/lo.2003.48.5.1796, 2003.
Lohmann, U., Kärcher, B., and Hendricks, J.: Sensitivity studies of
cirrus clouds formed by heterogeneous freezing in the ECHAM GCM, J. Geophys.
Res., 109, D16204, https://doi.org/10.1029/2003JD004443, 2004.
Mamakos, A.: Methodology to quantify the ratio of multiple-to single-charged
fractions acquired in aerosol neutralizers, Aerosol Sci. Technol., 50,
363–372, https://doi.org/10.1080/02786826.2016.1153034, 2016.
McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C.,
Santander, M. V., Beall, C. M., Moore, K. A., Cornwell, G. C., Collins, D.
B., Prather, K. A., Jayarathne, T., Stone, E. A., Azam, F., Kreidenweis, S.
M., and DeMott, P. J.: A Dynamic Link between Ice Nucleating Particles
Released in Nascent Sea Spray Aerosol and Oceanic Biological Activity during
Two Mesocosm Experiments, J. Atmos. Sci., 74, 151–166,
https://doi.org/10.1175/JAS-D-16-0087.1, 2017.
McCluskey, C. S., Ovadnevaite, J., Rinaldi, M., Atkinson, J., Belosi, F.,
Ceburnis, D., Marullo, S., Hill, T. C. J., Lohmann, U., Kanji, Z. A.,
O'Dowd, C., Kreidenweis, S. M., and DeMott, P. J.: Marine and Terrestrial
Organic Ice-Nucleating Particles in Pristine Marine to Continentally
Influenced Northeast Atlantic Air Masses, J. Geophys. Res.-Atmos., 123,
6196–6212, https://doi.org/10.1029/2017JD028033, 2018a.
McCluskey, C. S., Hill, T. C. J., Humphries, R. S., Rauker, A. M., Moreau,
S., Strutton, P. G., Chambers, S. D., Williams, A. G., McRobert, I., Ward,
J., Keywood, M. D., Harnwell, J., Ponsonby, W., Loh, Z. M., Krummel, P. B.,
Protat, A., Kreidenweis, S. M., and DeMott, P. J.: Observations of Ice
Nucleating Particles Over Southern Ocean Waters, Geophys. Res. Lett.,
45, 11989–11997, https://doi.org/10.1029/2018GL079981, 2018b.
Murphy, D. M.: The design of single particle laser mass spectrometers, Mass
Spectrom. Rev., 26, 150–165, https://doi.org/10.1002/mas.20113, 2007.
Murphy, D. M., Thomson, D. S., Middlebrook, A. M., and Schein, M. E.: In situ
single-particle characterization at Cape Grim, J. Geophys. Res.-Atmos.,
103, 16485–16491, https://doi.org/10.1029/97JD03281, 1998.
Murphy, D. M., Cziczo, D. J., Froyd, K. D., Hudson, P. K., Matthew, B. M.,
Middlebrook, A. M., Peltier, R. E., Sullivan, A., Thomson, D. S., and Weber,
R. J.: Single-particle mass spectrometry of tropospheric aerosol particles,
J. Geophys. Res.-Atmos., 111, D23, https://doi.org/10.1029/2006JD007340, 2006.
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E.: Ice
nucleation by particles immersed in supercooled cloud droplets, Chem. Soc.
Rev., 41, 6519, https://doi.org/10.1039/c2cs35200a, 2012.
O'Dowd, C. D. and de Leeuw, G.: Marine aerosol production: a review of the
current knowledge, Philos. T. Roy. Soc. A, 365,
1753–1774, https://doi.org/10.1098/rsta.2007.2043, 2007.
O'Dowd, C., Ceburnis, D., Ovadnevaite, J., Bialek, J., Stengel, D. B.,
Zacharias, M., Nitschke, U., Connan, S., Rinaldi, M., Fuzzi, S., Decesari,
S., Cristina Facchini, M., Marullo, S., Santoleri, R., Dell'Anno, A.,
Corinaldesi, C., Tangherlini, M., and Danovaro, R.: Connecting marine
productivity to sea-spray via nanoscale biological processes: Phytoplankton
Dance or Death Disco?, Sci. Rep., 5, 14883, https://doi.org/10.1038/srep14883, 2015.
O'Dowd, C. D., Facchini, M. C., Cavalli, F., Ceburnis, D., Mircea, M.,
Decesari, S., Fuzzi, S., Yoon, Y. J., and Putaud, J.-P.: Biogenically driven
organic contribution to marine aerosol, Nature, 431, 676–680,
https://doi.org/10.1038/nature02959, 2004.
O'Dowd, C. D., Langmann, B., Varghese, S., Scannell, C., Ceburnis, D., and
Facchini, M. C.: A combined organic-inorganic sea-spray source function,
Geophys. Res. Lett., 35, L01801, https://doi.org/10.1029/2007GL030331, 2008.
Ogunro, O. O., Burrows, S. M., Elliott, S., Frossard, A. A., Hoffman, F.,
Letscher, R. T., Moore, J. K., Russell, L. M., Wang, S., and Wingenter, O.
W.: Global distribution and surface activity of macromolecules in offline
simulations of marine organic chemistry, Biogeochemistry, 126, 25–56,
https://doi.org/10.1007/s10533-015-0136-x, 2015.
Parrish, C. C., Bodennec, G., Macpherson, E. J., and Ackman, R. G.: Seawater
fatty acids and lipid classes in an urban and a rural Nova Scotia inlet,
Lipids, 27, 651–655, https://doi.org/10.1007/BF02536127, 1992.
Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M.
D., Demott, P. J., Aluwihare, L. I., Palenik, B. P., Azam, F., Seinfeld, J.
H., Moffet, R. C., Molina, M. J., Cappa, C. D., Geiger, F. M., Roberts, G.
C., Russell, L. M., Ault, A. P., Baltrusaitis, J., Collins, D. B., Corrigan,
C. E., Cuadra-Rodriguez, L. A., Ebben, C. J., Forestieri, S. D., Guasco, T.
L., Hersey, S. P., Kim, M. J., Lambert, W. F., Modini, R. L., Mui, W.,
Pedler, B. E., Ruppel, M. J., Ryder, O. S., Schoepp, N. G., Sullivan, R. C.,
and Zhao, D.: Bringing the ocean into the laboratory to probe the chemical
complexity of sea spray aerosol., P. Natl. Acad. Sci. USA., 110,
7550–7555, https://doi.org/10.1073/pnas.1300262110, 2013.
Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and
Precipitation, reprinted 1980, Springer Science Business Media, Dordrecht, the Netherlands, 1980.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Quinn, P. K., Bates, T. S., Schulz, K. S., Coffman, D. J., Frossard, A. A.,
Russell, L. M., Keene, W. C., and Kieber, D. J.: Contribution of sea surface
carbon pool to organic matter enrichment in sea spray aerosol, Nat. Geosci.,
7, 228–232, https://doi.org/10.1038/ngeo2092, 2014.
Quinn, P. K., Collins, D. B., Grassian, V. H., Prather, K. A., and Bates, T.
S.: Chemistry and Related Properties of Freshly Emitted Sea Spray Aerosol,
Chem. Rev., 115, 4383–4399, https://doi.org/10.1021/cr500713g, 2015.
Rahlff, J., Stolle, C., Giebel, H.-A., Brinkhoff, T., Ribas-Ribas, M.,
Hodapp, D., and Wurl, O.: High wind speeds prevent formation of a distinct
bacterioneuston community in the sea-surface microlayer, FEMS Microbiol.
Ecol., 93, 5, https://doi.org/10.1093/femsec/fix041, 2017.
Reinthaler, T., Sintes, E., and Herndl, G. J.: Dissolved organic matter and
bacterial production and respiration in the sea-surface microlayer of the
open Atlantic and the western Mediterranean Sea, Limnol. Oceanogr., 53,
122–136, https://doi.org/10.4319/lo.2008.53.1.0122, 2008.
Righetti, D., Vogt, M., Gruber, N., Psomas, A., and Zimmermann, N. E.: Global
pattern of phytoplankton diversity driven by temperature and environmental
variability, Sci. Adv., 5, eaau6253, https://doi.org/10.1126/sciadv.aau6253, 2019.
Rosinski, J., Haagenson, P. L., Nagamoto, C. T., and Parungo, F.: Ice-forming
nuclei of maritime origin, J. Aerosol Sci., 17, 23–46,
https://doi.org/10.1016/0021-8502(86)90004-2, 1986.
Rosinski, J., Haagenson, P. L., Nagamoto, C. T., and Parungo, F.: Nature of
ice-forming nuclei in marine air masses, J. Aerosol Sci., 18, 291–309,
https://doi.org/10.1016/0021-8502(87)90024-3, 1987.
Russell, L. M., Hawkins, L. N., Frossard, A. A., Quinn, P. K., and Bates, T.
S.: Carbohydrate-like composition of submicron atmospheric particles and
their production from ocean bubble bursting, P. Natl. Acad. Sci.,
107, 6652–6657, https://doi.org/10.1073/pnas.0908905107, 2010.
Sabbaghzadeh, B., Upstill-Goddard, R. C., Beale, R., Pereira, R., and
Nightingale, P. D.: The Atlantic Ocean surface microlayer from 50∘ N to 50∘ S is ubiquitously enriched in surfactants at wind speeds
up to 13 m s−1, Geophys. Res. Lett., 44, 2852–2858,
https://doi.org/10.1002/2017GL072988, 2017.
Sarmiento, J. L. and Gruber, N.: Ocean biogeochemical dynamics, Princeton University Press, Princeton, NJ, USA, 2006.
Schill, G. P. and Tolbert, M. A.: Heterogeneous ice nucleation on simulated
sea-spray aerosol using Raman microscopy, J. Phys. Chem. C, 118,
29234–29241, https://doi.org/10.1021/jp505379j, 2014.
Schnell, R. C. and Vali, G.: Freezing nuclei in marine waters, Tellus,
27, 321–323, https://doi.org/10.1111/j.2153-3490.1975.tb01682.x, 1975.
Si, M., Irish, V. E., Mason, R. H., Vergara-Temprado, J., Hanna, S. J., Ladino, L. A., Yakobi-Hancock, J. D., Schiller, C. L., Wentzell, J. J. B., Abbatt, J. P. D., Carslaw, K. S., Murray, B. J., and Bertram, A. K.: Ice-nucleating ability of aerosol particles and possible sources at three coastal marine sites, Atmos. Chem. Phys., 18, 15669–15685, https://doi.org/10.5194/acp-18-15669-2018, 2018.
Strickland, J. D. and Parsons, T. R.: A practical handbook of seawater
analysis, Fisheries Research Board of Canada, Ottawa, Canada, 1972.
Sun, C.-C., Sperling, M., and Engel, A.: Effect of wind speed on the size distribution of gel particles in the sea surface microlayer: insights from a wind–wave channel experiment, Biogeosciences, 15, 3577–3589, https://doi.org/10.5194/bg-15-3577-2018, 2018.
Thornton, D. C. O., Brooks, S. D., and Chen, J.: Protein and Carbohydrate
Exopolymer Particles in the Sea Surface Microlayer (SML), Front. Mar. Sci.,
3, 135, https://doi.org/10.3389/fmars.2016.00135, 2016.
TSI Inc.: Model 3076 Constant Output Atomizer Instruction Manual, P/N
1933076, Revision J., available at: https://www.wmo-gaw-wcc-aerosol-physics.org/files/atomizer-tsi-3076.pdf (last access: 7 December 2020), 2005.
Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds, J.
Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Vergara-Temprado, J., Murray, B. J., Wilson, T. W., O'Sullivan, D., Browse, J., Pringle, K. J., Ardon-Dryer, K., Bertram, A. K., Burrows, S. M., Ceburnis, D., DeMott, P. J., Mason, R. H., O'Dowd, C. D., Rinaldi, M., and Carslaw, K. S.: Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations, Atmos. Chem. Phys., 17, 3637–3658, https://doi.org/10.5194/acp-17-3637-2017, 2017.
Vignati, E., Facchini, M. C. C., Rinaldi, M., Scannell, C., Ceburnis, D.,
Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., and O'Dowd, C.
D. D.: Global scale emission and distribution of sea-spray aerosol: Sea-salt
and organic enrichment, Atmos. Environ., 44, 670–677,
https://doi.org/10.1016/j.atmosenv.2009.11.013, 2010.
Wang, X., Sultana, C. M., Trueblood, J., Hill, T. C. J., Malfatti, F., Lee,
C., Laskina, O., Moore, K. A., Beall, C. M., McCluskey, C. S., Cornwell, G.
C., Zhou, Y., Cox, J. L., Pendergraft, M. A., Santander, M. V., Bertram, T.
H., Cappa, C. D., Azam, F., DeMott, P. J., Grassian, V. H., and Prather, K.
A.: Microbial Control of Sea Spray Aerosol Composition: A Tale of Two
Blooms, ACS Cent. Sci., 1, 124–131, https://doi.org/10.1021/acscentsci.5b00148,
2015.
Wang, X., Deane, G. B., Moore, K. A., Ryder, O. S., Stokes, M. D., Beall, C. M., Collins, D. B., Santander, M. V, Burrows, S. M., Sultana, C. M., and Prather, K. A.: The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles, P. Natl. Acad. Sci. USA, 114, 6978–6983, https://doi.org/10.1073/pnas.1702420114, 2017.
Wilbourn, E. K., Thornton, D. C. O., Ott, C., Graff, J., Quinn, P. K.,
Bates, T. S., Betha, R., Russell, L. M., Behrenfeld, M. J., and Brooks, S.
D.: Ice Nucleation by Marine Aerosols Over the North Atlantic Ocean in Late
Spring, J. Geophys. Res.-Atmos., 125, 4, https://doi.org/10.1029/2019JD030913, 2020.
Wilson, T. W., Murray, B. J., Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M., Skrotzki, J., Price, H. C., Malkin, T. L., Dobbie, S., and Al-Jumur, S. M. R. K.: Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures, Atmos. Chem. Phys., 12, 8611–8632, https://doi.org/10.5194/acp-12-8611-2012, 2012.
Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M.,
Browse, J., Burrows, S. M., Carslaw, K. S., Huffman, J. A., Judd, C.,
Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J.
J., Polishchuk, E., Rae, S., Schiller, C. L., Si, M., Temprado, J. V.,
Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt, J. P.
D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, B. J.: A marine
biogenic source of atmospheric ice-nucleating particles, Nature, 525,
234–238, https://doi.org/10.1038/nature14986, 2015.
Wolf, M. J., Coe, A., Dove, L. A., Zawadowicz, M. A., Dooley, K., Biller, S.
J., Zhang, Y., Chisholm, S. W., and Cziczo, D. J.: Investigating the
Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model Source
of Marine Organic Matter, Environ. Sci. Technol., 53, 1139–1149,
https://doi.org/10.1021/acs.est.8b05150, 2019.
Wolf, M.: A Link between the Ice Nucleation Activity and the Biogeochemistry of Seawater, Harvard Dataverse, V1, https://doi.org/10.7910/DVN/QEJJMF, last access: 4 December 2020.
Wu, J.: Jet Drops Produced by Bubbles Bursting at the Surface of Seawater,
J. Phys. Oceanogr., 32, 3286–3290,
https://doi.org/10.1175/1520-0485(2002)032<3286:JDPBBB>2.0.CO;2,
2002.
Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011.
Zäncker, B., Bracher, A., Röttgers, R., and Engel, A.: Variations of
the Organic Matter Composition in the Sea Surface Microlayer: A Comparison
between Open Ocean, Coastal, and Upwelling Sites Off the Peruvian Coast,
Front. Microbiol., 8, 2369, https://doi.org/10.3389/fmicb.2017.02369, 2017.
Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved identification of primary biological aerosol particles using single-particle mass spectrometry, Atmos. Chem. Phys., 17, 7193–7212, https://doi.org/10.5194/acp-17-7193-2017, 2017.
Zeng, J., Zhang, G., Long, S., Liu, K., Cao, L., Bao, L., and Li, Y.: Sea
salt deliquescence and crystallization in atmosphere: an in situ
investigation using x-ray phase contrast imaging, Surf. Interface Anal.,
45, 930–936, https://doi.org/10.1002/sia.5184, 2013.
Zeppenfeld, S., van Pinxteren, M., Hartmann, M., Bracher, A., Stratmann, F.,
and Herrmann, H.: Glucose as a Potential Chemical Marker for Ice Nucleating
Activity in Arctic Seawater and Melt Pond Samples, Environ. Sci. Technol.,
53, 8747–8756, https://doi.org/10.1021/acs.est.9b01469, 2019.
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X.,
Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic
pollution, Nat. Geosci., 12, 602–607, https://doi.org/10.1038/s41561-019-0389-4,
2019.
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by...
Altmetrics
Final-revised paper
Preprint