Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-13905-2020
https://doi.org/10.5194/acp-20-13905-2020
Research article
 | 
18 Nov 2020
Research article |  | 18 Nov 2020

Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology

Mariana Adam, Doina Nicolae, Iwona S. Stachlewska, Alexandros Papayannis, and Dimitris Balis

Related authors

Biomass burning events measured by lidars in EARLINET – Part 2: Optical properties investigation
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759,https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Biomass burning events measured by lidars in EARLINET. Part II. Results and discussions
Mariana Adam, Doina Nicolae, Livio Belegante, Iwona S. Stachlewska, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christiana Anna Papanikolaou, Nikos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Juan Antonio Bravo-Aranda, Arnoud Apituley, Nikolaos Papagiannopoulos, Lucia Mona, Ina Mattis, Anatoli Chaikovsky, Michaël Sicard, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647,https://doi.org/10.5194/acp-2020-647, 2020
Revised manuscript not accepted
Short summary
Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: observations from the new UK lidar and sun-photometer network
Martin Osborne, Florent F. Malavelle, Mariana Adam, Joelle Buxmann, Jaqueline Sugier, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 19, 3557–3578, https://doi.org/10.5194/acp-19-3557-2019,https://doi.org/10.5194/acp-19-3557-2019, 2019
Short summary
Transport of Canadian forest fire smoke over the UK as observed by lidar
Geraint Vaughan, Adam P. Draude, Hugo M. A. Ricketts, David M. Schultz, Mariana Adam, Jacqueline Sugier, and David P. Wareing
Atmos. Chem. Phys., 18, 11375–11388, https://doi.org/10.5194/acp-18-11375-2018,https://doi.org/10.5194/acp-18-11375-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673, https://doi.org/10.5194/acp-24-4651-2024,https://doi.org/10.5194/acp-24-4651-2024, 2024
Short summary
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024,https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024,https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024,https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Opinion: Aerosol remote sensing over the next 20 years
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024,https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary

Cited articles

Adam, M., Pahlow, M., Kovalev, V. A., Ondov, J. M., Parlange, M. B., and Nair, N.: Aerosol optical characterization by nephelometer and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion, J. Geophys. Res., 109, D16S02, https://doi.org/10.1029/2003JD004047, 2004. 
Alonso-Blanco, E., Castro, A., Calvo, A. I., Pont, V., Mallet, M., and Fraile, R.: Wildfire smoke plumes transport under a subsidence inversion: Climate and health implications in a distant urban area, Sci. Total Environ., 619–620, 988–1002, https://doi.org/10.1016/j.scitotenv.2017.11.142, 2018. 
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann, W., and Michaelis, W.: Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio, Appl. Phys., 55, 18–28, 1992. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Biomass burning events measured by EARLINET are analysed using intensive parameters. The pollution layers are labelled smoke layers if fires were found along the air-mass back trajectory. The number of contributing fires to the smoke measurements is quantified. It is shown that most of the time we measure mixed smoke. The methodology provides three research directions: fires measured by several stations, long-range transport from N. America, and an analysis function of continental sources.
Altmetrics
Final-revised paper
Preprint