Articles | Volume 20, issue 20
Atmos. Chem. Phys., 20, 12347–12361, 2020
https://doi.org/10.5194/acp-20-12347-2020

Special issue: The Modular Earth Submodel System (MESSy) (ACP/GMD inter-journal...

Atmos. Chem. Phys., 20, 12347–12361, 2020
https://doi.org/10.5194/acp-20-12347-2020

Research article 29 Oct 2020

Research article | 29 Oct 2020

The impact of weather patterns and related transport processes on aviation's contribution to ozone and methane concentrations from NOx emissions

Simon Rosanka et al.

Related authors

Organic pollutants from tropical peatland fires: regional influences and its impact on lower stratospheric ozone
Simon Rosanka, Bruno Franco, Lieven Clarisse, Pierre-François Coheur, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1130,https://doi.org/10.5194/acp-2020-1130, 2020
Preprint under review for ACP
Short summary
Oxidation of low-molecular weight organic compounds in cloud droplets: global impact on tropospheric oxidants
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1041,https://doi.org/10.5194/acp-2020-1041, 2020
Revised manuscript accepted for ACP
Short summary
Oxidation of low-molecular weight organic compounds in cloud droplets: development of the JAMOC chemical mechanism in CAABA/MECCA (version 4.5.0gmdd)
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-337,https://doi.org/10.5194/gmd-2020-337, 2020
Preprint under review for GMD
Short summary
Influence of the actual weather situation on non-CO2 aviation climate effects: The REACT4C Climate Change Functions
Christine Frömming, Volker Grewe, Sabine Brinkop, Patrick Jöckel, Amund S. Haslerud, Simon Rosanka, Jesper van Manen, and Sigrun Matthes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-529,https://doi.org/10.5194/acp-2020-529, 2020
Revised manuscript accepted for ACP
Short summary
Atmospheric chemical loss processes of isocyanic acid (HNCO): a combined theoretical kinetic and global modelling study
Simon Rosanka, Giang H. T. Vu, Hue M. T. Nguyen, Tien V. Pham, Umar Javed, Domenico Taraborrelli, and Luc Vereecken
Atmos. Chem. Phys., 20, 6671–6686, https://doi.org/10.5194/acp-20-6671-2020,https://doi.org/10.5194/acp-20-6671-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Evaluation of the LOTOS-EUROS NO2 simulations using ground-based measurements and S5P/TROPOMI observations over Greece
Ioanna Skoulidou, Maria-Elissavet Koukouli, Astrid Manders, Arjo Segers, Dimitris Karagkiozidis, Myrto Gratsea, Dimitris Balis, Alkiviadis Bais, Evangelos Gerasopoulos, Trisevgeni Stavrakou, Jos van Geffen, Henk Eskes, and Andreas Richter
Atmos. Chem. Phys., 21, 5269–5288, https://doi.org/10.5194/acp-21-5269-2021,https://doi.org/10.5194/acp-21-5269-2021, 2021
Short summary
Reactive organic carbon emissions from volatile chemical products
Karl M. Seltzer, Elyse Pennington, Venkatesh Rao, Benjamin N. Murphy, Madeleine Strum, Kristin K. Isaacs, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 5079–5100, https://doi.org/10.5194/acp-21-5079-2021,https://doi.org/10.5194/acp-21-5079-2021, 2021
Short summary
A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity
Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol
Atmos. Chem. Phys., 21, 4809–4824, https://doi.org/10.5194/acp-21-4809-2021,https://doi.org/10.5194/acp-21-4809-2021, 2021
Short summary
Technical note: On comparing greenhouse gas emission metrics
Ian Enting and Nathan Clisby
Atmos. Chem. Phys., 21, 4699–4708, https://doi.org/10.5194/acp-21-4699-2021,https://doi.org/10.5194/acp-21-4699-2021, 2021
Short summary
Late-spring and summertime tropospheric ozone and NO2 in western Siberia and the Russian Arctic: regional model evaluation and sensitivities
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021,https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary

Cited articles

Brasseur, G., Cox, R., Hauglustaine, D., Isaksen, I., Lelieveld, J., Lister, D., Sausen, R., Schumann, U., Wahner, A., and Wiesen, P.: European scientific assessment of the atmospheric effects of aircraft emissions, Atmos. Environ., 32, 2329–2418, https://doi.org/10.1016/S1352-2310(97)00486-X, 1998. a
Brasseur, G. P., Gupta, M., Anderson, B. E., Balasubramanian, S., Barrett, S., Duda, D., Fleming, G., Forster, P. M., Fuglestvedt, J., Gettelman, A., Halthore, R. N., Jacob, S. D., Jacobson, M. Z., Khodayari, A., Liou, K.-N., Lund, M. T., Miake-Lye, R. C., Minnis, P., Olsen, S., Penner, J. E., Prinn, R., Schumann, U., Selkirk, H. B., Sokolov, A., Unger, N., Wolfe, P., Wong, H.-W., Wuebbles, D. W., Yi, B., Yang, P., and Zhou, C.: Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II, B. Am. Meteorol. Soc., 97, 561–583, https://doi.org/10.1175/BAMS-D-13-00089.1, 2016. a
Brinkop, S. and Jöckel, P.: ATTILA 4.0: Lagrangian advective and convective transport of passive tracers within the ECHAM5/MESSy (2.53.0) chemistry–climate model, Geosci. Model Dev., 12, 1991–2008, https://doi.org/10.5194/gmd-12-1991-2019, 2019. a, b
Cooper, O. R., Parrish, D. D., Stohl, A., Trainer, M., Nédélec, P., Thouret, V., Cammas, J. P., Oltmans, S. J., Johnson, B. J., Tarasick, D., Leblanc, T., McDermid, I. S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A., and Avery, M. A.: Increasing springtime ozone mixing ratios in the free troposphere over western North America, Nature, 463, 344–348, https://doi.org/10.1038/nature08708, 2010. a
Dahlmann, K.: Eine Methode zur effizienten Bewertung von Maßnahmen zur Klimaoptimierung des Luftverkehrs, Ph.D thesis, Ludwig Maximilians Universität, Munich, Germany, 2012. a
Download
Short summary
Aviation-attributed nitrogen oxide (NOx) emissions lead to an increase in ozone and a depletion of methane. We investigate the impact of weather-related transport processes on these induced composition changes. Subsidence in high-pressure systems leads to earlier ozone maxima due to an enhanced chemical activity. Background NOx and hydroperoxyl radicals limit the total ozone change during summer and winter, respectively. High water vapour concentrations lead to a high methane depletion.
Altmetrics
Final-revised paper
Preprint