Articles | Volume 20, issue 17
https://doi.org/10.5194/acp-20-10311-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-10311-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Comprehensive analyses of source sensitivities and apportionments of PM2.5 and ozone over Japan via multiple numerical techniques
National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
Hikari Shimadera
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
Syuichi Itahashi
Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
Kazuyo Yamaji
Graduate School of Maritime Sciences, Kobe University, Kobe, Hyogo 658-0022, Japan
Related authors
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Preprint under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2064, https://doi.org/10.5194/egusphere-2024-2064, 2024
Short summary
Short summary
Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO and 12.4±4.8 PgCO2, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Taisei Machida, Takashi Maki, Prabir K. Patra, and Sachiko Hayashida
Atmos. Chem. Phys., 25, 7137–7160, https://doi.org/10.5194/acp-25-7137-2025, https://doi.org/10.5194/acp-25-7137-2025, 2025
Short summary
Short summary
Air pollution in Delhi during the post-monsoon period is severe, and association with intensive crop residue burning (CRB) over Punjab state has attracted attention. However, the relationship has been unclear as the CRB emissions conventionally derived from satellites were underestimated due to clouds or thick smoke/haze over the region. We evaluated the impact of CRB on PM2.5 to be about 50 %, based on a combination of numerical modeling and an observation network using low-cost sensors we installed.
Mao Xu, Phuvasa Chanonmuang, Hiroyuki Sase, Atsuyuki Sorimachi, Syuichi Itahashi, and Kazuhide Matsuda
EGUsphere, https://doi.org/10.5194/egusphere-2025-2505, https://doi.org/10.5194/egusphere-2025-2505, 2025
Short summary
Short summary
We first observed the exchange flux of ammonia over a tropical forest in Thailand. Measurements were taken during two periods in the dry season with different environmental conditions. This data improves our understanding of how ammonia behaves in forests under tropical climates and helps refine models that estimate nitrogen deposition and assess its impact across East Asia.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Preprint under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Phuc Thi Minh Ha, Yugo Kanaya, Kazuyo Yamaji, Syuichi Itahashi, Satoru Chatani, Takashi Sekiya, Maria Dolores Andrés Hernández, John Philip Burrows, Hans Schlager, Michael Lichtenstern, Mira Poehlker, and Bruna Holanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-2064, https://doi.org/10.5194/egusphere-2024-2064, 2024
Short summary
Short summary
Black carbon and CO are important to climate change. EMeRGe airborne observation can identify the suitability of emission inventories used in CMAQv5.0.2 model for Asian polluted regions. GFEDv4.1s is suitable for fire emissions. Anthropogenic BC and CO emissions from Philippines (REASv2.1) are insufficient. The estimated Chinese emissions in 2018 are 0.65±0.25 TgBC, 166±65 TgCO and 12.4±4.8 PgCO2, suggesting a reduction and increment for China's BC and CO emissions in the HTAPv2.2z inventory.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Syuichi Itahashi, Baozhu Ge, Keiichi Sato, Zhe Wang, Junichi Kurokawa, Jiani Tan, Kan Huang, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Gregory R. Carmichael, and Zifa Wang
Atmos. Chem. Phys., 21, 8709–8734, https://doi.org/10.5194/acp-21-8709-2021, https://doi.org/10.5194/acp-21-8709-2021, 2021
Short summary
Short summary
This study presents the detailed analysis of acid deposition over southeast Asia based on the Model Inter-Comparison Study for Asia (MICS-Asia) phase III. Simulated wet deposition is evaluated with observation data from the Acid Deposition Monitoring Network in East Asia (EANET). The difficulties of models to capture observations are related to the model performance on precipitation. The precipitation-adjusted approach was applied, and the distribution of wet deposition was successfully revised.
Baozhu Ge, Syuichi Itahashi, Keiichi Sato, Danhui Xu, Junhua Wang, Fan Fan, Qixin Tan, Joshua S. Fu, Xuemei Wang, Kazuyo Yamaji, Tatsuya Nagashima, Jie Li, Mizuo Kajino, Hong Liao, Meigen Zhang, Zhe Wang, Meng Li, Jung-Hun Woo, Junichi Kurokawa, Yuepeng Pan, Qizhong Wu, Xuejun Liu, and Zifa Wang
Atmos. Chem. Phys., 20, 10587–10610, https://doi.org/10.5194/acp-20-10587-2020, https://doi.org/10.5194/acp-20-10587-2020, 2020
Short summary
Short summary
Performances of the simulated deposition for different reduced N (Nr) species in China were conducted with the Model Inter-Comparison Study for Asia. Results showed that simulated wet deposition of oxidized N was overestimated in northeastern China and underestimated in south China, but Nr was underpredicted in all regions by all models. Oxidized N has larger uncertainties than Nr, indicating that the chemical reaction process is one of the most importance factors affecting model performance.
Cited articles
Burr, M. J., and Zhang, Y.:
Source apportionment of fine particulate matter over the Eastern U.S. Part II: source apportionment simulations using CAMx/PSAT and comparisons with CMAQ source sensitivity simulations,
Atmos. Pollut. Res.,
2, 318–336, https://doi.org/10.5094/apr.2011.037, 2011.
Byun, D., and Schere, K. L.:
Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system,
Appl. Mech. Rev.,
59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Chatani, S. and Sudo, K.: Influences of the variation in inflow to East Asia on surface ozone over Japan during 1996–2005, Atmos. Chem. Phys., 11, 8745–8758, https://doi.org/10.5194/acp-11-8745-2011, 2011.
Chatani, S., Morikawa, T., Nakatsuka, S., and Matsunaga, S.:
Sensitivity analyses of domestic emission sources and transboundary transport on PM2.5 concentrations in three major Japanese urban areas for the year 2005 with the three-dimensional air quality simulation,
J. Jpn. Soc. Atmos. Environ.,
46, 101–110, https://doi.org/10.11298/taiki.46.101, 2011.
Chatani, S., Okumura, M., Shimadera, H., Yamaji, K., Kitayama, K., and Matsunaga, S.:
Effects of a detailed vegetation database on simulated meteorological fields, biogenic VOC emissions, and ambient pollutant concentrations over Japan,
Atmosphere,
9, 179, https://doi.org/10.3390/atmos9050179, 2018a.
Chatani, S., Yamaji, K., Sakurai, T., Itahashi, S., Shimadera, H., Kitayama, K., and Hayami, H.:
Overview of model inter-comparison in Japan's Study for Reference Air Quality Modeling (J-STREAM),
Atmosphere,
9, 19, https://doi.org/10.3390/atmos9010019, 2018b.
Chatani, S., Cheewaphongphan, P., Kobayashi, S., Tanabe, K., Yamaji, K., and Takami, A.:
Development of Ambient Pollutant Emission Inventory for Large Stationary Sources Classified by Sectors, Facilities, and Fuel Types in Japan,
J. Jpn. Soc. Atmos. Environ.,
54, 62–74, https://doi.org/10.11298/taiki.54.62, 2019.
Chatani, S., Yamaji, K., Itahashi, S., Saito, M., Takigawa, M., Morikawa, T., Kanda, I., Miya, Y., Komatsu, H., Sakurai, T., Morino, Y., Nagashima, T., Kitayama, K., Shimadera, H., Uranishi, K., Fujiwara, Y., Shintani, S., and Hayami, H.:
Identifying key factors influencing model performance on ground-level ozone over urban areas in Japan through model inter-comparisons,
Atmos. Environ.,
223, 117255, https://doi.org/10.1016/j.atmosenv.2019.117255, 2020.
Chen, Y., Cheng, Y., Ma, N., Wolke, R., Nordmann, S., Schüttauf, S., Ran, L., Wehner, B., Birmili, W., van der Gon, H. A. C. D., Mu, Q., Barthel, S., Spindler, G., Stieger, B., Müller, K., Zheng, G.-J., Pöschl, U., Su, H., and Wiedensohler, A.: Sea salt emission, transport and influence on size-segregated nitrate simulation: a case study in northwestern Europe by WRF-Chem, Atmos. Chem. Phys., 16, 12081–12097, https://doi.org/10.5194/acp-16-12081-2016, 2016.
Clappier, A., Belis, C. A., Pernigotti, D., and Thunis, P.: Source apportionment and sensitivity analysis: two methodologies with two different purposes, Geosci. Model Dev., 10, 4245–4256, https://doi.org/10.5194/gmd-10-4245-2017, 2017.
Cohan, D. S. and Napelenok, S. L.:
Air quality response modeling for decision support,
Atmosphere,
2, 407–425, https://doi.org/10.3390/atmos2030407, 2011.
Cohan, D. S., Hakami, A., Hu, Y. T., and Russell, A. G.:
Nonlinear response of ozone to emissions: Source apportionment and sensitivity analysis,
Environ. Sci. Technol.,
39, 6739–6748, https://doi.org/10.1021/es048664m, 2005.
Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.:
Comparison of source apportionment and source sensitivity of ozone in a three-dimensional air quality model,
Environ. Sci. Technol.,
36, 2953–2964, https://doi.org/10.1021/es011418f, 2002.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar, N.:
Recommendations on statistics and benchmarks to assess photochemical model performance,
J. Air Waste Manage.,
67, 582–598, https://doi.org/10.1080/10962247.2016.1265027, 2017.
European Environment Agency:
EMEP/EEA air pollutant emission inventory guidebook 2016, Publications Office of the European Union, Luxembourg, 2016.
Fu, X., Wang, S. X., Zhao, B., Xing, J., Cheng, Z., Liu, H., and Hao, J. M.:
Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China,
Atmos. Environ.,
70, 39–50, https://doi.org/10.1016/j.atmosenv.2012.12.034, 2013.
Fushimi, A., Saitoh, K., Hayashi, K., Ono, K., Fujitani, Y., Villalobos, A. M., Shelton, B. R., Takami, A., Tanabe, K., and Schauer, J. J.:
Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions,
Atmos. Environ.,
163, 118–127, https://doi.org/10.1016/j.atmosenv.2017.05.037, 2017.
Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2, Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015.
Greenhouse Gas Inventory Office of Japan:
National Greenhouse Gas Inventory Report of Japan, National Institute for Environmental Studies, Tsukuba, Japan, 2018.
Grell, G. A. and Devenyi, D.:
A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,
Geophys. Res. Lett.,
29, 1693, https://doi.org/10.1029/2002gl015311, 2002.
Guo, H., Otjes, R., Schlag, P., Kiendler-Scharr, A., Nenes, A., and Weber, R. J.: Effectiveness of ammonia reduction on control of fine particle nitrate, Atmos. Chem. Phys., 18, 12241–12256, https://doi.org/10.5194/acp-18-12241-2018, 2018.
Hakami, A., Odman, M. T., and Russell, A. G.:
High-order, direct sensitivity analysis of multidimensional air quality models,
Environ. Sci. Technol.,
37, 2442–2452, https://doi.org/10.1021/es020677h, 2003.
Hayashi, K., Ono, K., Kajiura, M., Sudo, S., Yonemura, S., Fushimi, A., Saitoh, K., Fujitani, Y., and Tanabe, K.:
Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon,
Atmos. Environ.,
95, 36–44, https://doi.org/10.1016/j.atmosenv.2014.06.023, 2014.
Hopke, P. K.:
Review of receptor modeling methods for source apportionment,
J. Air Waste Manage.,
66, 237–259, https://doi.org/10.1080/10962247.2016.1140693, 2016.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.:
Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models,
J. Geophys. Res.-Atmos.,
113, D13103, https://doi.org/10.1029/2008jd009944, 2008.
Ikeda, K., Yamaji, K., Kanaya, Y., Taketani, F., Pan, X., Komazaki, Y., Kurokawa, J.-i., and Ohara, T.:
Source region attribution of PM2.5 mass concentrations over Japan,
Geochem. J.,
49, 185–194, https://doi.org/10.2343/geochemj.2.0344, 2015.
Inoue, K., Tonokura, K., and Yamada, H.:
Modeling study on the spatial variation of the sensitivity of photochemical ozone concentrations and population exposure to VOC emission reductions in Japan,
Air Qual. Atmos. Hlth.,
12, 1035–1047, https://doi.org/10.1007/s11869-019-00720-w, 2019.
Itahashi, S., Hayami, H., and Uno, I.:
Comprehensive study of emission source contributions for tropospheric ozone formation over East Asia,
J. Geophys. Res.-Atmos.,
120, 331–358, https://doi.org/10.1002/2014jd022117, 2015.
Itahashi, S., Yamaji, K., Chatani, S., and Hayami, H.:
Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway,
Atmosphere,
9, 132, https://doi.org/10.3390/atmos9040132, 2018.
Itahashi, S., Yamaji, K., Chatani, S., and Hayami, H.: Differences in Model Performance and Source Sensitivities for Sulfate Aerosol Resulting from Updates of the Aqueous- and Gas-Phase Oxidation Pathways for a Winter Pollution Episode in Tokyo, Japan, Atmosphere, 10, 544, https://doi.org/10.3390/atmos10090544, 2019.
Itahashi, S., Mathur, R., Hogrefe, C., and Zhang, Y.: Modeling stratospheric intrusion and trans-Pacific transport on tropospheric ozone using hemispheric CMAQ during April 2010 – Part 1: Model evaluation and air mass characterization for stratosphere–troposphere transport, Atmos. Chem. Phys., 20, 3373–3396, https://doi.org/10.5194/acp-20-3373-2020, 2020.
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015.
Kitayama, K., Morino, Y., Yamaji, K., and Chatani, S.:
Uncertainties in O3 concentrations simulated by CMAQ over Japan using four chemical mechanisms,
Atmos. Environ.,
198, 448–462, https://doi.org/10.1016/j.atmosenv.2018.11.003, 2019.
Kondo, Y., Ram, K., Takegawa, N., Sahu, L., Morino, Y., Liu, X., and Ohara, T.:
Reduction of black carbon aerosols in Tokyo: Comparison of real-time observations with emission estimates,
Atmos. Environ.,
54, 242–249, https://doi.org/10.1016/j.atmosenv.2012.02.003, 2012.
Koo, B., Wilson, G. M., Morris, R. E., Dunker, A. M., and Yarwood, G.:
Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air Quality Model,
Environ. Sci. Technol.,
43, 6669–6675, https://doi.org/10.1021/es9008129, 2009.
Kurokawa, J., Ohara, T., Uno, I., Hayasaki, M., and Tanimoto, H.: Influence of meteorological variability on interannual variations of springtime boundary layer ozone over Japan during 1981–2005, Atmos. Chem. Phys., 9, 6287–6304, https://doi.org/10.5194/acp-9-6287-2009, 2009.
Kwok, R. H. F., Napelenok, S. L., and Baker, K. R.:
Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model,
Atmos. Environ.,
80, 398–407, https://doi.org/10.1016/j.atmosenv.2013.08.017, 2013.
Lee, D., Lee, Y. M., Jang, K. W., Yoo, C., Kang, K. H., Lee, J. H., Jung, S. W., Park, J. M., Lee, S. B., Han, J. S., Hong, J. H., and Lee, S. J.:
Korean National Emissions Inventory System and 2007 Air Pollutant Emissions,
Asian J. Atmos. Environ.,
5, 278–291, https://doi.org/10.5572/ajae.2011.5.4.278, 2011.
Liu, M. X., Huang, X., Song, Y., Tang, J., Cao, J. J., Zhang, X. Y., Zhang, Q., Wang, S. X., Xu, T. T., Kang, L., Cai, X. H., Zhang, H. S., Yang, F. M., Wang, H. B., Yu, J. Z., Lau, A. K. H., He, L. Y., Huang, X. F., Duan, L., Ding, A. J., Xue, L. K., Gao, J., Liu, B., and Zhu, T.:
Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain,
P. Natl. Acad. Sci. USA,
116, 7760–7765, https://doi.org/10.1073/pnas.1814880116, 2019.
Martin, M., Dash, P., Ignatov, A., Banzon, V., Beggs, H., Brasnett, B., Cayula, J. F., Cummings, J., Donlon, C., Gentemann, C., Grumbine, R., Ishizaki, S., Maturi, E., Reynolds, R. W., and Roberts-Jones, J.:
Group for High Resolution Sea Surface temperature (GHRSST) analysis fields inter-comparisons. Part 1: A GHRSST multi-product ensemble (GMPE),
Deep-Sea Res Pt. II,
77–80, 21–30, https://doi.org/10.1016/j.dsr2.2012.04.013, 2012.
Morino, Y., Chatani, S., Tanabe, K., Fujitani, Y., Morikawa, T., Takahashi, K., Sato, K., and Sugata, S.:
Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan,
Environ. Sci. Technol.,
52, 8456–8466, https://doi.org/10.1021/acs.est.8b01285, 2018.
Morrison, H., Thompson, G., and Tatarskii, V.:
Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes,
Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008mwr2556.1, 2009.
National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce:
NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids,
in,
Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, 2015.
Pinder, R. W., Adams, P. J., and Pandis, S. N.:
Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern United States,
Environ. Sci. Technol.,
41, 380–386, https://doi.org/10.1021/es060379a, 2007.
Pio, C. A. and Lopes, D. A.:
Chlorine loss from marine aerosol in a coastal atmosphere,
J. Geophys. Res.-Atmos.,
103, 25263–25272, https://doi.org/10.1029/98jd02088, 1998.
Prinn, R. G.:
The cleansing capacity of the atmosphere,
Annu. Rev. Env. Resour.,
28, 29–57, https://doi.org/10.1146/annurev.energy.28.011503.163425, 2003.
Seinfeld, J. H. and Pandis, S. N.:
Atmospheric chemistry and physics: From air pollution to climate change,
John Wiley & Sons, Inc., New York, USA, 1998.
Shimadera, H., Hayami, H., Chatani, S., Morino, Y., Mori, Y., Morikawa, T., Yamaji, K., and Ohara, T.:
Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate,
J. Air Waste Manage.,
64, 374–387, https://doi.org/10.1080/10962247.2013.778919, 2014.
Shimadera, H., Hayami, H., Chatani, S., Morikawa, T., Morino, Y., Mori, Y., Yamaji, K., Nakatsuka, S., and Ohara, T.:
Urban Air Quality Model Inter-Comparison Study (UMICS) for Improvement of PM2.5 Simulation in Greater Tokyo Area of Japan,
Asian J. Atmos. Environ.,
12, 139–152, https://doi.org/10.5572/ajae.2018.12.2.139, 2018.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G.:
A Description of the Advanced Research WRF Version 3NCAR/TN-475+STR,
National Center for Atmospheric Research,
Boulder, Colorado, USA, 2008.
Spero, T. L., Nolte, C. G., Mallard, M. S., and Bowden, J. H.:
A Maieutic Exploration of Nudging Strategies for Regional Climate Applications Using the WRF Model,
J. Appl. Meteorol. Clim.,
57, 1883–1906, https://doi.org/10.1175/jamc-d-17-0360.1, 2018.
Sudo, K., Takahashi, M., Kurokawa, J., and Akimoto, H.:
CHASER: A global chemical model of the troposphere – 1. Model description,
J. Geophys. Res.-Atmos.,
107, 4339, https://doi.org/10.1029/2001jd001113, 2002.
Sutton, M. A., Dragosits, U., Tang, Y. S., and Fowler, D.:
Ammonia emissions from non-agricultural sources in the UK,
Atmos. Environ.,
34, 855–869, https://doi.org/10.1016/s1352-2310(99)00362-3, 2000.
Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., and Penner, J.:
Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results,
J. Geophys. Res.-Atmos.,
102, 23895–23915, https://doi.org/10.1029/97jd01864, 1997.
Thunis, P., Clappier, A., Tarrason, L., Cuvelier, C., Monteiro, A., Pisoni, E., Wesseling, J., Belisa, C. A., Pirovano, G., Janssen, S., Guerreiro, C., and Peduzzi, E.:
Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches,
Environ. Int.,
130, 104825, https://doi.org/10.1016/j.envint.2019.05.019, 2019.
Tomiyama, H., Tanabe, K., Chatani, S., Kobayashi, S., Fujitani, Y., Furuyama, A., Sato, K., Fushimi, A., Kondo, Y., Sugata, S., Morino, Y., Hayasaki, M., Oguma, H., Ide, R., Kusaka, H., and Takami, A.:
Observation for Temporal Open Burning Frequency and Estimation for Daily Emissions caused by Open Burning of Rice Residue,
J. Jpn. Soc. Atmos. Environ.,
52, 105–117, https://doi.org/10.11298/taiki.52.105, 2017.
van der A, R. J., Mijling, B., Ding, J., Koukouli, M. E., Liu, F., Li, Q., Mao, H., and Theys, N.: Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China, Atmos. Chem. Phys., 17, 1775–1789, https://doi.org/10.5194/acp-17-1775-2017, 2017.
Wagstrom, K. M., Pandis, S. N., Yarwood, G., Wilson, G. M., and Morris, R. E.:
Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model,
Atmos. Environ.,
42, 5650–5659, https://doi.org/10.1016/j.atmosenv.2008.03.012, 2008.
Wakamatsu, S., Morikawa, T., and Ito, A.:
Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures,
Asian J. Atmos. Environ.,
7, 177–190, https://doi.org/10.5572/ajae.2013.7.4.177, 2013.
Wang, J. D., Zhao, B., Wang, S. X., Yang, F. M., Xing, J., Morawska, L., Ding, A. J., Kulmala, M., Kerminen, V. M., Kujansuu, J., Wang, Z. F., Ding, D. A., Zhang, X. Y., Wang, H. B., Tian, M., Petaja, T., Jiang, J. K., and Hao, J. M.:
Particulate matter pollution over China and the effects of control policies,
Sci. Total Environ.,
584, 426–447, https://doi.org/10.1016/j.scitotenv.2017.01.027, 2017.
Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P. L., and Yarwood, G.:
A new condensed toluene mechanism for Carbon Bond CB05-TU,
Atmos. Environ.,
44, 5346–5355, https://doi.org/10.1016/j.atmosenv.2009.12.029, 2010.
Wu, Y. Y., Gu, B. J., Erisman, J. W., Reis, S., Fang, Y. Y., Lu, X. H., and Zhang, X. M.:
PM2.5 pollution is substantially affected by ammonia emissions in China,
Environ. Pollut.,
218, 86–94, https://doi.org/10.1016/j.envpol.2016.08.027, 2016.
Xing, J., Wang, S. X., Jang, C., Zhu, Y., and Hao, J. M.: Nonlinear response of ozone to precursor emission changes in China: a modeling study using response surface methodology, Atmos. Chem. Phys., 11, 5027–5044, https://doi.org/10.5194/acp-11-5027-2011, 2011.
Yamaji, K., Chatani, S., Itahashi, S., Saito, M., Takigawa, M., Morikawa, T., Kanda, I., Miya, Y., Komatsu, H., Sakurai, T., Morino, Y., Kitayama, K., Nagashima, T., Shimadera, H., Uranishi, K., Fujiwara, Y., Hashimoto, T., Sudo, K., Misaki, T., and Hayami, H.:
Model Inter-Comparison for PM2.5 Components over urban Areas in Japan in the J-STREAM Framework,
Atmosphere,
11, 222, https://doi.org/10.3390/atmos11030222, 2020.
Yang, Y. J., Wilkinson, J. G., and Russell, A. G.:
Fast, direct sensitivity analysis of multidimensional photochemical models,
Environ. Sci. Technol.,
31, 2859–2868, https://doi.org/10.1021/es970117w, 1997.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
Source sensitivities and apportionments of PM2.5 and ozone concentrations over Japan for 2016 were evaluated using multiple numerical techniques including BFM, HDDM, and ISAM, embedded in regional chemical transport models. Influences of stringent emission controls recently implemented in Asian countries were reflected. Differences between sensitivities and apportionments greatly helped distinguish various direct and indirect effects of emission sources on PM2.5 and ozone concentrations.
Source sensitivities and apportionments of PM2.5 and ozone concentrations over Japan for 2016...
Altmetrics
Final-revised paper
Preprint