Articles | Volume 19, issue 10
Atmos. Chem. Phys., 19, 6879–6891, 2019
https://doi.org/10.5194/acp-19-6879-2019

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 19, 6879–6891, 2019
https://doi.org/10.5194/acp-19-6879-2019

Research article 23 May 2019

Research article | 23 May 2019

Evaluating the “2+26” regional strategy for air quality improvement during two air pollution alerts in Beijing: variations in PM2.5 concentrations, source apportionment, and the relative contribution of local emission and regional transport

Ziyue Chen et al.

Related authors

Identifying the spatiotemporal variations of ozone formation regimes across China from 2005 to 2019 based on polynomial simulation and causality analysis
Ruiyuan Li, Miaoqing Xu, Manchun Li, Ziyue Chen, Bingbo Gao, Na Zhao, and Qi Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-291,https://doi.org/10.5194/acp-2021-291, 2021
Revised manuscript accepted for ACP
Short summary
The control of anthropogenic emissions contributed to 80 % of the decrease in PM2.5 concentrations in Beijing from 2013 to 2017
Ziyue Chen, Danlu Chen, Mei-Po Kwan, Bin Chen, Bingbo Gao, Yan Zhuang, Ruiyuan Li, and Bing Xu
Atmos. Chem. Phys., 19, 13519–13533, https://doi.org/10.5194/acp-19-13519-2019,https://doi.org/10.5194/acp-19-13519-2019, 2019
Short summary
Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective
Ziyue Chen, Xiaoming Xie, Jun Cai, Danlu Chen, Bingbo Gao, Bin He, Nianliang Cheng, and Bing Xu
Atmos. Chem. Phys., 18, 5343–5358, https://doi.org/10.5194/acp-18-5343-2018,https://doi.org/10.5194/acp-18-5343-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Ammonium nitrate promotes sulfate formation through uptake kinetic regime
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021,https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
Measurement report: Indirect evidence for the controlling influence of acidity on the speciation of iodine in Atlantic aerosols
Alex R. Baker and Chan Yodle
Atmos. Chem. Phys., 21, 13067–13076, https://doi.org/10.5194/acp-21-13067-2021,https://doi.org/10.5194/acp-21-13067-2021, 2021
Short summary
Urban aerosol chemistry at a land–water transition site during summer – Part 1: Impact of agricultural and industrial ammonia emissions
Nicholas Balasus, Michael A. Battaglia Jr., Katherine Ball, Vanessa Caicedo, Ruben Delgado, Annmarie G. Carlton, and Christopher J. Hennigan
Atmos. Chem. Phys., 21, 13051–13065, https://doi.org/10.5194/acp-21-13051-2021,https://doi.org/10.5194/acp-21-13051-2021, 2021
Short summary
Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021,https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Source-specific light absorption by carbonaceous components in the complex aerosol matrix from yearly filter-based measurements
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021,https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary

Cited articles

An, X., Zhu, T., Wang, Z., Li, C., and Wang, Y.: A modeling analysis of a heavy air pollution episode occurred in Beijing, Atmos. Chem. Phys., 7, 3103–3114, https://doi.org/10.5194/acp-7-3103-2007, 2007. 
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006. 
Burr, M. J. and Zhang, Y.: Source apportionment of fine particulate matter over the Eastern U.S. Part II: Source apportionment simulations using CAMx/PSAT and comparisons with CMAQ, source sensitivity simulations, Atmos. Pollut. Res., 2, 318–336, 2011. 
Chen, Z. Y., Xu, B., Cai, J., and Gao, B. B.: Understanding temporal patterns and characteristics of air quality in Beijing: A local and regional perspective, Atmos Environ., 127, 303–315, 2016. 
Chen, Z. Y., Cai, J., Gao, B. B., Xu, B., Dai, S., He, B., and Xie, X. M.: Detecting the causality influence of individual meteorological factors on local PM2.5 concentrations in the Jing-Jin-Ji region, Sci. Reports, 7, 40735, https://doi.org/10.1038/srep40735, 2017. 
Download
Short summary
This research is the first attempt to comprehensively evaluate the recent 2+26 strategy for air quality improvement in Beijing. We additionally considered two corresponding pollution episodes with different emission-reduction strategies to comprehensively understand the effects of 2+26 strategy. The findings suggested that red alerts be employed in heavy pollution episodes to intentionally reduce vehicle exhaust, which has become the dominant source for high PM2.5 concentrations in Beijing.
Altmetrics
Final-revised paper
Preprint