Articles | Volume 19, issue 8
Atmos. Chem. Phys., 19, 5363–5385, 2019
https://doi.org/10.5194/acp-19-5363-2019
Atmos. Chem. Phys., 19, 5363–5385, 2019
https://doi.org/10.5194/acp-19-5363-2019

Research article 18 Apr 2019

Research article | 18 Apr 2019

Haze in Singapore – source attribution of biomass burning PM10 from Southeast Asia

Ayoe Buus Hansen et al.

Related authors

Assessing the value meteorological ensembles add to dispersion modelling using hypothetical releases
Susan J. Leadbetter, Andrew R. Jones, and Matthew C. Hort
Atmos. Chem. Phys., 22, 577–596, https://doi.org/10.5194/acp-22-577-2022,https://doi.org/10.5194/acp-22-577-2022, 2022
Short summary
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021,https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
The 2019 Raikoke volcanic eruption part 2: Particle phase dispersion and concurrent wildfire smoke emissions
Martin John Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-448,https://doi.org/10.5194/acp-2021-448, 2021
Revised manuscript accepted for ACP
Short summary
Modelling the size distribution of aggregated volcanic ash and implications for operational atmospheric dispersion modelling
Frances Beckett, Eduardo Rossi, Benjamin Devenish, Claire Witham, and Costanza Bonadonna
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-254,https://doi.org/10.5194/acp-2021-254, 2021
Revised manuscript accepted for ACP
Short summary
Quantifying the mass loading of particles in an ash cloud remobilized from tephra deposits on Iceland
Frances Beckett, Arve Kylling, Guðmunda Sigurðardóttir, Sibylle von Löwis, and Claire Witham
Atmos. Chem. Phys., 17, 4401–4418, https://doi.org/10.5194/acp-17-4401-2017,https://doi.org/10.5194/acp-17-4401-2017, 2017
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Assimilating spaceborne lidar dust extinction can improve dust forecasts
Jerónimo Escribano, Enza Di Tomaso, Oriol Jorba, Martina Klose, Maria Gonçalves Ageitos, Francesca Macchia, Vassilis Amiridis, Holger Baars, Eleni Marinou, Emmanouil Proestakis, Claudia Urbanneck, Dietrich Althausen, Johannes Bühl, Rodanthi-Elisavet Mamouri, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022,https://doi.org/10.5194/acp-22-535-2022, 2022
Short summary
Assessing the value meteorological ensembles add to dispersion modelling using hypothetical releases
Susan J. Leadbetter, Andrew R. Jones, and Matthew C. Hort
Atmos. Chem. Phys., 22, 577–596, https://doi.org/10.5194/acp-22-577-2022,https://doi.org/10.5194/acp-22-577-2022, 2022
Short summary
Effects of oligomerization and decomposition on the nanoparticle growth: a model study
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022,https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021,https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Constant flux layers with gravitational settling: links to aerosols, fog and deposition velocities
Peter A. Taylor
Atmos. Chem. Phys., 21, 18263–18269, https://doi.org/10.5194/acp-21-18263-2021,https://doi.org/10.5194/acp-21-18263-2021, 2021
Short summary

Cited articles

Ashfold, M., Latif, M., Samah, A., Mead, M., and Harris, N.: Influence of Northeast Monsoon cold surges on air quality in Southeast Asia, Atmos. Environ., 166, 498–509, https://doi.org/10.1016/j.atmosenv.2017.07.047, 2017. a
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res.-Oceans, 112, C11007, https://doi.org/10.1029/2006JC003798, 2007. a
Campbell, J. R., Reid, J. S., Westphal, D. L., Zhang, J., Tackett, J. L., Chew, B. N., Welton, E. J., Shimizu, A., Sugimoto, N., Aoki, K., and Winker, D. M.: Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP, Atmos. Res., 122, 520–543, https://doi.org/10.1016/j.atmosres.2012.05.007, 2013. a
Campbell, J. R., Ge, C., Wang, J., Welton, E. J., Bucholtz, A., Hyer, E. J., Reid, E. A., Chew, B. N., Liew, S.-C., Salinas, S. V., Lolli, S., Kaku, K. C., Lynch, P., Mahmud, M., Mohamad, M., and Holben, B. N.: Applying Advanced Ground-Based Remote Sensing in the Southeast Asian Maritime Continent to Characterize Regional Proficiencies in Smoke Transport Modeling, J. Appl. Meteorol. Clim., 55, 3–22, https://doi.org/10.1175/JAMC-D-15-0083.1, 2016. a
Chang, C.-P., Wang, Z., McBride, J., and Liu, C.-H.: Annual Cycle of Southeast Asia – Maritime Continent Rainfall and the Asymmetric Monsoon Transition, J. Climate, 18, 287–301, https://doi.org/10.1175/JCLI-3257.1, 2005. a
Download
Short summary
We have modelled biomass burning haze concentrations in Singapore between 2010 and 2015. The major contributing haze source regions at two monitoring stations located in the western and eastern part of Singapore, less than 30 km apart, show significant variation on seasonal and annual timescales, as well as between the stations. Our results show that haze concentrations in Singapore are driven by a combination of local and regional weather, climate, and the location of regional burning.
Altmetrics
Final-revised paper
Preprint