Articles | Volume 19, issue 7
https://doi.org/10.5194/acp-19-4991-2019
https://doi.org/10.5194/acp-19-4991-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Turbulence-induced cloud voids: observation and interpretation

Katarzyna Karpińska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond A. Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, and Eberhard Bodenschatz

Related authors

Physics of Stratocumulus Top (POST): turbulence characteristics
Imai Jen-La Plante, Yongfeng Ma, Katarzyna Nurowska, Hermann Gerber, Djamal Khelif, Katarzyna Karpinska, Marta K. Kopec, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Chem. Phys., 16, 9711–9725, https://doi.org/10.5194/acp-16-9711-2016,https://doi.org/10.5194/acp-16-9711-2016, 2016
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024,https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024,https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024,https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024,https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024,https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary

Cited articles

Belin, F., Moisy, F., Tabeling, P., and Willaime, H.: Worms in a turbulence experiment, from hot wire time series, in: Fundamental Problematic Issues in Turbulence, Trends in Mathematics, 129–140, Springer Basel A.G., Basel, https://doi.org/10.1007/978-3-0348-8689-5_14, 1999. a
Biferale, L., Scagliarini, A., and Toschi, F.: On the measurement of vortex filament lifetime statistics in turbulence, Phys. Lett. A, 276, 115–121, https://doi.org/10.1063/1.3431660, 2000. a
Bodenschatz, E., Malinowski, S. P., Shaw, R. A., and Stratmann, F.: Can We Understand Clouds Without Turbulence?, Science, 327, 970–971, https://doi.org/10.1126/science.1185138, 2010. a
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, https://doi.org/10.1002/9783527618156, Wiley, Hoboken, 1998. a
Burgers, J.: A Mathematical Model Illustrating the Theory of Turbulence, Adv. Appl. Mech., 1, 171–199, https://doi.org/10.1016/S0065-2156(08)70100-5, 1948. a
Download
Short summary
Observations of clouds at a mountain-top laboratory revealed for the first time the presence of “voids”, i.e., elongated volumes inside a cloud that are devoid of droplets. Theoretical and numerical analyses suggest that these voids are a result of strong and long-lasting vortex presence in turbulent air. If this is confirmed in further investigation, the effect may become an important part of models describing cloud evolution and rain formation.
Altmetrics
Final-revised paper
Preprint