Articles | Volume 19, issue 5
Atmos. Chem. Phys., 19, 2899–2915, 2019
https://doi.org/10.5194/acp-19-2899-2019
Atmos. Chem. Phys., 19, 2899–2915, 2019
https://doi.org/10.5194/acp-19-2899-2019

Research article 07 Mar 2019

Research article | 07 Mar 2019

Composition and light absorption of N-containing aromatic compounds in organic aerosols from laboratory biomass burning

Mingjie Xie et al.

Related authors

Gas-particle partitioning of polyol tracers in the western Yangtze River Delta, China: Absorptive or Henry's law partitioning?
Chao Qin, Yafeng Gou, Yuhang Wang, Yuhao Mao, Hong Liao, Qin'geng Wang, and Mingjie Xie
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-230,https://doi.org/10.5194/acp-2021-230, 2021
Preprint under review for ACP
Short summary
Chemical composition, structures, and light absorption of N-containing aromatic compounds emitted from burning wood and charcoal in household cookstoves
Mingjie Xie, Zhenzhen Zhao, Amara L. Holder, Michael D. Hays, Xi Chen, Guofeng Shen, James J. Jetter, Wyatt M. Champion, and Qin'geng Wang
Atmos. Chem. Phys., 20, 14077–14090, https://doi.org/10.5194/acp-20-14077-2020,https://doi.org/10.5194/acp-20-14077-2020, 2020
Short summary
Iodine speciation and size distribution in ambient aerosols at a coastal new particle formation hotspot in China
Huan Yu, Lili Ren, Xiangpeng Huang, Mingjie Xie, Jun He, and Hang Xiao
Atmos. Chem. Phys., 19, 4025–4039, https://doi.org/10.5194/acp-19-4025-2019,https://doi.org/10.5194/acp-19-4025-2019, 2019
Short summary
First long-term and near real-time measurement of trace elements in China's urban atmosphere: temporal variability, source apportionment and precipitation effect
Yunhua Chang, Kan Huang, Mingjie Xie, Congrui Deng, Zhong Zou, Shoudong Liu, and Yanlin Zhang
Atmos. Chem. Phys., 18, 11793–11812, https://doi.org/10.5194/acp-18-11793-2018,https://doi.org/10.5194/acp-18-11793-2018, 2018
Short summary
Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains
Xi Chen, Mingjie Xie, Michael D. Hays, Eric Edgerton, Donna Schwede, and John T. Walker
Atmos. Chem. Phys., 18, 6829–6846, https://doi.org/10.5194/acp-18-6829-2018,https://doi.org/10.5194/acp-18-6829-2018, 2018

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temperature and acidity dependence of secondary organic aerosol formation from α-pinene ozonolysis with a compact chamber system
Yange Deng, Satoshi Inomata, Kei Sato, Sathiyamurthi Ramasamy, Yu Morino, Shinichi Enami, and Hiroshi Tanimoto
Atmos. Chem. Phys., 21, 5983–6003, https://doi.org/10.5194/acp-21-5983-2021,https://doi.org/10.5194/acp-21-5983-2021, 2021
Short summary
Production of HONO from NO2 uptake on illuminated TiO2 aerosol particles and following the illumination of mixed TiO2∕ammonium nitrate particles
Joanna E. Dyson, Graham A. Boustead, Lauren T. Fleming, Mark Blitz, Daniel Stone, Stephen R. Arnold, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 5755–5775, https://doi.org/10.5194/acp-21-5755-2021,https://doi.org/10.5194/acp-21-5755-2021, 2021
Short summary
Characterization of secondary organic aerosol from heated-cooking-oil emissions: evolution in composition and volatility
Manpreet Takhar, Yunchun Li, and Arthur W. H. Chan
Atmos. Chem. Phys., 21, 5137–5149, https://doi.org/10.5194/acp-21-5137-2021,https://doi.org/10.5194/acp-21-5137-2021, 2021
Short summary
Measurement report: Diurnal and temporal variations of sugar compounds in suburban aerosols from the northern vicinity of Beijing, China – an influence of biogenic and anthropogenic sources
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021,https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Pre-deliquescent water uptake in deposited nanoparticles observed with in situ ambient pressure X-ray photoelectron spectroscopy
Jack J. Lin, Kamal Raj R, Stella Wang, Esko Kokkonen, Mikko-Heikki Mikkelä, Samuli Urpelainen, and Nønne L. Prisle
Atmos. Chem. Phys., 21, 4709–4727, https://doi.org/10.5194/acp-21-4709-2021,https://doi.org/10.5194/acp-21-4709-2021, 2021
Short summary

Cited articles

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. 
Anderson, T. L., Charlson, R. J., Schwartz, S. E., Knutti, R., Boucher, O., Rodhe, H., and Heintzenberg, J.: Climate forcing by aerosols-a hazy picture, Science, 300, 1103–1104, https://doi.org/10.1126/science.1084777, 2003. 
Aurell, J. and Gullett, B. K.: Emission factors from aerial and ground measurements of field and laboratory forest burns in the southeastern U.S.: PM2.5, black and brown carbon, VOC, and PCDD/PCDF, Environ. Sci. Technol., 47, 8443–8452, https://doi.org/10.1021/es402101k, 2013. 
Aurell, J., Gullett, B. K., and Tabor, D.: Emissions from southeastern U.S. grasslands and pine savannas: comparison of aerial and ground field measurements with laboratory burns, Atmos. Environ., 111, 170–178, https://doi.org/10.1016/j.atmosenv.2015.03.001, 2015. 
Bond, T. C.: Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075–4078, https://doi.org/10.1029/2001gl013652, 2001. 
Download
Short summary
We did a comprehensive work on understanding the composition and structural information of N-containing aromatic compounds (NACs) and their contributions to organic matter and bulk extract absorption of biomass burning (BB) aerosols. Some NACs with methoxy and cyanate groups specific to the BB were identified. The general implication is that the formation of NACs during BB might depend largely on burn conditions and is less impacted by fuel types and/or ambient conditions.
Altmetrics
Final-revised paper
Preprint