Articles | Volume 19, issue 3
https://doi.org/10.5194/acp-19-1605-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-1605-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China
Open Studio for Oceanic-Continental Climate and Environment Changes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
Xiaoning Xie
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Xinzhou Li
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Liu Yang
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Xiaoxun Xie
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Jing Lei
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Yingying Sha
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Xiaodong Liu
State Key Laboratory of Loess and Quaternary Geology,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
Related authors
Yurui Zhang, Jilin Wei, Zhen Li, Nan Dai, Weipeng Zheng, Qiuzhen Yin, Agatha de Boer, Zhengguo Shi, and Lixia Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4485, https://doi.org/10.5194/egusphere-2025-4485, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study examines how the warm Miocene (~23–5 Ma) climate responded to orbital changes compared with modern day. Simulations show weaker Miocene temperature responses with distinct spatial patterns. High latitudes were less sensitive due to weaker albedo feedback, while tropical Africa cooled more strongly from an enhanced water cycle. The Southern Ocean warmed under low insolation as winter sea ice shrank. These findings highlight how background climate states shape orbital climate responses.
He Fu, Jianing Guo, Chenguang Deng, Heng Liu, Jie Wu, Zhengguo Shi, Cailing Wang, and Xiaoning Xie
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-158, https://doi.org/10.5194/gmd-2023-158, 2023
Preprint withdrawn
Short summary
Short summary
A Residual in Residual Dense Block based network model (RRDBNet) is designed for statistical downscaling of precipitation in the middle reaches of the Yellow River. RRDBNet has a good performance on precipitation simulations, well reproducing the spatial-temporal characteristics of high-resolution precipitation. RRDBNet has substantial improvements in extreme precipitation compared with generalized linear regression model and two deep learning-based models.
Yurui Zhang, Jilin Wei, Zhen Li, Nan Dai, Weipeng Zheng, Qiuzhen Yin, Agatha de Boer, Zhengguo Shi, and Lixia Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4485, https://doi.org/10.5194/egusphere-2025-4485, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
This study examines how the warm Miocene (~23–5 Ma) climate responded to orbital changes compared with modern day. Simulations show weaker Miocene temperature responses with distinct spatial patterns. High latitudes were less sensitive due to weaker albedo feedback, while tropical Africa cooled more strongly from an enhanced water cycle. The Southern Ocean warmed under low insolation as winter sea ice shrank. These findings highlight how background climate states shape orbital climate responses.
Hu Yang, Xiaoxu Shi, Xulong Wang, Qingsong Liu, Yi Zhong, Xiaodong Liu, Youbin Sun, Yanjun Cai, Fei Liu, Gerrit Lohmann, Martin Werner, Zhimin Jian, Tainã M. L. Pinho, Hai Cheng, Lijuan Lu, Jiping Liu, Chao-Yuan Yang, Qinghua Yang, Yongyun Hu, Xing Cheng, Jingyu Zhang, and Dake Chen
Clim. Past, 21, 1263–1279, https://doi.org/10.5194/cp-21-1263-2025, https://doi.org/10.5194/cp-21-1263-2025, 2025
Short summary
Short summary
For 1 century, the hemispheric summer insolation is proposed as a key pacemaker of astronomical climate change. However, an increasing number of geologic records reveal that the low-latitude hydrological cycle shows asynchronous precessional evolutions that are very often out of phase with the summer insolation. Here, we propose that the astronomically driven low-latitude hydrological cycle is not paced by summer insolation but by shifting perihelion.
He Fu, Jianing Guo, Chenguang Deng, Heng Liu, Jie Wu, Zhengguo Shi, Cailing Wang, and Xiaoning Xie
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-158, https://doi.org/10.5194/gmd-2023-158, 2023
Preprint withdrawn
Short summary
Short summary
A Residual in Residual Dense Block based network model (RRDBNet) is designed for statistical downscaling of precipitation in the middle reaches of the Yellow River. RRDBNet has a good performance on precipitation simulations, well reproducing the spatial-temporal characteristics of high-resolution precipitation. RRDBNet has substantial improvements in extreme precipitation compared with generalized linear regression model and two deep learning-based models.
Cited articles
Albani, S., Mahowald, N. M., Perry, A. T., Scanza, R. A., Zender, C. S.,
Heavens, N. G., Maggi, V., Kok, J. F., and Otto-Bliesner, B. L.: Improved
dust representation in the Community Atmosphere Model, J. Adv. Model. Earth
Sy., 6, 541–570, https://doi.org/10.1002/2013MS000279, 2014.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
Deangelo, B. J., Flanner, M. G., Ghan, S., Kächer, B., Koch, D., Kinne,
S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552,
https://doi.org/10.1002/jgrd.50171, 2013.
Claquin, T., Reolandt, C., Kohfeld, K., Harrison, S., Tegen, I., Prentice,
I., Balkanski, Y., Bergametti, G., Hansson, M., Mahowald, N., Rodhe, H.,
and Schulz, M.: Radiative forcing of climate by ice-age atmospheric dust, Clim.
Dynam., 20, 193–202, 2003.
Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced
solar energy absorption by internally-mixed black carbon in snow grains,
Atmos. Chem. Phys., 12, 4699–4721, https://doi.org/10.5194/acp-12-4699-2012,
2012.
Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present
day climate forcing and response from black carbon in snow, J. Geophys. Res.,
112, D11202, https://doi.org/10.1029/2006JD008003, 2007.
Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
from carbonaceous particles, Atmos. Chem. Phys., 9, 2481–2497,
https://doi.org/10.5194/acp-9-2481-2009, 2009.
Ganguly, D., Rasch, P. J., Wang, H., and Yoon, J.: Fast and slow responses of
the South Asian monsoon system to anthropogenic aerosols, Geophys. Res.
Lett., 39, L18804, https://doi.org/10.1029/2012GL053043,
2012.
Gu, Y., Xue, Y., De Sales, F., and Liou, K. N.: A GCM investigation of dust
aerosol impact on the regional climate of North Africa and South/East Asia,
Clim. Dynam., 46, 2353–2370, 2016.
Hansen, J. and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
P. Natl. Acad. Sci. USA, 101, 423–428, 2004.
Harrison, S. P., Kohfeld, K. E., Roelandt, C., and Claquin, T.: The role of
dust in climate changes today, at the last glacial maximum and in the future,
Earth Sci. Rev., 54, 43–80, 2001.
Haywood, J. M., Francis, P. N., Glew, M. D., and Taylor, J. P.: Optical
properties and direct radiative effect of Saharan dust: A case study of two
Saharan dust outbreaks dusing aircraft data, J. Geophys. Res.-Atmos., 106,
18417–18430, 2006.
He, C., Li, Q., Liou, K., Takano, Y., Gu, Y., Qi, L., Mao, Y., and Leung, L.:
Black carbon radiative forcing over the Tibetan Plateau, Geophys. Res. Lett.,
41, 7806–7813, 2014.
He, C., Liou, K., Takano, Y., Yang, P., Qi, L., and Chen, F.: Impact of grain
shape and multiple black carbon internal mixing on snow albedo:
Parameterization and radiative effect analysis, J. Geophys. Res.-Atmos., 123,
1253–1268, 2018.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers,
K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO
over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805,
https://doi.org/10.1029/2007GL029938, 2007.
Huang, J., Wang, T., Wang, W., Li, Z., and Yan, H.: Climate effects of dust
aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos.,
119, 11398–11416, https://doi.org/10.1002/2014JD021796, 2014.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution ofWorking
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor,
M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.
M., Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, 1535 pp., 2013.
Jin, Q., Wei, J., and Yang, Z.: Positive response of Indian summer rainfall
to Middle East dust, Geophys. Res. Lett., 41, 4068–4074, 2014.
Kallos, G., Papadopoulos, A., Katsafados, P., and Nickovic, S.: Transatlantic
Saharan dust transport: Model simulation and results, J. Geophys.
Res.-Atmos., 111, D09204, https://doi.org/10.1029/2005JD006207, 2006.
Kok, J. F., Ridley, D. A., Zhou, Q., Miller, R. L., Zhao, C., Heald, C. L.,
Ward, D. S., Albani, S., and Haustein, K.: Smaller desert dust cooling effect
estimated from analysis of dust size and abundance, Nat. Geosci., 10,
274–278, https://doi.org/10.1038/ngeo2912, 2017.
Lau, K. M., Kim, K. M., Shi, J., Matsui, T., Chin, M., Tan, Q.,
Peters-Lidard, C., and Tao, W. K.:. Impacts of aerosol-monsoon interaction on
rainfall and circulation over Northern India and the Himalaya Foothills,
Clim. Dynam., 49, 1945–1960, 2017.
Lau, K. M., Kim, M. K., and Kim, K. M.:. Asian monsoon anomalies induced by
aerosol direct forcing: the role of the Tibetan Plateau, Clim. Dynam., 26,
855–664, 2006.
Lau, K.-M., Kim, M. K., Kim, K.-M., and Lee, W. S.: Enhanced surface warming
and accelerated snow melt in the Himalayas and Tibetan Plateau induced by
absorbing aerosols, Environ. Res. Lett., 5, 025204,
https://doi.org/10.1088/1748-9326/5/2/025204, 2010.
Lee, W.-L., Liou, K. N., He, C., Liang, H., Wang, T., Li, Q., Liu, Z., and
Yue, Q.: Impact of absorbing aerosol deposition on snow albedo reduction over
the southern Tibetan plateau based on satellite observations, Theor. Appl.
Climatol., 129, 1373–1382, 2017.
Lee, W. S., Bhawar, R. L., Kim, M. K., and Sang, J.: Study of aerosol effect
on accelerated snow melting over the Tibetan Plateau during boreal spring,
Atmos. Environ., 75, 113–122, 2013.
Li, C. and Yanai, M.: The Onset and Interannual Variability of the Asian
Summer Monsoon in Relation to Land-Sea Thermal Contrast, J. Clim., 9,
358–375, 1996.
Liu, D., Wang, Z., Liu, Z., Winker, D., and Trepte, C.: A height resolved
global view of dust aerosols from the first year CALIPSO lidar measurements,
J. Geophys. Res., 113, D16214, https://doi.org/10.1029/2007JD009776, 2008.
Liu, X. and Yanai, M.: Relationship between the Indian monsoon rainfall and
the tropospheric temperature over the Eurasian continent, Q. J. Roy. Meteor.
Soc., 127, 909–937, 2001.
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W.
L.: Stochastic parameterization for light absorption by internally mixed
BC/dust in snow grains for application to climate models, J. Geophys.
Res.-Atmos., 119, 7616–7632, 2014.
Lou, S., Russell, L. M., Yang, Y., Liu, Y., Singh, B., and Ghan, S. J.:
Impacts of interactive dust and its direct radiative forcing on interannual
variations of temperature and precipitation in winter over East Asia, J.
Geophys. Res., 122, 8761–8780, 2017.
Maher, B. A., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P., and
Balkanski, Y.: Global connections between aeolian dust, climate and ocean
biogeochemistry at the present day and at the last glacial maximum,
Earth-Sci. Rev., 99, 61–97, https://doi.org/10.1016/j.earscirev.2009.12.001, 2010.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res., 111, D10202, https://doi.org/10.1029/2005JD006653,
2006.
Mahowald, N. M., Albani, S., Kok, J. F., Engelstaedter, S., Scanza, R., Ward,
D. S., and Flanner, M. G.: The size distribution of desert dust aerosols and
its impact on the Earth system, Aeolian Res. 15, 53–71,
https://doi.org/10.1016/j.aeolia.2013.09.002, 2014.
Miller, R. L. and Tegen, I.: Climate response to soil dust aerosols, J.
Clim., 11, 3247–3267, 1998.
Miller, R. L., Perlwitz, J., and Tegen, I.: Feedback upon dust emission by
dust radiative forcing through the planetary boundary layer, J. Geophys.
Res., 109, D24209, https://doi.org/10.1029/2004JD004912, 2004.
Ming, J., Wang, P., Zhao, S., and Chen, P.: Disturbance of light-absorbing
aerosols on the albedo in a winter snowpack of Central Tibet, J. Environ.
Sci.-China, 25, 1601–1607, https://doi.org/10.1016/S1001-0742(12)60220-4, 2013.
Nigam, S. and Bollasina, M.: “Elevated heat pump” hypothesis for the
aerosol-monsoon hydroclimate link: “Grounded” in observations?, J. Geophys.
Res., 115, D16201, https://doi.org/10.1029/2009JD013800, 2010.
Niu, H., Kang, S., Zhang, Y., Shi, X., Shi, X., Wang, S., Li, G., Yan, X.,
Pu, T., and He, Y.: Distribution of light-absorbing impurities in snow of
glacier on Mt. Yulong, southeastern Tibetan Plateau, Atmos. Res., 197,
474–484, 2017.
Qian, Y., Flanner, M., Leung, L., and Wang, W.: Sensitivity studies on the
impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle
and monsoon climate, Atmos. Chem. Phys., 11, 1929–1948,
https://doi.org/10.5194/acp-11-1929-2011, 2011.
Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M.,
Jing, M., Wang, H., Wang, M., Warren, S. G., and Zhang, R.: Light-absorbing
Particles in Snow and Ice: Measurement and Modeling of Climatic and
Hydrological impact, Adv. Atmos. Sci., 32, 64–91,
https://doi.org/10.1007/s00376-014-0010-0, 2015.
Räisänen, P., Makkonen, R., Kirkevåg, A., and Debernard, J. B.:
Effects of snow grain shape on climate simulations: sensitivity tests with
the Norwegian Earth System Model, The Cryosphere, 11, 2919–2942,
https://doi.org/10.5194/tc-11-2919-2017, 2017.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols,
climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Schepanski, K., Tegen, I., and Macke, A.: Saharan dust transport and
deposition towards the tropical northern Atlantic, Atmos. Chem. Phys., 9,
1173–1189, https://doi.org/10.5194/acp-9-1173-2009, 2009.
Senan, R., Orsolini, Y. J., Weisheimer, A., Vitart, F., Balsamo, G.,
Stockdale, T. N., and Dutra, E.: Impact of springtime Himalayan-Tibetan
Plateau snowpack on the onset of the Indian summer monsoon in coupled
seasonal forecasts, Clim. Dynam., 47, 2709–2725, 2016.
Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H.,
Mikami, M., Tanaka, T. Y., Wang, X., and Yoon, S.: Dust cycle: an emerging
core theme in Earth System Science, Aeolian Res., 2, 181–204, 2011.
Shi, Z. and Liu, X.: Distinguishing the provenance of fine-grained eolian
dust over the Chinese Loess Plateau from a modelling perspective, Tellus B,
63, 959–970, 2011.
Shi, Z., Liu, X., An, Z., Yi, B., Yang, P., and Mahowald, N.: Simulated
variations of eolian dust from inner Asian deserts at the mid-Pliocene, last
glacial maximum, and present day: contributions from the regional tectonic
uplift and global climate change, Clim. Dynam., 37, 2289–2301, 2011.
Solmon, F., Nair, V. S., and Mallet, M.: Increasing Arabian dust activity and
the Indian summer monsoon, Atmos. Chem. Phys., 15, 8051–8064,
https://doi.org/10.5194/acp-15-8051-2015, 2015.
Su, L. and Toon, O. B.: Saharan and Asian dust: Similarities and differences
determined by CALIPSO, AERONET, and a coupled climate-aerosol microphysical
model, Atmos. Chem. Phys., 11, 3263–3280,
https://doi.org/10.5194/acp-11-3263-2011, 2011.
Sun, H., Pan, Z., and Liu, X.: Numerical simulation of spatial-temporal
distribution of dust aerosol and its direct radiative effects on East Asian
climate, J. Geophys. Res., 117, D13206, https://doi.org/10.1029/2011JD017219, 2012.
Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O'ishi, R., and
Abe-Ouchi, A.: A simulation of the global distribution and radiative forcing
of soil dust aerosols at the Last Glacial Maximum, Atmos. Chem. Phys., 9,
3061–3073, https://doi.org/10.5194/acp-9-3061-2009, 2009.
Tang, Y., Han, Y., Ma, X., and Liu, Z.: Elevated heat pump effects of dust
aerosol over northwestern China during summer, Aeolian Res., 23, 95–104,
2018.
Tegen, I. and Lacis, A. A.: Modeling of particle size distribution and its
influence on the radiative properties of mineral dust aerosol, J. Geophys.
Res., 101, 19237–19244, 1996.
Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid
calculation of radiative heating rates and photodissociation rates in
inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94,
16287–16301, 1989.
Uno, I., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M.,
Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust transported one
full circuit around the globe, Nat. Geosci., 2, 557–560, 2009.
Vernekar, A. D., Zhou, J., and Shukla, J.: The effect of Eurasian snow cover
on the Indian monsoon, J. Clim., 8, 248–266, 1994.
Vinoj, V., Rasch, P. J., Wang, H., Yoon, J., Ma, P., Landu, K., and Singh,
B.: Short-term modulation of Indian summer monsoon rainfall by West Asian
dust, Nat. Geosci., 7, 308–313, 2014.
Wang, Z., Wu, R., Chen, S., Huang, G., Liu, G., and Zhu, L.: Influence of
western Tibetan Plateau summer snow cover on East Asian summer rainfall, J.
Geophys. Res.-Atmos., 123, 2371–2386, 2017.
Wu, G., Liu, Y., He, B., Bao, Q., Duan, A., and Jin, F.: Thermal Controls on
the Asian Summer Monsoon, Sci. Rep., 2, 404, https://doi.org/10.1038/srep00404, 2012.
Xie, X. N., Liu, X. D., Che, H. Z., Xie, X. X., Wang, H. L., Li, J. D., Shi,
Z. G., and Liu, Y.: Modeling East Asian dust and its radiative feedbacks in
CAM4-BAM, J. Geophys. Res.-Atmos., 123, 1079–1096,
https://doi.org/10.1002/2017JD027343, 2018a.
Xie, X., Liu, X., Che, H., Xie, X., Li, X., Shi, Z., Wang, H., Zhao, T., and
Liu, Y.: Radiative feedbacks of dust in snow over eastern Asia in CAM4-BAM,
Atmos. Chem. Phys., 18, 12683–12698,
https://doi.org/10.5194/acp-18-12683-2018, 2018b.
Xu, B. Q., Cao, J., Hansen, J., Yao, T., Joswiak, D. R., Wang, N., Wu, G.,
Wang, M., Zhao, H., Yang, W., Liu, X., and He, J.: Black soot and the
survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106, 22114–22118,
https://doi.org/10.1073/pnas.0910444106, 2009.
Yanai, M., Li, C., and Song, Z.: Seasonal heating of the Tibetan Plateau and
its effects on the evolution of the Asian summer monsoon, J. Meteor. Soc.
Jpn., 70, 319–351, 1992.
Yasunari, T. J., Koster, R. D., Lau, K.-M., Aoki, T., Sud, Y. C., Yamazaki,
T., Motoyoshi, H., and Kodama, Y.: Influence of dust and black carbon on the
snow albedo in the NASA Goddard Earth Observing System version 5 land surface
model, J. Geophys. Res., 116, D02210, https://doi.org/10.1029/2010JD014861, 2010.
Yasunari, T. J., Koster, R. D., Lau, W. K. M., and Kim, K.-M.: Impact of snow
darkening via dust, black carbon, and organic carbon on boreal spring climate
in the Earth system, J. Geophys. Res.-Atmos., 120, 5485–5503,
https://doi.org/10.1002/2014JD022977, 2015.
Zhang, D. F., Zakey, A. S., Gao, X. J., Giorgi, F., and Solmon, F.:
Simulation of dust aerosol and its regional feedbacks over East Asia using a
regional climate model, Atmos. Chem. Phys., 9, 1095–1110,
https://doi.org/10.5194/acp-9-1095-2009, 2009.
Zhang, X. Y., Arimoto, R., and An, Z. S.: Dust emission from Chinese desert
sources linked to variations in atmospheric circulation, J. Geophys. Res.,
102, 28041–28047, 1997.
Zhang, Y., Kang, S., Sprenger, M., Cong, Z., Gao, T., Li, C., Tao, S., Li,
X., Zhong, X., Xu, M., Meng, W., Neupane, B., Qin, X., and Sillanpää,
M.: Black carbon and mineral dust in snow cover on the Tibetan Plateau, The
Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, 2018.
Zhang, Y., Wu, G., Liu, Y., and Guan, Y.: The effects of asymmetric potential
vorticity forcing on the instability of South Asia High and Indian summer
monsoon onset, Sci. Chi. Earth Sci., 57, 337–350, 2014.
Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., Jin, J.,
Flanner, M. G., Zhang, R., Wang, H., Yan, H., Lu, Z., and Streets, D. G.:
Simulating black carbon and dust and their radiative forcing in seasonal
snow: a case study over North China with field campaign measurements, Atmos.
Chem. Phys., 14, 11475–11491, https://doi.org/10.5194/acp-14-11475-2014,
2014.
Zhao, T. L., Gong, S. L., Zhang, X. Y., Blanchet, J. P., McKendry, I. G., and
Zhou, Z. J.: A simulated climatology of Asian dust aerosol and its
trans-Pacific transport, Part I: Mean climate and validation, J. Clim., 19,
88–103, 2006.
Short summary
Asian dust is one of the important components in modern and past climate change via its effects, including snow-darkening and direct radiation. We employed model experiments to evaluate these effects on Indian monsoon and found that the monsoon onset responds significantly to both. Snow-darkening effect weakens the monsoon, but direct radiative effect intensifies it. Besides the previous Tibetan Plateau studies proposed, our work highlights the importance of temperature change over dust sources.
Asian dust is one of the important components in modern and past climate change via its effects,...
Altmetrics
Final-revised paper
Preprint