Articles | Volume 19, issue 22
https://doi.org/10.5194/acp-19-14365-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-14365-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Importance of dry deposition parameterization choice in global simulations of surface ozone
Anthony Y. H. Wong
Department of Earth and Environment, Boston University, Boston, MA,
USA
Department of Earth and Environment, Boston University, Boston, MA,
USA
Amos P. K. Tai
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Institute of Energy, Environment and Sustainability, and State Key
Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong
Kong, China
Sam J. Silva
Department of Civil and Environmental Engineering, Massachusetts
Institute of Technology, Cambridge, MA, USA
Related authors
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Xuehe Lu, Jing Wei, Yi Li, Yuyu Yang, Zhen Wang, and Anthony Y. H. Wong
Atmos. Chem. Phys., 20, 8641–8658, https://doi.org/10.5194/acp-20-8641-2020, https://doi.org/10.5194/acp-20-8641-2020, 2020
Short summary
Short summary
Excessive atmospheric reactive nitrogen (Nr) deposition can cause a series of negative effects. Thus, it is necessary to accurately estimate Nr deposition to evaluate its impact on the ecosystems and environment. Scientists attempted to estimate surface Nr concentration and deposition using satellite retrievals. We give a thorough review of recent advances in estimating surface Nr concentration and deposition using satellite retrievals of NO2 and NH3 and summarize the existing challenges.
Lei Liu, Xiuying Zhang, Anthony Y. H. Wong, Wen Xu, Xuejun Liu, Yi Li, Huan Mi, Xuehe Lu, Limin Zhao, Zhen Wang, Xiaodi Wu, and Jing Wei
Atmos. Chem. Phys., 19, 12051–12066, https://doi.org/10.5194/acp-19-12051-2019, https://doi.org/10.5194/acp-19-12051-2019, 2019
Short summary
Short summary
Agricultural production has greatly increased emissions of ammonia (NH3) to the atmosphere. Sparse measurements of surface NH3 concentrations make it challenging and difficult to understand the global distribution of surface NH3 concentrations in both time and space. Estimating surface NH3 concentrations is critically important for modeling the dry deposition of NH3, which has important impacts on the natural environment. This paper provides the satellite-based global assessment of surface NH3.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Tiangang Yuan, Amos P. K. Tai, Tzung-May Fu, Aoxing Zhang, David H. Y. Yung, Jin Wu, and Sien Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1557, https://doi.org/10.5194/egusphere-2024-1557, 2024
Short summary
Short summary
This study utilizes a regional climate-air quality coupled model to first investigate the complex interaction between irrigation, climate, and air quality in China. We found that large-scale irrigation practices reducing summertime surface ozone while raising second inorganic aerosol concentration via complicated physical and chemical processes. Our results emphasize the importance to make a tradeoff between air pollution control and sustainable agricultural development.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Amos P. K. Tai, Lina Luo, and Biao Luo
EGUsphere, https://doi.org/10.5194/egusphere-2024-293, https://doi.org/10.5194/egusphere-2024-293, 2024
Short summary
Short summary
We discuss our current understanding and knowledge gaps of how agriculture and food systems affect air quality, and how agricultural emissions can be mitigated. We argue that scientists need to address these gaps, especially as the importance of fossil fuel emissions is fading. This will help guide food-system transformation in economically viable, socially inclusive, and environmentally responsible manners, and is essential to help society achieve sustainable development.
Jia Mao, Amos P. K. Tai, David H. Y. Yung, Tiangang Yuan, Kong T. Chau, and Zhaozhong Feng
Atmos. Chem. Phys., 24, 345–366, https://doi.org/10.5194/acp-24-345-2024, https://doi.org/10.5194/acp-24-345-2024, 2024
Short summary
Short summary
Surface ozone (O3) is well-known for posing great threats to both human health and agriculture worldwide. However, a multidecadal assessment of the impacts of O3 on public health and agriculture in China is lacking without sufficient O3 observations. We used a hybrid approach combining a chemical transport model and machine learning to provide a robust dataset of O3 concentrations over the past 4 decades in China, thereby filling the gap in the long-term O3 trend and impact assessment in China.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Shihan Sun, Amos P. K. Tai, David H. Y. Yung, Anthony Y. H. Wong, Jason A. Ducker, and Christopher D. Holmes
Biogeosciences, 19, 1753–1776, https://doi.org/10.5194/bg-19-1753-2022, https://doi.org/10.5194/bg-19-1753-2022, 2022
Short summary
Short summary
We developed and used a terrestrial biosphere model to compare and evaluate widely used empirical dry deposition schemes with different stomatal approaches and found that using photosynthesis-based stomatal approaches can reduce biases in modeled dry deposition velocities in current chemical transport models. Our study shows systematic errors in current dry deposition schemes and the importance of representing plant ecophysiological processes in models under a changing climate.
Ka Ming Fung, Maria Val Martin, and Amos P. K. Tai
Biogeosciences, 19, 1635–1655, https://doi.org/10.5194/bg-19-1635-2022, https://doi.org/10.5194/bg-19-1635-2022, 2022
Short summary
Short summary
Fertilizer-induced ammonia detrimentally affects the environment by not only directly damaging ecosystems but also indirectly altering climate and soil fertility. To quantify these secondary impacts, we enabled CESM to simulate ammonia emission, chemical evolution, and deposition as a continuous cycle. If synthetic fertilizer use is to soar by 30 % from today's level, we showed that the counteracting impacts will increase the global ammonia emission by 3.3 Tg N per year.
Jiachen Zhu, Amos P. K. Tai, and Steve Hung Lam Yim
Atmos. Chem. Phys., 22, 765–782, https://doi.org/10.5194/acp-22-765-2022, https://doi.org/10.5194/acp-22-765-2022, 2022
Short summary
Short summary
This study assessed O3 damage to plant and the subsequent effects on meteorology and air quality in China, whereby O3, meteorology, and vegetation can co-evolve with each other. We provided comprehensive understanding about how O3–vegetation impacts adversely affect plant growth and crop production, and contribute to global warming and severe O3 air pollution in China. Our findings clearly pinpoint the need to consider the O3 damage effects in both air quality studies and climate change studies.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Sam J. Silva, Po-Lun Ma, Joseph C. Hardin, and Daniel Rothenberg
Geosci. Model Dev., 14, 3067–3077, https://doi.org/10.5194/gmd-14-3067-2021, https://doi.org/10.5194/gmd-14-3067-2021, 2021
Short summary
Short summary
The activation of aerosol into cloud droplets is an important but uncertain process in the Earth system. The physical and chemical interactions that govern this process are too computationally expensive to explicitly resolve in modern Earth system models. Here, we demonstrate how hybrid machine learning approaches can provide a potential path forward, enabling the representation of the more detailed physics and chemistry at a reduced computational cost while still retaining physical information.
Felix Leung, Karina Williams, Stephen Sitch, Amos P. K. Tai, Andy Wiltshire, Jemma Gornall, Elizabeth A. Ainsworth, Timothy Arkebauer, and David Scoby
Geosci. Model Dev., 13, 6201–6213, https://doi.org/10.5194/gmd-13-6201-2020, https://doi.org/10.5194/gmd-13-6201-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is detrimental to plant productivity and crop yield. Currently, the Joint UK Land Environment Simulator (JULES) includes a representation of crops (JULES-crop). The parameters for O3 damage in soybean in JULES-crop were calibrated against photosynthesis measurements from the Soybean Free Air Concentration Enrichment (SoyFACE). The result shows good performance for yield, and it helps contribute to understanding of the impacts of climate and air pollution on food security.
Lang Wang, Amos P. K. Tai, Chi-Yung Tam, Mehliyar Sadiq, Peng Wang, and Kevin K. W. Cheung
Atmos. Chem. Phys., 20, 11349–11369, https://doi.org/10.5194/acp-20-11349-2020, https://doi.org/10.5194/acp-20-11349-2020, 2020
Short summary
Short summary
We investigate the effects of future land use and land cover change (LULCC) on surface ozone air quality worldwide and find that LULCC can significantly influence ozone in North America and Europe via modifying surface energy balance, boundary-layer meteorology, and regional circulation. The strength of such “biogeophysical effects” of LULCC is strongly dependent on forest type and generally greater than the “biogeochemical effects” via changing deposition and emission fluxes alone.
Lei Liu, Xiuying Zhang, Wen Xu, Xuejun Liu, Xuehe Lu, Jing Wei, Yi Li, Yuyu Yang, Zhen Wang, and Anthony Y. H. Wong
Atmos. Chem. Phys., 20, 8641–8658, https://doi.org/10.5194/acp-20-8641-2020, https://doi.org/10.5194/acp-20-8641-2020, 2020
Short summary
Short summary
Excessive atmospheric reactive nitrogen (Nr) deposition can cause a series of negative effects. Thus, it is necessary to accurately estimate Nr deposition to evaluate its impact on the ecosystems and environment. Scientists attempted to estimate surface Nr concentration and deposition using satellite retrievals. We give a thorough review of recent advances in estimating surface Nr concentration and deposition using satellite retrievals of NO2 and NH3 and summarize the existing challenges.
Sam J. Silva, Colette L. Heald, and Alex B. Guenther
Geosci. Model Dev., 13, 2569–2585, https://doi.org/10.5194/gmd-13-2569-2020, https://doi.org/10.5194/gmd-13-2569-2020, 2020
Short summary
Short summary
Simulating the influence of the biosphere on atmospheric chemistry has traditionally been computationally intensive. We describe a surrogate canopy physics model parameterized using a statistical learning technique and specifically designed for use in large-scale chemical transport models. Our surrogate model reproduces a more detailed model to within 10 % without a large computational demand, improving the process representation of biosphere–atmosphere exchange.
Lei Liu, Xiuying Zhang, Anthony Y. H. Wong, Wen Xu, Xuejun Liu, Yi Li, Huan Mi, Xuehe Lu, Limin Zhao, Zhen Wang, Xiaodi Wu, and Jing Wei
Atmos. Chem. Phys., 19, 12051–12066, https://doi.org/10.5194/acp-19-12051-2019, https://doi.org/10.5194/acp-19-12051-2019, 2019
Short summary
Short summary
Agricultural production has greatly increased emissions of ammonia (NH3) to the atmosphere. Sparse measurements of surface NH3 concentrations make it challenging and difficult to understand the global distribution of surface NH3 concentrations in both time and space. Estimating surface NH3 concentrations is critically important for modeling the dry deposition of NH3, which has important impacts on the natural environment. This paper provides the satellite-based global assessment of surface NH3.
Jeffrey A. Geddes, Randall V. Martin, Eric J. Bucsela, Chris A. McLinden, and Daniel J. M. Cunningham
Atmos. Meas. Tech., 11, 6271–6287, https://doi.org/10.5194/amt-11-6271-2018, https://doi.org/10.5194/amt-11-6271-2018, 2018
Short summary
Short summary
This paper describes an approach for separating the stratospheric and tropospheric contributions in geostationary observations of nitrogen dioxide from the upcoming TEMPO instrument. We find minimal impact of the limited field of observation compared to previous low-Earth-observing systems with global coverage. We find that continued development of low-Earth-orbit retrievals will benefit geostationary data by providing important context outside the field of regard.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Danny M. Leung, Amos P. K. Tai, Loretta J. Mickley, Jonathan M. Moch, Aaron van Donkelaar, Lu Shen, and Randall V. Martin
Atmos. Chem. Phys., 18, 6733–6748, https://doi.org/10.5194/acp-18-6733-2018, https://doi.org/10.5194/acp-18-6733-2018, 2018
Short summary
Short summary
This paper investigates how large-scale weather systems control fine particulate matter (PM2.5) air quality in China. We show that winter monsoons, onshore winds and frontal rains can drive daily PM2.5 variability in different regions of China. We further project future PM2.5 concentration change by 2050s due to climate change, and verify that climate change has little benefit on future PM2.5 in Beijing, implying cutting down emissions is necessary to mitigate pollutions in megacities of China.
Jeffrey A. Geddes and Randall V. Martin
Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, https://doi.org/10.5194/acp-17-10071-2017, 2017
Short summary
Short summary
We use observations of nitrogen dioxide columns from multiple satellite instruments with the help of a chemical transport model to constrain the global deposition of reactive nitrogen oxides (NOy) over the last 2 decades. NOy deposition decreased by up to 60 % in eastern North America, doubled in regions of East Asia, and declined by 20 % in parts of Western Europe. We also find changes in the export of NOy via atmospheric transport, with direct impacts on countries downwind of source regions.
Yuanhong Zhao, Lin Zhang, Amos P. K. Tai, Youfan Chen, and Yuepeng Pan
Atmos. Chem. Phys., 17, 9781–9796, https://doi.org/10.5194/acp-17-9781-2017, https://doi.org/10.5194/acp-17-9781-2017, 2017
Short summary
Short summary
Human activities have substantially enhanced atmospheric deposition of reactive nitrogen, inducing complex environmental consequences. This study presents a first quantitative investigation of how anthropogenic nitrogen deposition could impact surface ozone air quality through surface–atmosphere exchange processes. We find important surface ozone changes driven by nitrogen deposition, which can be comparable with those due to historical climate and land use changes.
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Short summary
Surface ozone harms vegetation, which can influence not only climate but also ozone air quality itself. We implement a scheme for ozone damage on vegetation into an Earth system model, so that for the first time simulated vegetation and ozone can coevolve in a fully coupled simulation. With ozone–vegetation coupling, simulated ozone is found to be significantly higher by up to 6 ppbv. Reduced dry deposition and enhanced isoprene emission contribute to most of these increases.
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Yu Fu, Amos P. K. Tai, and Hong Liao
Atmos. Chem. Phys., 16, 10369–10383, https://doi.org/10.5194/acp-16-10369-2016, https://doi.org/10.5194/acp-16-10369-2016, 2016
Short summary
Short summary
The effects of climate change would partly counteract the emission-driven increase in PM2.5 in winter in most of eastern China, but exacerbate PM2.5 pollution in summer in North China Plain. Land cover and land use change might partially offset the increase in summertime PM2.5 but further enhance wintertime PM2.5 in the model by modifying the dry deposition of various PM2.5 precursors and biogenic volatile organic compound emissions, which also act as important factors in modulating air quality.
Jeffrey A. Geddes, Colette L. Heald, Sam J. Silva, and Randall V. Martin
Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, https://doi.org/10.5194/acp-16-2323-2016, 2016
Short summary
Short summary
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g., forestry management, agriculture, wildfires) can impact climate and air quality in many complex ways. Using a state-of-the-art chemistry model, we investigate how tree mortality in the US due to insect infestation and disease outbreak may impact atmospheric composition. We find that the surface concentrations of ozone and aerosol can be altered due to changing background emissions and loss processes.
L. Shen, L. J. Mickley, and A. P. K. Tai
Atmos. Chem. Phys., 15, 10925–10938, https://doi.org/10.5194/acp-15-10925-2015, https://doi.org/10.5194/acp-15-10925-2015, 2015
Short summary
Short summary
In this study, we have examined the effect of polar jet and Bermuda High on ozone air quality in the eastern United States. In the Midwest and northeast, the poleward shift of jet wind leads to reduced polar jet frequency, resulting in increased ozone there. In the southeast, the influence of Bermuda High on ozone variability depends on the location of its west edge. Westward movement increases the ozone only when the JJA Bermuda High west edge is located west of 85.4°W.
Y. Fu and A. P. K. Tai
Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, https://doi.org/10.5194/acp-15-10093-2015, 2015
Short summary
Short summary
Historical land cover and land use change alone between 1980 and 2010 could lead to reduced summertime surface ozone by up to 4ppbv in East Asia. Climate change alone could lead to an increase in summertime ozone by 2-10ppbv in most of East Asia. Land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. The sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia.
P. Achakulwisut, L. J. Mickley, L. T. Murray, A. P. K. Tai, J. O. Kaplan, and B. Alexander
Atmos. Chem. Phys., 15, 7977–7998, https://doi.org/10.5194/acp-15-7977-2015, https://doi.org/10.5194/acp-15-7977-2015, 2015
Short summary
Short summary
The atmosphere’s oxidative capacity determines the lifetime of many trace gases important to climate, chemistry, and human health. Yet uncertainties remain about its past variations, its controlling factors, and the radiative forcing of short-lived species it influences. To reduce these uncertainties, we must better quantify the natural emissions and chemical reaction mechanisms of organic compounds in the atmosphere, which play a role in governing the oxidative capacity.
S. C. Pugliese, J. G. Murphy, J. A. Geddes, and J. M. Wang
Atmos. Chem. Phys., 14, 8197–8207, https://doi.org/10.5194/acp-14-8197-2014, https://doi.org/10.5194/acp-14-8197-2014, 2014
J. A. Geddes and J. G. Murphy
Atmos. Chem. Phys., 14, 2939–2957, https://doi.org/10.5194/acp-14-2939-2014, https://doi.org/10.5194/acp-14-2939-2014, 2014
J. M. Wang, J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas
Biogeosciences, 10, 4371–4382, https://doi.org/10.5194/bg-10-4371-2013, https://doi.org/10.5194/bg-10-4371-2013, 2013
Related subject area
Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Performance evaluation of UKESM1 for surface ozone across the pan-tropics
Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest
A global re-analysis of regionally resolved emissions and atmospheric mole fractions of SF6 for the period 2005–2021
Tropospheric ozone precursors: global and regional distributions, trends, and variability
The contribution of transport emissions to ozone mixing ratios and methane lifetime in 2015 and 2050 in the Shared Socioeconomic Pathways (SSPs)
Ether and ester formation from peroxy radical recombination: a qualitative reaction channel analysis
ACEIC: a comprehensive anthropogenic chlorine emission inventory for China
Impact of methane and other precursor emission reductions on surface ozone in Europe: scenario analysis using the European Monitoring and Evaluation Programme (EMEP) Meteorological Synthesizing Centre – West (MSC-W) model
Verifying national inventory-based combustion emissions of CO2 across the UK and mainland Europe using satellite observations of atmospheric CO and CO2
An improved estimate of inorganic iodine emissions from the ocean using a coupled surface microlayer box model
Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production
The effect of different climate and air quality policies in China on in situ ozone production in Beijing
Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Intercomparison of GEOS-Chem and CAM-chem tropospheric oxidant chemistry within the Community Earth System Model version 2 (CESM2)
Development of a detailed gaseous oxidation scheme of naphthalene for secondary organic aerosol (SOA) formation and speciation
Large contributions of soil emissions to the atmospheric nitrogen budget and their impacts on air quality and temperature rise in North China
Why did ozone concentrations remain high during Shanghai's static management? A statistical and radical-chemistry perspective
Revising VOC emissions speciation improves the simulation of global background ethane and propane
Changes in South American surface ozone trends: exploring the influences of precursors and extreme events
Evaluating NOx stack plume emissions using a high-resolution atmospheric chemistry model and satellite-derived NO2 columns
NOx emissions in France in 2019–2021 as estimated by the high-spatial-resolution assimilation of TROPOMI NO2 observations
Aggravated surface O3 pollution primarily driven by meteorological variations in China during the 2020 COVID-19 pandemic lockdown period
Identifying decadal trends in deweathered concentrations of criteria air pollutants in Canadian urban atmospheres with machine learning approaches
Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe
Constraining non-methane VOC emissions with TROPOMI HCHO observations: impact on summertime ozone simulation in August 2022 in China
Revealing the significant acceleration of hydrofluorocarbon (HFC) emissions in eastern Asia through long-term atmospheric observations
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
Interpreting Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite observations of the diurnal variation in nitrogen dioxide (NO2) over East Asia
An intercomparison of satellite, airborne, and ground-level observations with WRF–CAMx simulations of NO2 columns over Houston, Texas, during the September 2021 TRACER-AQ campaign
Investigating processes influencing simulation of local Arctic wintertime anthropogenic pollution in Fairbanks, Alaska during ALPACA-2022
Interannual variability of summertime formaldehyde (HCHO) vertical column density and its main drivers at northern high latitudes
The impact of multi-decadal changes in VOC speciation on urban ozone chemistry: a case study in Birmingham, United Kingdom
Technical note: Challenges in detecting free tropospheric ozone trends in a sparsely sampled environment
Combined assimilation of NOAA surface and MIPAS satellite observations to constrain the global budget of carbonyl sulfide
The impact of gaseous degradation on the gas–particle partitioning of methylated polycyclic aromatic hydrocarbons
Technical note: An assessment of the performance of statistical bias correction techniques for global chemistry–climate model surface ozone fields
Interpreting Summertime Hourly Variation of NO2 Columns with Implications for Geostationary Satellite Applications
Opinion: Challenges and needs of tropospheric chemical mechanism development
A better representation of volatile organic compound chemistry in WRF-Chem and its impact on ozone over Los Angeles
High-resolution US methane emissions inferred from an inversion of 2019 TROPOMI satellite data: contributions from individual states, urban areas, and landfills
Summertime tropospheric ozone source apportionment study in the Madrid region (Spain)
CO anthropogenic emissions in Europe from 2011 to 2021: insights from Measurement of Pollution in the Troposphere (MOPITT) satellite data
Constraining long-term NOx emissions over the United States and Europe using nitrate wet deposition monitoring networks
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Analysis of an intense O3 pollution episode on the Atlantic coast of the Iberian Peninsula using photochemical modeling: characterization of transport pathways and accumulation processes
Atmospheric oxygen as a tracer for fossil fuel carbon dioxide: a sensitivity study in the UK
Source analyses of ambient VOCs considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
MIXv2: a long-term mosaic emission inventory for Asia (2010–2017)
The Atmospheric Oxidizing Capacity in China: Part 2. Sensitivity to emissions of primary pollutants
Process Analysis of Elevated Concentrations of Organic Acids at Whiteface Mountain, New York
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Martin Vojta, Andreas Plach, Saurabh Annadate, Sunyoung Park, Gawon Lee, Pallav Purohit, Florian Lindl, Xin Lan, Jens Mühle, Rona L. Thompson, and Andreas Stohl
Atmos. Chem. Phys., 24, 12465–12493, https://doi.org/10.5194/acp-24-12465-2024, https://doi.org/10.5194/acp-24-12465-2024, 2024
Short summary
Short summary
We constrain the global emissions of the very potent greenhouse gas sulfur hexafluoride (SF6) between 2005 and 2021. We show that SF6 emissions are decreasing in the USA and in the EU, while they are substantially growing in China, leading overall to an increasing global emission trend. The national reports for the USA, EU, and China all underestimated their SF6 emissions. However, stringent mitigation measures can successfully reduce SF6 emissions, as can be seen in the EU emission trend.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Mariano Mertens, Sabine Brinkop, Phoebe Graf, Volker Grewe, Johannes Hendricks, Patrick Jöckel, Anna Lanteri, Sigrun Matthes, Vanessa S. Rieger, Mattia Righi, and Robin N. Thor
Atmos. Chem. Phys., 24, 12079–12106, https://doi.org/10.5194/acp-24-12079-2024, https://doi.org/10.5194/acp-24-12079-2024, 2024
Short summary
Short summary
We quantified the contributions of land transport, shipping, and aviation emissions to tropospheric ozone; its radiative forcing; and the reductions of the methane lifetime using chemistry-climate model simulations. The contributions were analysed for the conditions of 2015 and for three projections for the year 2050. The results highlight the challenges of mitigating ozone formed by emissions of the transport sector, caused by the non-linearitiy of the ozone chemistry and the long lifetime.
Lauri Franzon, Marie Camredon, Richard Valorso, Bernard Aumont, and Theo Kurtén
Atmos. Chem. Phys., 24, 11679–11699, https://doi.org/10.5194/acp-24-11679-2024, https://doi.org/10.5194/acp-24-11679-2024, 2024
Short summary
Short summary
In this article we investigate the formation of large, sticky molecules from various organic compounds entering the atmosphere as primary emissions and the degree to which these processes may contribute to organic aerosol particle mass. More specifically, we qualitatively investigate a recently discovered chemical reaction channel for one of the most important short-lived radical compounds, peroxy radicals, and discover which of these reactions are most atmospherically important.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Willem E. van Caspel, Zbigniew Klimont, Chris Heyes, and Hilde Fagerli
Atmos. Chem. Phys., 24, 11545–11563, https://doi.org/10.5194/acp-24-11545-2024, https://doi.org/10.5194/acp-24-11545-2024, 2024
Short summary
Short summary
Methane in the atmosphere contributes to the production of ozone gas – an air pollutant and greenhouse gas. Our results highlight that simultaneous reductions in methane emissions help avoid offsetting the air pollution benefits already achieved by the already-approved precursor emission reductions by 2050 in the European Monitoring and Evaluation Programme region, while also playing an important role in bringing air pollution further down towards World Health Organization guideline limits.
Tia R. Scarpelli, Paul I. Palmer, Mark Lunt, Ingrid Super, and Arjan Droste
Atmos. Chem. Phys., 24, 10773–10791, https://doi.org/10.5194/acp-24-10773-2024, https://doi.org/10.5194/acp-24-10773-2024, 2024
Short summary
Short summary
Under the Paris Agreement, countries must track their anthropogenic greenhouse gas emissions. This study describes a method to determine self-consistent estimates for combustion emissions and natural fluxes of CO2 from atmospheric data. We report consistent estimates inferred using this approach from satellite data and ground-based data over Europe, suggesting that satellite data can be used to determine national anthropogenic CO2 emissions for countries where ground-based CO2 data are absent.
Ryan J. Pound, Lucy V. Brown, Mat J. Evans, and Lucy J. Carpenter
Atmos. Chem. Phys., 24, 9899–9921, https://doi.org/10.5194/acp-24-9899-2024, https://doi.org/10.5194/acp-24-9899-2024, 2024
Short summary
Short summary
Iodine-mediated loss of ozone to the ocean surface and the subsequent emission of iodine species has a large effect on the troposphere. Here we combine recent experimental insights to develop a box model of the process, which we then parameterize and incorporate into the GEOS-Chem transport model. We find that these new insights have a small impact on the total emission of iodine but significantly change its distribution.
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Haipeng Lin, Louisa K. Emmons, Elizabeth W. Lundgren, Laura Hyesung Yang, Xu Feng, Ruijun Dang, Shixian Zhai, Yunxiao Tang, Makoto M. Kelp, Nadia K. Colombi, Sebastian D. Eastham, Thibaud M. Fritz, and Daniel J. Jacob
Atmos. Chem. Phys., 24, 8607–8624, https://doi.org/10.5194/acp-24-8607-2024, https://doi.org/10.5194/acp-24-8607-2024, 2024
Short summary
Short summary
Tropospheric ozone is a major air pollutant, a greenhouse gas, and a major indicator of model skill. Global atmospheric chemistry models show large differences in simulations of tropospheric ozone, but isolating sources of differences is complicated by different model environments. By implementing the GEOS-Chem model side by side to CAM-chem within a common Earth system model, we identify and evaluate specific differences between the two models and their impacts on key chemical species.
Victor Lannuque and Karine Sartelet
Atmos. Chem. Phys., 24, 8589–8606, https://doi.org/10.5194/acp-24-8589-2024, https://doi.org/10.5194/acp-24-8589-2024, 2024
Short summary
Short summary
Large uncertainties remain in understanding secondary organic aerosol (SOA) formation and speciation from naphthalene oxidation. This study details the development of the first near-explicit chemical scheme for naphthalene oxidation by OH, which includes kinetic and mechanistic data, and is able to reproduce most of the experimentally identified products in both gas and particle phases.
Tong Sha, Siyu Yang, Qingcai Chen, Liangqing Li, Xiaoyan Ma, Yan-Lin Zhang, Zhaozhong Feng, K. Folkert Boersma, and Jun Wang
Atmos. Chem. Phys., 24, 8441–8455, https://doi.org/10.5194/acp-24-8441-2024, https://doi.org/10.5194/acp-24-8441-2024, 2024
Short summary
Short summary
Using an updated soil reactive nitrogen emission scheme in the Unified Inputs for Weather Research and Forecasting coupled with Chemistry (UI-WRF-Chem) model, we investigate the role of soil NO and HONO (Nr) emissions in air quality and temperature in North China. Contributions of soil Nr emissions to O3 and secondary pollutants are revealed, exceeding effects of soil NOx or HONO emission. Soil Nr emissions play an important role in mitigating O3 pollution and addressing climate change.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Matthew J. Rowlinson, Mat J. Evans, Lucy J. Carpenter, Katie A. Read, Shalini Punjabi, Adedayo Adedeji, Luke Fakes, Ally Lewis, Ben Richmond, Neil Passant, Tim Murrells, Barron Henderson, Kelvin H. Bates, and Detlev Helmig
Atmos. Chem. Phys., 24, 8317–8342, https://doi.org/10.5194/acp-24-8317-2024, https://doi.org/10.5194/acp-24-8317-2024, 2024
Short summary
Short summary
Ethane and propane are volatile organic compounds emitted from human activities which help to form ozone, a pollutant and greenhouse gas, and also affect the chemistry of the lower atmosphere. Atmospheric models tend to do a poor job of reproducing the abundance of these compounds in the atmosphere. By using regional estimates of their emissions, rather than globally consistent estimates, we can significantly improve the simulation of ethane in the model and make some improvement for propane.
Rodrigo J. Seguel, Lucas Castillo, Charlie Opazo, Néstor Y. Rojas, Thiago Nogueira, María Cazorla, Mario Gavidia-Calderón, Laura Gallardo, René Garreaud, Tomás Carrasco-Escaff, and Yasin Elshorbany
Atmos. Chem. Phys., 24, 8225–8242, https://doi.org/10.5194/acp-24-8225-2024, https://doi.org/10.5194/acp-24-8225-2024, 2024
Short summary
Short summary
Trends of surface ozone were examined across South America. Our findings indicate that ozone trends in major South American cities either increase or remain steady, with no signs of decline. The upward trends can be attributed to chemical regimes that efficiently convert nitric oxide into nitrogen dioxide. Additionally, our results suggest a climate penalty for ozone driven by meteorological conditions that favor wildfire propagation in Chile and extensive heat waves in southern Brazil.
Maarten Krol, Bart van Stratum, Isidora Anglou, and Klaas Folkert Boersma
Atmos. Chem. Phys., 24, 8243–8262, https://doi.org/10.5194/acp-24-8243-2024, https://doi.org/10.5194/acp-24-8243-2024, 2024
Short summary
Short summary
This paper presents detailed plume simulations of nitrogen oxides and carbon dioxide that are emitted from four large industrial facilities world-wide. Results from the high-resolution simulations that include atmospheric chemistry are compared to nitrogen dioxide observations from satellites. We find good performance of the model and show that common assumptions that are used in simplified models need revision. This work is important for the monitoring of emissions using satellite data.
Robin Plauchu, Audrey Fortems-Cheiney, Grégoire Broquet, Isabelle Pison, Antoine Berchet, Elise Potier, Gaëlle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, and Henk Eskes
Atmos. Chem. Phys., 24, 8139–8163, https://doi.org/10.5194/acp-24-8139-2024, https://doi.org/10.5194/acp-24-8139-2024, 2024
Short summary
Short summary
This study uses the Community Inversion Framework and CHIMERE model to assess the potential of TROPOMI-S5P PAL NO2 tropospheric column data to estimate NOx emissions in France (2019–2021). Results show a 3 % decrease in average emissions compared to the 2016 CAMS-REG/INS, lower than the 14 % decrease from CITEPA. The study highlights challenges in capturing emission anomalies due to limited data coverage and error levels but shows promise for local inventory improvements.
Zhendong Lu, Jun Wang, Yi Wang, Daven K. Henze, Xi Chen, Tong Sha, and Kang Sun
Atmos. Chem. Phys., 24, 7793–7813, https://doi.org/10.5194/acp-24-7793-2024, https://doi.org/10.5194/acp-24-7793-2024, 2024
Short summary
Short summary
In contrast with past work showing that the reduction of emissions was the dominant factor for the nationwide increase of surface O3 during the lockdown in China, this study finds that the variation in meteorology (temperature and other parameters) plays a more important role. This result is obtained through sensitivity simulations using a chemical transport model constrained by satellite (TROPOMI) data and calibrated with surface observations.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yao Ge, Sverre Solberg, Mathew R. Heal, Stefan Reimann, Willem van Caspel, Bryan Hellack, Thérèse Salameh, and David Simpson
Atmos. Chem. Phys., 24, 7699–7729, https://doi.org/10.5194/acp-24-7699-2024, https://doi.org/10.5194/acp-24-7699-2024, 2024
Short summary
Short summary
Atmospheric volatile organic compounds (VOCs) constitute many species, acting as precursors to ozone and aerosol. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the EMEP MSC-W to evaluate emission inventories in Europe. We focus on the varying agreement between modelled and measured VOCs across different species and underscore potential inaccuracies in total and sector-specific emission estimates.
Shuzhuang Feng, Fei Jiang, Tianlu Qian, Nan Wang, Mengwei Jia, Songci Zheng, Jiansong Chen, Fang Ying, and Weimin Ju
Atmos. Chem. Phys., 24, 7481–7498, https://doi.org/10.5194/acp-24-7481-2024, https://doi.org/10.5194/acp-24-7481-2024, 2024
Short summary
Short summary
We developed a multi-air-pollutant inversion system to estimate non-methane volatile organic compound (NMVOC) emissions using TROPOMI formaldehyde retrievals. We found that the inversion significantly improved formaldehyde simulations and reduced NMVOC emission uncertainties. The optimized NMVOC emissions effectively corrected the overestimation of O3 levels, mainly by decreasing the rate of the RO2 + NO reaction and increasing the rate of the NO2 + OH reaction.
Haklim Choi, Alison L. Redington, Hyeri Park, Jooil Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Ray F. Weiss, Alistair J. Manning, and Sunyoung Park
Atmos. Chem. Phys., 24, 7309–7330, https://doi.org/10.5194/acp-24-7309-2024, https://doi.org/10.5194/acp-24-7309-2024, 2024
Short summary
Short summary
We analyzed with an inversion model the atmospheric abundance of hydrofluorocarbons (HFCs), potent greenhouse gases, from 2008 to 2020 at Gosan station in South Korea and revealed a significant increase in emissions, especially from eastern China and Japan. This increase contradicts reported data, underscoring the need for accurate monitoring and reporting. Our findings are crucial for understanding and managing global HFCs emissions, highlighting the importance of efforts to reduce HFCs.
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O. T. Pye
EGUsphere, https://doi.org/10.5194/egusphere-2024-1680, https://doi.org/10.5194/egusphere-2024-1680, 2024
Short summary
Short summary
Here, we develop the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 2 to improve predictions of formaldehyde in ambient air compared to satellite-, aircraft-, and ground-based observations. With the updated chemistry representation, we then estimate the cancer risk in the contiguous US from exposure to ambient formaldehyde and estimate 40 % of this risk is controllable through reductions in anthropogenic emissions of nitrogen oxides and reactive organic carbon.
Laura Hyesung Yang, Daniel J. Jacob, Ruijun Dang, Yujin J. Oak, Haipeng Lin, Jhoon Kim, Shixian Zhai, Nadia K. Colombi, Drew C. Pendergrass, Ellie Beaudry, Viral Shah, Xu Feng, Robert M. Yantosca, Heesung Chong, Junsung Park, Hanlim Lee, Won-Jin Lee, Soontae Kim, Eunhye Kim, Katherine R. Travis, James H. Crawford, and Hong Liao
Atmos. Chem. Phys., 24, 7027–7039, https://doi.org/10.5194/acp-24-7027-2024, https://doi.org/10.5194/acp-24-7027-2024, 2024
Short summary
Short summary
The Geostationary Environment Monitoring Spectrometer (GEMS) provides hourly measurements of NO2. We use the chemical transport model to find how emissions, chemistry, and transport drive the changes in NO2 observed by GEMS at different times of the day. In winter, the chemistry plays a minor role, and high daytime emissions dominate the diurnal variation in NO2, balanced by transport. In summer, emissions, chemistry, and transport play an important role in shaping the diurnal variation in NO2.
M. Omar Nawaz, Jeremiah Johnson, Greg Yarwood, Benjamin de Foy, Laura Judd, and Daniel L. Goldberg
Atmos. Chem. Phys., 24, 6719–6741, https://doi.org/10.5194/acp-24-6719-2024, https://doi.org/10.5194/acp-24-6719-2024, 2024
Short summary
Short summary
NO2 is a gas with implications for air pollution. A campaign conducted in Houston provided an opportunity to compare NO2 from different instruments and a model. Aircraft and satellite observations agreed well with measurements on the ground; however, the latter estimated lower values. We find that model-simulated NO2 was lower than observations, especially downtown, suggesting that NO2 sources associated with the urban core of Houston, such as vehicle emissions, may be underestimated.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Tianlang Zhao, Jingqiu Mao, Zolal Ayazpour, Gonzalo González Abad, Caroline R. Nowlan, and Yiqi Zheng
Atmos. Chem. Phys., 24, 6105–6121, https://doi.org/10.5194/acp-24-6105-2024, https://doi.org/10.5194/acp-24-6105-2024, 2024
Short summary
Short summary
HCHO variability is a key tracer in understanding VOC emissions in response to climate change. We investigate the role of methane oxidation and biogenic and wildfire emissions in HCHO interannual variability over northern high latitudes in summer, emphasizing wildfires as a key driver of HCHO interannual variability in Alaska, Siberia and northern Canada using satellite HCHO and SIF retrievals and then GEOS-Chem model. We show SIF is a tool to understand biogenic HCHO variability in this region.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Kai-Lan Chang, Owen R. Cooper, Audrey Gaudel, Irina Petropavlovskikh, Peter Effertz, Gary Morris, and Brian C. McDonald
Atmos. Chem. Phys., 24, 6197–6218, https://doi.org/10.5194/acp-24-6197-2024, https://doi.org/10.5194/acp-24-6197-2024, 2024
Short summary
Short summary
A great majority of observational trend studies of free tropospheric ozone use sparsely sampled ozonesonde and aircraft measurements as reference data sets. A ubiquitous assumption is that trends are accurate and reliable so long as long-term records are available. We show that sampling bias due to sparse samples can persistently reduce the trend accuracy, and we highlight the importance of maintaining adequate frequency and continuity of observations.
Jin Ma, Linda M. J. Kooijmans, Norbert Glatthor, Stephen A. Montzka, Marc von Hobe, Thomas Röckmann, and Maarten C. Krol
Atmos. Chem. Phys., 24, 6047–6070, https://doi.org/10.5194/acp-24-6047-2024, https://doi.org/10.5194/acp-24-6047-2024, 2024
Short summary
Short summary
The global budget of atmospheric COS can be optimised by inverse modelling using TM5-4DVAR, with the co-constraints of NOAA surface observations and MIPAS satellite data. We found reduced COS biosphere uptake from inversions and improved land and ocean separation using MIPAS satellite data assimilation. Further improvements are expected from better quantification of COS ocean and biosphere fluxes.
Fu-Jie Zhu, Zi-Feng Zhang, Li-Yan Liu, Pu-Fei Yang, Peng-Tuan Hu, Geng-Bo Ren, Meng Qin, and Wan-Li Ma
Atmos. Chem. Phys., 24, 6095–6103, https://doi.org/10.5194/acp-24-6095-2024, https://doi.org/10.5194/acp-24-6095-2024, 2024
Short summary
Short summary
Gas–particle (G–P) partitioning is an important atmospheric behavior for semi-volatile organic compounds (SVOCs). Diurnal variation in G–P partitioning of methylated polycyclic aromatic hydrocarbons (Me-PAHs) demonstrates the possible influence of gaseous degradation; the enhancement of gaseous degradation (1.10–5.58 times) on G–P partitioning is verified by a steady-state G–P partitioning model. The effect of gaseous degradation on G–P partitioning of (especially light) SVOCs is important.
Christoph Staehle, Harald E. Rieder, Arlene M. Fiore, and Jordan L. Schnell
Atmos. Chem. Phys., 24, 5953–5969, https://doi.org/10.5194/acp-24-5953-2024, https://doi.org/10.5194/acp-24-5953-2024, 2024
Short summary
Short summary
Chemistry–climate models show biases compared to surface ozone observations and thus require bias correction for impact studies and the assessment of air quality changes. We compare the performance of commonly used correction techniques for model outputs available via CMIP6. While all methods can reduce model biases, better results are obtained from more complex approaches. Thus, our study suggests broader use of these techniques in studies seeking to inform air quality management and policy.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
EGUsphere, https://doi.org/10.5194/egusphere-2024-1401, https://doi.org/10.5194/egusphere-2024-1401, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US, and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to enable explaining the weaker hourly variation in NO2 columns than at the surface.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William Stockwell, Luc Vereecken, and Tim Wallington
EGUsphere, https://doi.org/10.5194/egusphere-2024-1316, https://doi.org/10.5194/egusphere-2024-1316, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes of the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Hannah Nesser, Daniel J. Jacob, Joannes D. Maasakkers, Alba Lorente, Zichong Chen, Xiao Lu, Lu Shen, Zhen Qu, Melissa P. Sulprizio, Margaux Winter, Shuang Ma, A. Anthony Bloom, John R. Worden, Robert N. Stavins, and Cynthia A. Randles
Atmos. Chem. Phys., 24, 5069–5091, https://doi.org/10.5194/acp-24-5069-2024, https://doi.org/10.5194/acp-24-5069-2024, 2024
Short summary
Short summary
We quantify 2019 methane emissions in the contiguous US (CONUS) at a ≈ 25 km × 25 km resolution using satellite methane observations. We find a 13 % upward correction to the 2023 US Environmental Protection Agency (EPA) Greenhouse Gas Emissions Inventory (GHGI) for 2019, with large corrections to individual states, urban areas, and landfills. This may present a challenge for US climate policies and goals, many of which target significant reductions in methane emissions.
David de la Paz, Rafael Borge, Juan Manuel de Andrés, Luis Tovar, Golam Sarwar, and Sergey L. Napelenok
Atmos. Chem. Phys., 24, 4949–4972, https://doi.org/10.5194/acp-24-4949-2024, https://doi.org/10.5194/acp-24-4949-2024, 2024
Short summary
Short summary
This source apportionment modeling study shows that around 70 % of ground-level O3 in Madrid (Spain) is transported from other regions. Nonetheless, emissions from local sources, mainly road traffic, play a significant role, especially under atmospheric stagnation. Local measures during those conditions may be able to reduce O3 peaks by up to 30 % and, thus, lessen impacts from high-O3 episodes in the Madrid metropolitan area.
Audrey Fortems-Cheiney, Gregoire Broquet, Elise Potier, Robin Plauchu, Antoine Berchet, Isabelle Pison, Hugo Denier van der Gon, and Stijn Dellaert
Atmos. Chem. Phys., 24, 4635–4649, https://doi.org/10.5194/acp-24-4635-2024, https://doi.org/10.5194/acp-24-4635-2024, 2024
Short summary
Short summary
We have estimated the carbon monixide (CO) European emissions from satellite observations of the MOPITT instrument at the relatively high resolution of 0.5° for a period of over 10 years from 2011 to 2021. The analysis of the inversion results reveals the challenges associated with the inversion of CO emissions at the regional scale over Europe.
Amy Christiansen, Loretta J. Mickley, and Lu Hu
Atmos. Chem. Phys., 24, 4569–4589, https://doi.org/10.5194/acp-24-4569-2024, https://doi.org/10.5194/acp-24-4569-2024, 2024
Short summary
Short summary
In this work, we provide an additional constraint on emissions and trends of nitrogen oxides using nitrate wet deposition (NWD) fluxes over the United States and Europe from 1980–2020. We find that NWD measurements constrain total NOx emissions well. We also find evidence of NOx emission overestimates in both domains, but especially over Europe, where NOx emissions are overestimated by a factor of 2. Reducing NOx emissions over Europe improves model representation of ozone at the surface.
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
EGUsphere, https://doi.org/10.5194/egusphere-2024-886, https://doi.org/10.5194/egusphere-2024-886, 2024
Short summary
Short summary
We incoporated each HONO process into the current CMAQ modeling framework to enhance the accuracy of HONO mixing ratios predictions. These results expand our understanding of HONO photochemistry and identify crucial sources of HONO that impact the total HONO budget in Seoul, South Korea. Through this investigation, we contribute to resolving discrepancies in understading chemical transport models, with implications for better air quality mangement and environmental protection in the region.
Eduardo Torre-Pascual, Gotzon Gangoiti, Ana Rodríguez-García, Estibaliz Sáez de Cámara, Joana Ferreira, Carla Gama, María Carmen Gómez, Iñaki Zuazo, Jose Antonio García, and Maite de Blas
Atmos. Chem. Phys., 24, 4305–4329, https://doi.org/10.5194/acp-24-4305-2024, https://doi.org/10.5194/acp-24-4305-2024, 2024
Short summary
Short summary
We present an analysis of an intense air pollution episode of tropospheric ozone (O3) along the Atlantic coast of the Iberian Peninsula, incorporating both measured and simulated parameters. Our study extends beyond surface-level factors to include altitude-related parameters. These episodes stem from upper-atmosphere O3 accumulation in preceding days, transported to surface layers, causing rapid O3 concentration increase.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
EGUsphere, https://doi.org/10.5194/egusphere-2024-916, https://doi.org/10.5194/egusphere-2024-916, 2024
Short summary
Short summary
Reactive loss of VOCs is a long-term issue yet to be resolved in VOC source analyses. This review assesses the common methods and existing issues of reducing losses, impacts of losses, and sources in current source analyses. We provided a potential supporting role in solving the issues of VOC conversion. Source analyses of consumed VOCs produced by reactions for O3 and secondary organic aerosols can play an important role in effective prevention and control of atmospheric secondary pollution.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-693, https://doi.org/10.5194/egusphere-2024-693, 2024
Short summary
Short summary
This paper employs a regional chemical transport model to quantify the sensitivity of air pollutants and photochemical parameters to specified emission reductions in China for conditions of winter and summer as representative. The study provides insights into the further air quality control in China with reduced primary emissions.
Christopher Lawrence, Mary Barth, John Orlando, Paul Casson, Richard Brandt, Daniel Kelting, Elizabeth Yerger, and Sara Lance
EGUsphere, https://doi.org/10.5194/egusphere-2024-715, https://doi.org/10.5194/egusphere-2024-715, 2024
Short summary
Short summary
This work uses WRF-Chem and chemical box modeling to study the gas and aqueous phase production of organic acid concentrations measured in cloud water the summit of Whiteface Mountain on July 1st, 2018. Isoprene was the major source of formic, acetic, and oxalic acid. Gas phase chemistry greatly underestimated formic and acetic acid, indicating missing sources, while cloud chemistry was a key source of oxalic acid. More studies of organic acids are required to better constrain their sources.
Cited articles
Ainsworth, E. A. and Rogers, A.: The response of photosynthesis and stomatal
conductance to rising [CO2]: Mechanisms and environmental interactions,
Plant, Cell Environ., 30, 258–270, https://doi.org/10.1111/j.1365-3040.2007.01641.x,
2007.
Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L.
D.: The Effects of Tropospheric Ozone on Net Primary Productivity and
Implications for Climate Change, Annu. Rev. Plant Biol., 63, 637–661,
https://doi.org/10.1146/annurev-arplant-042110-103829, 2012.
Altimir, N., Kolari, P., Tuovinen, J.-P., Vesala, T., Bäck, J., Suni, T., Kulmala, M., and Hari, P.: Foliage surface ozone deposition: a role for surface moisture?, Biogeosciences, 3, 209–228, https://doi.org/10.5194/bg-3-209-2006, 2006.
Ashworth, K., Chung, S. H., Griffin, R. J., Chen, J., Forkel, R., Bryan, A. M., and Steiner, A. L.: FORest Canopy Atmosphere Transfer (FORCAsT) 1.0: a 1-D model of biosphere–atmosphere chemical exchange, Geosci. Model Dev., 8, 3765–3784, https://doi.org/10.5194/gmd-8-3765-2015, 2015.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield
reductions due to surface ozone exposure: 1. Year 2000 crop production
losses and economic damage, Atmos. Environ., 45, 2284–2296,
https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.,
Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein,
A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel,
W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S.,
Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the
Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water
Vapor, and Energy Flux Densities, B. Am. Meteorol. Soc., 82, 2415–2434,
https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2,
2001.
Baldocchi, D. D., Hicks, B. B., and Camara, P.: A canopy stomatal resistance
model for gaseous deposition to vegetated surfaces, Atmos. Environ., 21,
91–101, https://doi.org/10.1016/0004-6981(87)90274-5, 1987.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal
Conductance and its Contribution to the Control of Photosynthesis under
Different Environmental Conditions, in: Progress in Photosynthesis Research, Springer, Dordrecht,
pp. 221–224., 1987.
Brook, J. R., Zhang, L., Di-Giovanni, F., and Padro, J.: Description and
evaluation of a model of deposition velocities for routine estimates of air
pollutant dry deposition over North America, Part I: Model development,
Atmos. Environ., 33, 5037–5051, https://doi.org/10.1016/S1352-2310(99)00250-2, 1999.
Brown-Steiner, B., Selin, N. E., Prinn, R. G., Monier, E., Tilmes, S., Emmons, L., and Garcia-Menendez, F.: Maximizing ozone signals among chemical, meteorological, and climatological variability, Atmos. Chem. Phys., 18, 8373–8388, https://doi.org/10.5194/acp-18-8373-2018, 2018.
Chen, B., Black, T. A., Coops, N. C., Hilker, T., Trofymow, J. A., and
Morgenstern, K.: Assessing tower flux footprint climatology and scaling
between remotely sensed and eddy covariance measurements, Bound.-Lay.
Meteorol., 130, 137–167, https://doi.org/10.1007/s10546-008-9339-1, 2009.
Chen, B., Coops, N. C., Fu, D., Margolis, H. A., Amiro, B. D., Black, T. A.,
Arain, M. A., Barr, A. G., Bourque, C. P. A., Flanagan, L. B., Lafleur, P.
M., McCaughey, J. H., and Wofsy, S. C.: Characterizing spatial
representativeness of flux tower eddy-covariance measurements across the
Canadian Carbon Program Network using remote sensing and footprint analysis,
Remote Sens. Environ., 142, 742–755, https://doi.org/10.1016/j.rse.2012.06.007, 2012.
Centoni, F.: Global scale modelling of ozone deposition processes and
interaction between surface ozone and climate change A thesis presented for
the degree The University of Edinburgh, University of Edinburgh, 2017.
Clifton, O. E., Fiore, A. M., Munger, J. W., Malyshev, S., Horowitz, L. W.,
Shevliakova, E., Paulot, F., Murray, L. T., and Griffin, K. L.: Interannual
variability in ozone removal by a temperate deciduous forest, Geophys. Res.
Lett., 44, 542–552, https://doi.org/10.1002/2016GL070923, 2017.
Clifton, O. E., Fiore, A. M., Munger, J. W., and Wehr, R.: Spatiotemporal Controls on Observed Daytime Ozone Deposition Velocity Over Northeastern U.S. Forests During Summer, J. Geophys. Res. Atmos., 124, 5612–5628, doi:10.1029/2018JD029073, 2019.
Collatz, G., Ribas-Carbo, M., and Berry, J.: Coupled Photosynthesis-Stomatal
Conductance Model for Leaves of C4 Plants, Aust. J. Plant Physiol.,
19, 519, https://doi.org/10.1071/PP9920519, 1992.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and
environmental regulation of stomatal conductance, photosynthesis and
transpiration: a model that includes a laminar boundary layer, Agric. For.
Meteorol., 54, 107–136, https://doi.org/10.1016/0168-1923(91)90002-8, 1991.
Dai, Y., Shangguan, W., Wei, N., Xin, Q., Yuan, H., Zhang, S., and Liu, S.:
SOIL A review of the global soil property maps for Earth system models, Soil,
5, 137–158, https://doi.org/10.5194/soil-5-137-2019, 2019.
Ducker, J. A., Holmes, C. D., Keenan, T. F., Fares, S., Goldstein, A. H., Mammarella, I., Munger, J. W., and Schnell, J.: Synthetic ozone deposition and stomatal uptake at flux tower sites, Biogeosciences, 15, 5395–5413, https://doi.org/10.5194/bg-15-5395-2018, 2018.
Emberson, L. D., Wieser, G., and Ashmore, M. R.: Modelling of stomatal
conductance and ozone flux of Norway spruce: Comparison with field data,
Environ. Pollut., 109, 393–402, 2000.
Fang, H., Li, W., and Myneni, R. B.: The impact of potential land cover
misclassification on modis leaf area index (LAI) estimation: A statistical
perspective, Remote Sens., 5, 830–844, https://doi.org/10.3390/rs5020830, 2013.
Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a
Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence
from long-term continuous measurements, Agric. For. Meteorol., 150,
420–431, https://doi.org/10.1016/j.agrformet.2010.01.007, 2010.
Fares, S., Savi, F., Muller, J., Matteucci, G., and Paoletti, E.:
Simultaneous measurements of above and below canopy ozone fluxes help
partitioning ozone deposition between its various sinks in a Mediterranean
Oak Forest, Agric. For. Meteorol., 198, 181–191,
https://doi.org/10.1016/j.agrformet.2014.08.014, 2014.
Fares, S., Conte, A., and Chabbi, A.: Ozone flux in plant ecosystems: new
opportunities for long-term monitoring networks to deliver ozone-risk
assessments, Environ. Sci. Pollut. Res., 25, 8240–8248,
https://doi.org/10.1007/s11356-017-0352-0, 2017.
Farquhar, G. D., Von Caemmerer, S., and Berry, J. A.: A Biochemical Model of
Photosynthetic CO2 Assimilation in Leaves of C3 Species, Planta, 149,
78–90, https://doi.org/10.1007/BF00386231, 1980.
Fiore, A. M., Oberman, J. T., Lin, M. Y., Zhang, L., Clifton, O. E., Jacob,
D. J., Naik, V., Horowitz, L. W., Pinto, J. P., and Milly, G. P.: Estimating
North American background ozone in U.S. surface air with two independent
global models: Variability, uncertainties, and recommendations, Atmos.
Environ., 96, 284–300, https://doi.org/10.1016/j.atmosenv.2014.07.045, 2014.
Foken, T.: 50 years of the Monin-Obukhov similarity theory, Bound.-Lay.
Meteorol., 119, 431–447, https://doi.org/10.1007/s10546-006-9048-6, 2006.
Fowler, D., Nemitz, E., Misztal, P., di Marco, C., Skiba, U., Ryder, J.,
Helfter, C., Neil Cape, J., Owen, S., Dorsey, J., Gallagher, M. W., Coyle,
M., Phillips, G., Davison, B., Langford, B., MacKenzie, R., Muller, J.,
Siong, J., Dari-Salisburgo, C., di Carlo, P., Aruffo, E., Giammaria, F.,
Pyle, J. A., and Nicholas Hewitt, C.: Effects of land use on
surface-atmosphere exchanges of trace gases and energy in Borneo: Comparing
fluxes over oil palm plantations and a rainforest, Philos. Trans. R. Soc. B
Biol. Sci., 366, 3196–3209, https://doi.org/10.1098/rstb.2011.0055, 2011.
Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A.,
Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N.,
Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to
changing atmospheric CO2 concentration: From the geological past to the next
century, New Phytol., 197, 1077–1094, https://doi.org/10.1111/nph.12104, 2013.
Fu, Y. and Tai, A. P. K.: Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010, Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, 2015.
Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B.,
and Lelieveld, J.: Impact of future land use and land cover changes on
atmospheric chemistry-climate interactions, J. Geophys. Res., 115,
D23301, https://doi.org/10.1029/2010JD014041, 2010.
Geddes, J. A. and Martin, R. V.: Global deposition of total reactive nitrogen oxides from 1996 to 2014 constrained with satellite observations of NO2 columns, Atmos. Chem. Phys., 17, 10071–10091, https://doi.org/10.5194/acp-17-10071-2017, 2017.
Geddes, J. A., Heald, C. L., Silva, S. J., and Martin, R. V.: Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States, Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, 2016.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerosa, G., Vitale, M., Finco, A., Manes, F., Denti, A. B., and Cieslik, S.:
Ozone uptake by an evergreen Mediterranean Forest (Quercus ilex) in Italy.
Part I: Micrometeorological flux measurements and flux partitioning, Atmos.
Environ., 39, 3255–3266, https://doi.org/10.1016/j.atmosenv.2005.01.056, 2005.
Gerosa, G., Marzuoli, R., Monteleone, B., Chiesa, M., and Finco, A.: Vertical
ozone gradients above forests. Comparison of different calculation options
with direct ozone measurements above a mature forest and consequences for
ozone risk assessment, Forests, 8, https://doi.org/10.3390/f8090337, 2017.
Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale chemistry climate models, Atmos. Chem. Phys., 15, 6419–6436, https://doi.org/10.5194/acp-15-6419-2015, 2015.
Heald, C. L. and Geddes, J. A.: The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone, Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, 2016.
Hollaway, M. J., Arnold, S. R., Collins, W. J., Folberth, G., and Rap, A.:
Sensitivity of midnineteenth century tropospheric ozone to atmospheric
chemistry-vegetation interactions, J. Geophys. Res.-Atmos., 122,
2452–2473, https://doi.org/10.1002/2016JD025462, 2017.
Hoshika, Y., Carriero, G., Feng, Z., Zhang, Y., and Paoletti, E.:
Determinants of stomatal sluggishness in ozone-exposed deciduous tree
species, Sci. Total Environ., 481, 453–458,
https://doi.org/10.1016/j.scitotenv.2014.02.080, 2014.
Hu, L., Jacob, D. J., Liu, X., Zhang, Y., Zhang, L., Kim, P. S., Sulprizio,
M. P., and Yantosca, R. M.: Global budget of tropospheric ozone: Evaluating
recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde
observations, Atmos. Environ., 167, 323–334,
https://doi.org/10.1016/j.atmosenv.2017.08.036, 2017.
Huang, L., McDonald-Buller, E. C., McGaughey, G., Kimura, Y., and Allen, D.
T.: The impact of drought on ozone dry deposition over eastern Texas, Atmos.
Environ., 127, 176–186, https://doi.org/10.1016/j.atmosenv.2015.12.022, 2016.
Jacob, D. J. and Wofsy, S. C.: Budgets of Reactive Nitrogen, Hydrocarbons,
and Ozone Over the Amazon Forest during the Wet Season, J. Geophys. Res.,
95, 16737–16754, https://doi.org/10.1029/JD095iD10p16737, 1990.
Jacob, D. J., Fan, S.-M., Wofsy, S. C., Spiro, P. A., Bakwin, P. S., Ritter,
J. A., Browell, E. V., Gregory, G. L., Fitzjarrald, D. R., and Moore, K. E.:
Deposition of ozone to tundra, J. Geophys. Res., 97, https://doi.org/10.1029/91JD02696,
1992.
Jarvis, P. G.: The Interpretation of the Variations in Leaf Water Potential
and Stomatal Conductance Found in Canopies in the Field, Philos. Trans. R.
Soc. B Biol. Sci., 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.
Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski,
D., Shi, Y., Calle, E., and Thun, M.: Long-Term Ozone Exposure and Mortality,
N. Engl. J. Med., 360, 1085–1095, https://doi.org/10.1056/NEJMoa0803894, 2009.
Jiang, C., Ryu, Y., Fang, H., Myneni, R., Claverie, M. and Zhu, Z.:
Inconsistencies of interannual variability and trends in long-term satellite
leaf area index products, Glob. Chang. Biol., 23, 4133–4146, https://doi.org/10.1111/gcb.13787, 2017.
Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., and
Kulmala, M.: Smart-SMEAR: On-line data exploration and visualization tool
for SMEAR stations, Boreal Environ. Res., 14, 447–457, 2009.
Kattge, J. and Knorr, W.: Temperature acclimation in a biochemical model of
photosynthesis: A reanalysis of data from 36 species, Plant, Cell Environ.,
30, 1176–1190, https://doi.org/10.1111/j.1365-3040.2007.01690.x, 2007.
Kavassalis, S. C. and Murphy, J. G.: Understanding ozone-meteorology
correlations: A role for dry deposition, Geophys. Res. Lett., 44,
2922–2931, https://doi.org/10.1002/2016GL071791, 2017.
Keeling, C. D., Stephen, C., Piper, S. C., Bacastow, R. B., Wahlen, M.,
Whorf, T. P., Heimann, M., and Meijer, H. A.: Exchanges of atmospheric CO2
and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000, Glob.
Asp. SIO Ref. Ser. Scripps Inst. Ocean. San Diego, https://doi.org/10.1007/b138533,
2001.
Keronen, P., Reissell, a, Rannik, Ü., Pohja, T., Siivola, E., Hiltunen,
V., Hari, P., Kulmala, M., and Vesala, T.: Ozone flux measurements over a
Scots pine forest using eddy covariance method: Performance evaluation and
comparison with flux-profile method, Boreal Environ. Res., 8, 425–443,
2003.
Kharol, S. K., Shephard, M. W., Mclinden, C. A., Zhang, L., Sioris, C. E.,
O'Brien, J. M., Vet, R., Cady-Pereira, K. E., Hare, E., Siemons, J., and
Krotkov, N. A.: Dry Deposition of Reactive Nitrogen From Satellite
Observations of Ammonia and Nitrogen Dioxide Over North America, Geophys.
Res. Lett., 45, 1157–1166, https://doi.org/10.1002/2017GL075832, 2018.
Lamaud, E., Carrara, A., Brunet, Y., Lopez, A., and Druilhet, A.: Ozone
fluxes above and within a pine forest canopy in dry and wet conditions,
Atmos. Environ., 36, 77–88, https://doi.org/10.1016/S1352-2310(01)00468-X, 2002.
Lawrence, P. J. and Chase, T. N.: Representing a new MODIS consistent land
surface in the Community Land Model (CLM 3.0), J. Geophys. Res.-Biogeo., 112, G01023, https://doi.org/10.1029/2006JG000168, 2007.
Li, D., Bou-Zeid, E., Barlage, M., Chen, F., and Smith, J. A.: Development
and evaluation of a mosaic approach in the WRF-Noah framework, J. Geophys.
Res.-Atmos., 118, 11918–11935, https://doi.org/10.1002/2013JD020657, 2013.
Lin, Y., Medlyn, B., and Duursma, R.: Optimal stomatal behaviour around the
world, Nat. Clim., 5, 459–464, https://doi.org/10.1038/NCLIMATE2550,
2015.
Lin, M., Malyshev, S., Shevliakova, E., Paulot, F., Horowitz, L. W., Fares,
S., Mikkelsen, T. N., and Zhang, L.: Sensitivity of ozone dry deposition to
ecosystem-atmosphere interactions: A critical appraisal of observations and
simulations, Global Biogeochem. Cy., 3, https://doi.org/10.1029/2018GB006157, 2019.
Lombardozzi, D., Sparks, J. P., Bonan, G., and Levis, S.: Ozone exposure
causes a decoupling of conductance and photosynthesis: Implications for the
Ball-Berry stomatal conductance model, Oecologia, 169, 651–659,
https://doi.org/10.1007/s00442-011-2242-3, 2012.
Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The
influence of chronic ozone exposure on global carbon and water cycles, J.
Climate, 28, 292–305, https://doi.org/10.1175/JCLI-D-14-00223.1, 2015.
Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W., and Nobre,
C. A.: Climate change, deforestation, and the fate of the Amazon, Science, 319, 169–172, https://doi.org/10.1126/science.1146961, 2008.
Mao, J., Paulot, F., Jacob, D. J., Cohen, R. C., Crounse, J. D., Wennberg,
P. O., Keller, C. A., Hudman, R. C., Barkley, M. P., and Horowitz, L. W.:
Ozone and organic nitrates over the eastern United States: Sensitivity to
isoprene chemistry, J. Geophys. Res.-Atmos., 118, 11256–11268,
https://doi.org/10.1002/jgrd.50817, 2013.
Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., Khummongkol, P.,
Wangwongwatana, S., and Totsuka, T.: Ozone dry deposition above a tropical
forest in the dry season in northern Thailand, Atmos. Environ., 39,
2571–2577, https://doi.org/10.1016/j.atmosenv.2005.01.011, 2005.
McGrath, J. M., Betzelberger, A. M., Wang, S., Shook, E., Zhu, X.-G., Long,
S. P., and Ainsworth, E. A.: An analysis of ozone damage to historical maize
and soybean yields in the United States, P. Natl. Acad. Sci. USA, 112,
14390–14395, https://doi.org/10.1073/pnas.1509777112, 2015.
Meyers, T. P., Finkelstein, P., Clarke, J., Ellestad, T. G., and Sims, P. F.:
A multilayer model for inferring dry deposition using standard
meteorological measurements, J. Geophys. Res., 103, 22645,
https://doi.org/10.1029/98JD01564, 1998.
Muller, J. B. A., Percival, C. J., Gallagher, M. W., Fowler, D., Coyle, M., and Nemitz, E.: Sources of uncertainty in eddy covariance ozone flux measurements made by dry chemiluminescence fast response analysers, Atmos. Meas. Tech., 3, 163–176, https://doi.org/10.5194/amt-3-163-2010, 2010.
Munger, J. W., Wofsy, S. C., Bakwin, P. S., Fan, S.-M., Goulden, M. L.,
Daube, B. C., Goldstein, A. H., Moore, K. E., and Fitzjarrald, D. R.:
Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate
deciduous forest and a subarctic woodland 1. Measurements and mechanisms, J.
Geophys. Res., 101657, 639–712, https://doi.org/10.1029/96JD00230, 1996.
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J.,
Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl,
M., Morisette, J. T., Votava, P., Nemani, R. R., and Running, S. W.: Global
products of vegetation leaf area and fraction absorbed PAR from year one of
MODIS data, Remote Sens. Environ., 83, 214–231,
https://doi.org/10.1016/S0034-4257(02)00074-3, 2002.
Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO2
Enrichment (FACE) Experiments, Annu. Rev. Ecol. Evol. Syst., 42, 181–203,
https://doi.org/10.1146/annurev-ecolsys-102209-144647, 2011.
Nowlan, C. R., Martin, R. V., Philip, S., Lamsal, L. N., Krotkov, N. A.,
Marais, E. A., Wang, S., and Zhang, Q.: Global dry deposition of nitrogen
dioxide and sulfur dioxide inferred from space-based measurements, Global
Biogeochem. Cy., 28, 1025–1043, https://doi.org/10.1002/2014GB004805, 2014.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven, C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C., Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, J.-F., Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land Model (CLM), NCAR/TN-478+STR NCAR Tech. Note, (April), NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M, 2013.
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell,
G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E.,
Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y.,
Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R.: Terrestrial
Ecoregions of the World: A New Map of Life on Earth, Bioscience, 51, 933–938,
https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2, 2001.
Paulson, C. A.: The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer, J. Appl. Meteorol., 9, 857–861, https://doi.org/10.1175/1520-0450(1970)009<0857:tmrows>2.0.co;2, 1970.
Pleim, J. and Ran, L.: Surface flux modeling for air quality applications,
Atmosphere (Basel), 2, 271–302, https://doi.org/10.3390/atmos2030271, 2011.
Potier, E., Ogée, J., Jouanguy, J., Lamaud, E., Stella, P., Personne,
E., Durand, B., Mascher, N., and Loubet, B.: Multilayer modelling of ozone
fluxes on winter wheat reveals large deposition on wet senescing leaves,
Agric. For. Meteorol., 211–212, 58–71,
https://doi.org/10.1016/j.agrformet.2015.05.006, 2015.
Potier, E., Loubet, B., Durand, B., Flura, D., Bourdat-Deschamps, M.,
Ciuraru, R., and Ogée, J.: Chemical reaction rates of ozone in water
infusions of wheat, beech, oak and pine leaves of different ages, Atmos.
Environ., 151, 176–187, https://doi.org/10.1016/j.atmosenv.2016.11.069, 2017.
R core team: R: A language and environment for statistical computing, R
Found. Stat. Comput. Vienna, Austria, available at: http://www.R-project.org/ (last access: 25 July 2019), 2017.
Ran, L., Pleim, J., Song, C., Band, L., Walker, J. T., and Binkowski, F. S.:
A photosynthesis-based two-leaf canopy stomatal conductance model for
meteorology and air quality modeling with WRF/CMAQ PX LSM, J. Geophys. Res.,
122, 1930–1952, https://doi.org/10.1002/2016JD025583, 2017a.
Ran, L., Pleim, J., Song, C., Band, L., Walker, J. T., and Binkowski, F. S.:
A photosynthesis-based two-leaf canopy stomatal conductance model for
meteorology and air quality modeling with WRF/CMAQ PX LSM, J. Geophys. Res.,
122, 1930–1952, https://doi.org/10.1002/2016JD025583, 2017b.
Rannik, Ü., Altimir, N., Mammarella, I., Bäck, J., Rinne, J., Ruuskanen, T. M., Hari, P., Vesala, T., and Kulmala, M.: Ozone deposition into a boreal forest over a decade of observations: evaluating deposition partitioning and driving variables, Atmos. Chem. Phys., 12, 12165–12182, https://doi.org/10.5194/acp-12-12165-2012, 2012.
Reich, P. B.: Quantifying plant response to ozone: a unifying theory, Tree
Physiol., 3, 63–91, https://doi.org/10.1093/treephys/3.1.63, 1987.
Rienecker, M. M., Suarez, M. J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R. D., Gelaro, R., Stajner, I. and Nielsen, E.: The GEOS-5 Data Assimilation System – Documentation of versions 5.0.1 and 5.1.0, and 5.2.0, NASA Tech. Rep. Ser. Glob. Model. Data Assim. NASA/TM-2008-104606, https://doi.org/10.2759/32049, 2008.
Rigden, A. J. and Salvucci, G. D.: Stomatal response to humidity and
CO2 implicated in recent decline in US evaporation, Glob. Chang. Biol., 23, 1140–1151,
https://doi.org/10.1111/gcb.13439, 2017.
Rummel, U., Ammann, C., Kirkman, G. A., Moura, M. A. L., Foken, T., Andreae, M. O., and Meixner, F. X.: Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia, Atmos. Chem. Phys., 7, 5415–5435, https://doi.org/10.5194/acp-7-5415-2007, 2007.
Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks, Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, 2017.
Sanderson, M. G., Collins, W. J., Hemming, D. L., and Betts, R. A.: Stomatal
conductance changes due to increasing carbon dioxide levels: Projected
impact on surface ozone levels, Tellus B, 59,
404–411, https://doi.org/10.1111/j.1600-0889.2007.00277.x, 2007.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
Silva, S. J. and Heald, C. L.: Investigating Dry Deposition of Ozone to
Vegetation, J. Geophys. Res.-Atmos., 123, 559–573,
https://doi.org/10.1002/2017JD027278, 2018.
Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nyíri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, Á., and Wind, P.: The EMEP MSC-W chemical transport model – technical description, Atmos. Chem. Phys., 12, 7825–7865, https://doi.org/10.5194/acp-12-7825-2012, 2012.
Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect
radiative forcing of climate change through ozone effects on the land-carbon
sink, Nature, 448, 791–794, https://doi.org/10.1038/nature06059, 2007.
Sun, S., Moravek, A., Trebs, I., Kesselmeier, J., and Sörgel, M.:
Investigation of the influence of liquid surface films on O3 and PAN
deposition to plant leaves coated with organic/inorganic solution, J.
Geophys. Res.-Atmos., 121, 14239–14256, https://doi.org/10.1002/2016JD025519,
2016.
Sun, Y., Gu, L., and Dickinson, R. E.: A numerical issue in calculating the
coupled carbon and water fluxes in a climate model, J. Geophys. Res.-Atmos., 117,
https://doi.org/10.1029/2012JD018059, 2012.
Tai, A. P. K., Martin, M. V., and Heald, C. L.: Threat to future global food
security from climate change and ozone air pollution, Nat. Clim. Change,
4, 817–821, https://doi.org/10.1038/nclimate2317, 2014.
Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Miller, C. C., Yantosca, R. M., Sulprizio, M. P., Thompson, A. M., Wennberg, P. O., Crounse, J. D., St. Clair, J. M., Cohen, R. C., Laughner, J. L., Dibb, J. E., Hall, S. R., Ullmann, K., Wolfe, G. M., Pollack, I. B., Peischl, J., Neuman, J. A., and Zhou, X.: Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561–13577, https://doi.org/10.5194/acp-16-13561-2016, 2016.
Val Martin, M., Heald, C. L. and Arnold, S. R.: Coupling dry deposition to
vegetation phenology in the Community
Earth System
Model:
Implications for the simulation of surface
O3, Geophys. Res. Lett., 41, 2988–2996,
https://doi.org/10.1002/2014GL059651, 2014.
Wang, Y., Jacob, D. J. and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 1. Model
formulation, J. Geophys. Res.-Atmos., 103, 10713–10725,
https://doi.org/10.1029/98JD00158, 1998.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 41,
52–63, https://doi.org/10.1016/j.atmosenv.2007.10.058, 1989.
Wesely, M. L. and Hicks, B. B.: Some Factors that Affect the Deposition
Rates of Sulfur Dioxide and Similar Gases on Vegetation, J. Air Pollut.
Control Assoc., 27, 1110–1116, https://doi.org/10.1080/00022470.1977.10470534,
1977.
Wesely, M. L. and Hicks, B. B.: A review of the current status of knowledge
on dry deposition, Atmos. Environ., 34, 2261–2282,
https://doi.org/10.1016/S1352-2310(99)00467-7, 2000.
Wild, O.: Modelling the global tropospheric ozone budget: exploring the variability in current models, Atmos. Chem. Phys., 7, 2643–2660, https://doi.org/10.5194/acp-7-2643-2007, 2007.
Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current
and projected increases in surface ozone affect photosynthesis and stomatal
conductance of trees? A meta-analytic review of the last 3 decades of
experiments, Plant Cell Environ., 30, 1150–1162,
https://doi.org/10.1111/j.1365-3040.2007.01717.x, 2007.
Wolfe, G. M., Thornton, J. A., McKay, M., and Goldstein, A. H.: Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry, Atmos. Chem. Phys., 11, 7875–7891, https://doi.org/10.5194/acp-11-7875-2011, 2011.
Wong, A. Y. H., Tai, A. P. K., and Ip, Y.-Y.: Attribution and Statistical
Parameterization of the Sensitivity of Surface Ozone to Changes in Leaf Area
Index Based On a Chemical Transport Model, J. Geophys. Res.-Atmos., 123, 1883–1898,
https://doi.org/10.1002/2017JD027311, 2018.
Wu, S., Mickley, L. J., Kaplan, J. O., and Jacob, D. J.: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century, Atmos. Chem. Phys., 12, 1597–1609, https://doi.org/10.5194/acp-12-1597-2012, 2012.
Wu, Z., Wang, X., Chen, F., Turnipseed, A. A., Guenther, A. B., Niyogi, D.,
Charusombat, U., Xia, B., William Munger, J., and Alapaty, K.: Evaluating the
calculated dry deposition velocities of reactive nitrogen oxides and ozone
from two community models over a temperate deciduous forest, Atmos.
Environ., 45, 2663–2674, https://doi.org/10.1016/j.atmosenv.2011.02.063, 2011.
Wu, Z., Staebler, R., Vet, R., and Zhang, L.: Dry deposition of O3 and SO2
estimated from gradient measurements above a temperate mixed forest,
Environ. Pollut., 210, 202–210, https://doi.org/10.1016/j.envpol.2015.11.052, 2016.
Wu, Z., Schwede, D. B., Vet, R., Walker, J. T., Shaw, M., Staebler, R., and
Zhang, L.: Evaluation and intercomparison of five North American dry
deposition algorithms at a mixed forest site, J. Adv. Model. Earth Syst.,
10, 1571–1586, https://doi.org/10.1029/2017MS001231, 2018.
Wu, Z. Y., Zhang, L., Wang, X. M., and Munger, J. W.: A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy, Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, 2015.
Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, 2013.
Yu, S., Eder, B., Dennis, R., Chu, S.-H., and Schwartz, S. E.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci. Lett., 7, 26–34,
https://doi.org/10.1002/asl.125, 2006.
Zhang, L., Moran, M. D. and Brook, J. R.: A comparison of models to estimate
in-canopy photosynthetically active radiation and their influence on canopy
stomatal resistance, Atmos. Environ., 35, 4463–4470, https://doi.org/10.1016/S1352-2310(01)00225-4,
2001.
Zhang, L., Brook, J. R., and Vet, R.: On ozone dry deposition - With emphasis
on non-stomatal uptake and wet canopies, Atmos. Environ., 36,
4787–4799, https://doi.org/10.1016/S1352-2310(02)00567-8, 2002.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Vet, R., O'Brien, J. M., Mihele, C., Liang, Z., and Wiebe, A.: Dry
deposition of individual nitrogen species at eight Canadian rural sites, J.
Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD010640, 2009.
Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K., Eldering, A., and Bojkov, B. R.: Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725–4739, https://doi.org/10.5194/acp-10-4725-2010, 2010.
Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y. X., and Chen, D.: Nitrogen deposition to the United States: distribution, sources, and processes, Atmos. Chem. Phys., 12, 4539–4554, https://doi.org/10.5194/acp-12-4539-2012, 2012.
Zhou, P., Ganzeveld, L., Rannik, Ü., Zhou, L., Gierens, R., Taipale, D., Mammarella, I., and Boy, M.: Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model, Atmos. Chem. Phys., 17, 1361–1379, https://doi.org/10.5194/acp-17-1361-2017, 2017.
Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health, Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, 2018.
Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao,
S., Nemani, R. R. and Myneni, R. B.: Global data sets of vegetation leaf
area index (LAI)3g and fraction of photosynthetically active radiation
(FPAR)3g derived from global inventory modeling and mapping studies (GIMMS)
normalized difference vegetation index (NDVI3G) for the period 1981 to 2,
Remote Sens., 5, 927–948, https://doi.org/10.3390/rs5020927, 2013.
Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G.,
Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L.,
Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J., Pan, Y.,
Peng, S., Peñuelas, J., Poulter, B., Pugh, T. A. M., Stocker, B. D.,
Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.:
Greening of the Earth and its drivers, Nat. Clim. Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.
Short summary
Dry deposition is an important, but highly uncertain, sink for surface ozone. Several popular parameterizations exist to model this process, which vary with respect to how they depend on land cover and environmental variables. Here, we predict ozone dry deposition globally over 30 years, comparing four different approaches. We find that the choice of dry deposition parameterization affects the distribution, seasonal means, long-term trends, and interannual variability of surface ozone.
Dry deposition is an important, but highly uncertain, sink for surface ozone. Several popular...
Altmetrics
Final-revised paper
Preprint