Articles | Volume 19, issue 20
https://doi.org/10.5194/acp-19-13097-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-13097-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Interrelations between surface, boundary layer, and columnar aerosol properties derived in summer and early autumn over a continental urban site in Warsaw, Poland
Dongxiang Wang
Institute of Geophysics, Faculty of Physics, University of Warsaw, 02-093,
Warsaw, Poland
Dominika Szczepanik
Institute of Geophysics, Faculty of Physics, University of Warsaw, 02-093,
Warsaw, Poland
Iwona S. Stachlewska
CORRESPONDING AUTHOR
Institute of Geophysics, Faculty of Physics, University of Warsaw, 02-093,
Warsaw, Poland
Related authors
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Maciej Karasewicz, Marta Wacławczyk, Pablo Ortiz-Amezcua, Łucja Janicka, Patryk Poczta, Camilla Kassar Borges, and Iwona S. Stachlewska
Atmos. Chem. Phys., 24, 13231–13251, https://doi.org/10.5194/acp-24-13231-2024, https://doi.org/10.5194/acp-24-13231-2024, 2024
Short summary
Short summary
This work concerns analysis of turbulence in the atmospheric boundary layer shortly before sunset. Based on a large set of measurements at a rural and an urban site, we analyze how turbulence properties change in time during rapid decay of convection. We explain the observations using recent theories of non-equilibrium turbulence. The presence of non-equilibrium suggests that classical parametrization schemes fail to predict turbulence statistics shortly before sunset.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759, https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters, based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke.
Mariana Adam, Doina Nicolae, Iwona S. Stachlewska, Alexandros Papayannis, and Dimitris Balis
Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, https://doi.org/10.5194/acp-20-13905-2020, 2020
Short summary
Short summary
Biomass burning events measured by EARLINET are analysed using intensive parameters. The pollution layers are labelled smoke layers if fires were found along the air-mass back trajectory. The number of contributing fires to the smoke measurements is quantified. It is shown that most of the time we measure mixed smoke. The methodology provides three research directions: fires measured by several stations, long-range transport from N. America, and an analysis function of continental sources.
Mariana Adam, Doina Nicolae, Livio Belegante, Iwona S. Stachlewska, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christiana Anna Papanikolaou, Nikos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Juan Antonio Bravo-Aranda, Arnoud Apituley, Nikolaos Papagiannopoulos, Lucia Mona, Ina Mattis, Anatoli Chaikovsky, Michaël Sicard, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647, https://doi.org/10.5194/acp-2020-647, 2020
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke. The local smoke has a smaller lidar ratio while the depolarization is smaller for long range transported smoke.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Lucja Janicka and Iwona S. Stachlewska
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-207, https://doi.org/10.5194/acp-2019-207, 2019
Revised manuscript not accepted
Short summary
Short summary
The fine temporal and spatial scale analysis of the aerosol optical properties is presented based on the lidar measurements in Warsaw during the heat wave on August 9th–11th, 2015. The signals from quasi-continuous PollyXT-UW lidar measurements provided the high quality sets of profiles. In the study the statistical approach to aerosol layers characterization by the means of optical properties were adopted. Obtained data set have the potential to use in the fine scale microphysical retrieval.
Pablo Ortiz-Amezcua, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, José Antonio Benavent-Oltra, Christine Böckmann, Stefanos Samaras, Iwona S. Stachlewska, Łucja Janicka, Holger Baars, Stephanie Bohlmann, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 5931–5946, https://doi.org/10.5194/acp-17-5931-2017, https://doi.org/10.5194/acp-17-5931-2017, 2017
Short summary
Short summary
Strong events of biomass burning aerosol transported from North American forest fires were detected during July 2013 at three European stations from EARLINET. Satellite observations and models were used to estimate the smoke sources and transport paths. Using lidar techniques and regularization algorithms, the aerosol layers were optically and microphysically characterized, finding some common features among the events, concerning the similar aging processes undergone by the particles.
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The evolution of aerosol mixing state derived from a field campaign in Beijing: implications for particle aging timescales in urban atmospheres
Measurement report: Size-resolved particle effective density measured by an AAC-SMPS and implications for chemical composition
Measurement report: Aircraft observations of aerosol and microphysical quantities of stratocumulus in autumn over Guangxi Province, China – daylight variation, vertical distribution, and aerosol–cloud interactions
Hygroscopic aerosols amplify longwave downward radiation in the Arctic
Measurement report: Optical and structural properties of atmospheric water-soluble organic carbon in China – insights from multi-site spectroscopic measurements
Measurement report: The variation properties of aerosol hygroscopic growth related to chemical composition during new particle formation days in a coastal city of Southeast China
In situ vertical observations of the layered structure of air pollution in a continental high-latitude urban boundary layer during winter
Size-resolved hygroscopicity and volatility properties of ambient urban aerosol particles measured by a volatility hygroscopicity tandem differential mobility analyzer system in Beijing
Terrestrial runoff is an important source of biological ice-nucleating particles in Arctic marine systems
Characterization of aerosol over the eastern Mediterranean by polarization-sensitive Raman lidar measurements during A-LIFE – aerosol type classification and type separation
Aerosol spectral optical properties in the Paris urban area and its peri-urban and forested surroundings during summer 2022 from ACROSS surface observations
Measurement report: An investigation of the spatiotemporal variability in aerosols in the mountainous terrain of the upper Colorado River basin using SAIL-Net
Contributions of the synoptic meteorology to the seasonal cloud condensation nuclei cycle over the Southern Ocean
Measurement report: Cloud condensation nuclei (CCN) activity in the South China Sea from shipborne observations during the summer and winter of 2021 – seasonal variation and anthropogenic influence
Source-Dependent Optical Properties and Molecular Characteristics of Atmospheric Brown Carbon
Measurement report: A comparative analysis of an intensive incursion of fluorescing African dust particles over Puerto Rico and another over Spain
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
External particle mixing influences hygroscopicity in a sub-urban area
Long-term observations of black carbon and carbon monoxide in the Poker Flat Research Range, central Alaska, with a focus on forest wildfire emissions
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Microphysical properties of refractory black carbon aerosols for different air masses at a central European background site
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Multi-year black carbon observations and modeling close to the largest gas flaring and wildfire regions (Western Siberian Arctic)
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurement report: The influence of particle number size distribution and hygroscopicity on the microphysical properties of cloud droplets at a mountain site
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Phase matrix characterization of long-range transported Saharan dust using multiwavelength polarized polar imaging nephelometry
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Jieyao Liu, Fang Zhang, Jingye Ren, Lu Chen, Anran Zhang, Zhe Wang, Songjian Zou, Honghao Xu, and Xingyan Yue
Atmos. Chem. Phys., 25, 5075–5086, https://doi.org/10.5194/acp-25-5075-2025, https://doi.org/10.5194/acp-25-5075-2025, 2025
Short summary
Short summary
Particle mixing states and aging timescales are important for the evaluation of aerosol climate effects, but they are poorly parameterized in current models. We unravel the evolution of real-time mixing states and the aging timescale of size-resolved particles based on field measurements in urban Beijing. This study provides an observational basis for accurately parameterizing the aging timescale of aerosol particles in climate models.
Yao Song, Jing Wei, Wenlong Zhao, Jinmei Ding, Xiangyu Pei, Fei Zhang, Zhengning Xu, Ruifang Shi, Ya Wei, Lu Zhang, Lingling Jin, and Zhibin Wang
Atmos. Chem. Phys., 25, 4755–4766, https://doi.org/10.5194/acp-25-4755-2025, https://doi.org/10.5194/acp-25-4755-2025, 2025
Short summary
Short summary
This study investigates the size-resolved effective density (ρeff) of aerosol particles in Hangzhou using a tandem aerodynamic aerosol classifier and scanning mobility particle sizer system. The ρeff values ranged from 1.47 to 1.63 g cm-3, increasing with particle diameter. The relationship between ρeff and the particle diameter varies due to differences in the chemical composition of the particles. A new method to derive the size-resolved chemical composition of particles from ρeff is proposed.
Sihan Liu, Honglei Wang, Delong Zhao, Wei Zhou, Yuanmou Du, Zhengguo Zhang, Peng Cheng, Tianliang Zhao, Yue Ke, Zihao Wu, and Mengyu Huang
Atmos. Chem. Phys., 25, 4151–4165, https://doi.org/10.5194/acp-25-4151-2025, https://doi.org/10.5194/acp-25-4151-2025, 2025
Short summary
Short summary
To understand the effect of aerosols on the vertical distribution of stratocumulus microphysical quantities in southwest China, the daily variation characteristics and formation mechanism of the vertical profiles of stratocumulus microphysical characteristics in this region were described using the data of nine cloud-crossing aircraft observations over Guangxi from 10 October to 3 November 2020.
Denghui Ji, Mathias Palm, Matthias Buschmann, Kerstin Ebell, Marion Maturilli, Xiaoyu Sun, and Justus Notholt
Atmos. Chem. Phys., 25, 3889–3904, https://doi.org/10.5194/acp-25-3889-2025, https://doi.org/10.5194/acp-25-3889-2025, 2025
Short summary
Short summary
Our study explores how certain aerosols, like sea salt, affect infrared heat radiation in the Arctic, potentially speeding up warming. We used advanced technology to measure aerosol composition and found that these particles grow with humidity, significantly increasing their heat-trapping effect in the infrared region, especially in winter. Our findings suggest these aerosols could be a key factor in Arctic warming, emphasizing the importance of understanding aerosols for climate prediction.
Haibiao Chen, Caiqing Yan, Liubin Huang, Lin Du, Yang Yue, Xinfeng Wang, Qingcai Chen, Mingjie Xie, Junwen Liu, Fengwen Wang, Shuhong Fang, Qiaoyun Yang, Hongya Niu, Mei Zheng, Yan Wu, and Likun Xue
Atmos. Chem. Phys., 25, 3647–3667, https://doi.org/10.5194/acp-25-3647-2025, https://doi.org/10.5194/acp-25-3647-2025, 2025
Short summary
Short summary
A comprehensive understanding of the optical properties of brown carbon (BrC) is essential to accurately assess its climatic effects. Based on multi-site spectroscopic measurements, this study demonstrated the significant spatial heterogeneity in the optical and structural properties of water-soluble organic carbon (WSOC) in different regions of China and revealed factors affecting WSOC light absorption and the relationship between fluorophores and light absorption of WSOC.
Lingjun Li, Mengren Li, Xiaolong Fan, Yuping Chen, Ziyi Lin, Anqi Hou, Siqing Zhang, Ronghua Zheng, and Jinsheng Chen
Atmos. Chem. Phys., 25, 3669–3685, https://doi.org/10.5194/acp-25-3669-2025, https://doi.org/10.5194/acp-25-3669-2025, 2025
Short summary
Short summary
Here, we show differences and variations in the aerosol scattering hygroscopic growth factor (f(RH)) between new particle formation (NPF) and non-NPF days and the effect of aerosol chemical compositions on f(RH) in Xiamen with in situ observations. The findings are helpful for the further understanding of aerosol hygroscopicity in a coastal city and the use of hygroscopic growth factors in models of air quality and climate change.
Roman Pohorsky, Andrea Baccarini, Natalie Brett, Brice Barret, Slimane Bekki, Gianluca Pappaccogli, Elsa Dieudonné, Brice Temime-Roussel, Barbara D'Anna, Meeta Cesler-Maloney, Antonio Donateo, Stefano Decesari, Kathy S. Law, William R. Simpson, Javier Fochesatto, Steve R. Arnold, and Julia Schmale
Atmos. Chem. Phys., 25, 3687–3715, https://doi.org/10.5194/acp-25-3687-2025, https://doi.org/10.5194/acp-25-3687-2025, 2025
Short summary
Short summary
This study presents an analysis of vertical measurements of pollution in an Alaskan city during winter. It investigates the relationship between the atmospheric structure and the layering of aerosols and trace gases. Results indicate an overall very shallow surface mixing layer. The height of this layer is strongly influenced by a local shallow wind. The study also provides information on the pollution chemical composition at different altitudes, including pollution signatures from power plants.
Aoyuan Yu, Xiaojing Shen, Qianli Ma, Jiayuan Lu, Xinyao Hu, Yangmei Zhang, Quan Liu, Linlin Liang, Lei Liu, Shuo Liu, Hongfei Tong, Huizheng Che, Xiaoye Zhang, and Junying Sun
Atmos. Chem. Phys., 25, 3389–3412, https://doi.org/10.5194/acp-25-3389-2025, https://doi.org/10.5194/acp-25-3389-2025, 2025
Short summary
Short summary
In this work, we utilized a volatility hygroscopicity tandem differential mobility analyzer (VH-TDMA) to investigate, for the first time, the hygroscopicity and volatility of submicron aerosols, as well as their hygroscopicity after heating, in urban Beijing during the autumn of 2023. We analyzed the size-resolved characteristics of hygroscopicity and volatility, the relationship between hygroscopic and volatile properties, and the hygroscopicity of heated submicron aerosols.
Corina Wieber, Lasse Z. Jensen, Leendert Vergeynst, Lorenz Meire, Thomas Juul-Pedersen, Kai Finster, and Tina Šantl-Temkiv
Atmos. Chem. Phys., 25, 3327–3346, https://doi.org/10.5194/acp-25-3327-2025, https://doi.org/10.5194/acp-25-3327-2025, 2025
Short summary
Short summary
The Arctic region is subject to profound changes due to a warming climate. Ice-nucleating particles (INPs) in the seawater can get transported to the atmosphere and impact cloud formation. However, the sources of characteristics of INPs in the marine areas are poorly understood. We investigated the INPs in seawater from Greenlandic fjords and identified a seasonal variability, with highly active INPs originating from terrestrial sources such as glacial and soil runoff.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
Atmos. Chem. Phys., 25, 3191–3211, https://doi.org/10.5194/acp-25-3191-2025, https://doi.org/10.5194/acp-25-3191-2025, 2025
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. The eastern Mediterranean is a hotspot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during A-LIFE (Absorbing aerosol layers in a changing climate: aging, lifetime and dynamics) to characterize aerosols and aerosol mixtures. We extend current lidar classification and separation schemes and compare them to classification schemes using different methods.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
Atmos. Chem. Phys., 25, 3161–3189, https://doi.org/10.5194/acp-25-3161-2025, https://doi.org/10.5194/acp-25-3161-2025, 2025
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed urban emission impact on surrounding areas. CRI full period averages at 520 nm were 1.41 – 0.037i (urban), 1.52 – 0.038i (peri-urban), and 1.50 – 0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22 % of absorption at 370 nm.
Leah D. Gibson, Ezra J. T. Levin, Ethan Emerson, Nick Good, Anna Hodshire, Gavin McMeeking, Kate Patterson, Bryan Rainwater, Tom Ramin, and Ben Swanson
Atmos. Chem. Phys., 25, 2745–2762, https://doi.org/10.5194/acp-25-2745-2025, https://doi.org/10.5194/acp-25-2745-2025, 2025
Short summary
Short summary
From fall 2021 to summer 2023, SAIL-Net, a network of six aerosol measurement nodes, was deployed in the East River watershed (Colorado, USA) to study aerosol variability across space and time in mountainous terrain. We found that aerosol variability is influenced by elevation differences, with the most representative site in the region changing seasonally, suggesting aerosol spatial variability also varies seasonally. This work offers a blueprint for future studies in other mountainous regions.
Tahereh Alinejadtabrizi, Yi Huang, Francisco Lang, Steven Siems, Michael Manton, Luis Ackermann, Melita Keywood, Ruhi Humphries, Paul Krummel, Alastair Williams, and Greg Ayers
Atmos. Chem. Phys., 25, 2631–2648, https://doi.org/10.5194/acp-25-2631-2025, https://doi.org/10.5194/acp-25-2631-2025, 2025
Short summary
Short summary
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 25, 2495–2513, https://doi.org/10.5194/acp-25-2495-2025, https://doi.org/10.5194/acp-25-2495-2025, 2025
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) in summer and winter 2021 were conducted. Our study found aerosol hygroscopicity is higher in the SCS in summer than winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of cloud condensation nuclei activities in the SCS.
Jinghao Zhai, Yin Zhang, Pengfei Liu, Yujie Zhang, Antai Zhang, Yaling Zeng, Baohua Cai, Jingyi Zhang, Chunbo Xing, Honglong Yang, Xiaofei Wang, Jianhuai Ye, Chen Wang, Tzung-May Fu, Lei Zhu, Huizhong Shen, Shu Tao, and Xin Yang
EGUsphere, https://doi.org/10.5194/egusphere-2025-463, https://doi.org/10.5194/egusphere-2025-463, 2025
Short summary
Short summary
Our findings show that BrC's optical properties vary by source. Secondary BrC from ozone pollution had the lowest absorption but highest wavelength dependence, while BrC from biomass combustion had the highest absorption with the lowest wavelength dependence. Molecular analysis indicated that CHON species from biomass burning had the strongest light absorption. These insights enhance the accuracy of climate models by highlighting source-specific optical properties of BrC.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol-Bracero
Atmos. Chem. Phys., 25, 843–865, https://doi.org/10.5194/acp-25-843-2025, https://doi.org/10.5194/acp-25-843-2025, 2025
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain. The measurements were made with two wideband integrated bioaerosol spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, Huizheng Che, and Minghu Ding
Atmos. Chem. Phys., 25, 727–739, https://doi.org/10.5194/acp-25-727-2025, https://doi.org/10.5194/acp-25-727-2025, 2025
Short summary
Short summary
Aerosol optical depth (AOD) at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine-mode particles, while summer and autumn increases are linked to particle growth. Diurnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectories show that aerosols on high-AOD (low-AOD) days primarily originate from the ocean (interior Antarctica).
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
Atmos. Chem. Phys., 25, 741–758, https://doi.org/10.5194/acp-25-741-2025, https://doi.org/10.5194/acp-25-741-2025, 2025
Short summary
Short summary
Aerosol hygroscopicity has been investigated at a sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Takeshi Kinase, Fumikazu Taketani, Masayuki Takigawa, Chunmao Zhu, Yongwon Kim, Petr Mordovskoi, and Yugo Kanaya
Atmos. Chem. Phys., 25, 143–156, https://doi.org/10.5194/acp-25-143-2025, https://doi.org/10.5194/acp-25-143-2025, 2025
Short summary
Short summary
Boreal forest wildfires in interior Alaska represent an important black carbon (BC) source for the Arctic and surrounding regions. We observed BC and carbon monoxide (CO) concentrations in the Poker Flat Research Range since 2016 and found a positive correlation between the observed BC / ∆CO ratio and fire radiative power (FRP) observed in Alaska and Canada. Our finding suggests the BC emission factor and/or inventory could be potentially improved by using FRP.
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Yifan Yang, Thomas Müller, Laurent Poulain, Samira Atabakhsh, Bruna A. Holanda, Jens Voigtländer, Shubhi Arora, and Mira L. Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3539, https://doi.org/10.5194/egusphere-2024-3539, 2024
Short summary
Short summary
Black carbon (BC) is the major atmospheric aerosol that can absorb light and influence climate. We measured the physical properties of BC at a background site in Germany. In summer, BC particles were smaller and the mixture with other atmospheric components occurred during the daytime. In winter, emissions from residential heating significantly influenced BC's properties. Understanding these characteristics of BC can help improve aerosol optics simulation accuracy.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Olga B. Popovicheva, Marina A. Chichaeva, Nikolaos Evangeliou, Sabine Eckhardt, Evangelia Diapouli, and Nikolay S. Kasimov
EGUsphere, https://doi.org/10.5194/egusphere-2024-3124, https://doi.org/10.5194/egusphere-2024-3124, 2024
Short summary
Short summary
High-quality measurements of light-absorbing carbon were performed at the polar aerosol station "Island Bely” (Western Siberian Arctic) from 2019 to 2022. The maximum light absorption coefficients were seen in summer due to gas flaring contribution, which is the most significant source in the region. However, the increasing Siberian wildfires had a special share in carbon contribution to this high Arctic station with a persistent smoke layer extending over the whole troposphere in summer.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Xiaojing Shen, Quan Liu, Junying Sun, Wanlin Kong, Qianli Ma, Bing Qi, Lujie Han, Yangmei Zhang, Linlin Liang, Lei Liu, Shuo Liu, Xinyao Hu, Jiayuan Lu, Aoyuan Yu, Huizheng Che, and Xiaoye Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2850, https://doi.org/10.5194/egusphere-2024-2850, 2024
Short summary
Short summary
In this work, an automatic switched inlet system was developed and employed to investigate the aerosols and cloud droplets at a mountain site with frequent cloud processes. It showed different characteristics of cloud residual and interstitial particles. Stronger particle hygroscopicity reduced liquid water content and smaller cloud droplet diameters. This investigation contributes to understanding aerosol-cloud interactions by assessing the impact of aerosol particles on cloud microphysics.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Elena Bazo, Daniel Perez-Ramirez, Antonio Valenzuela, Vanderlei Martins, Gloria Titos, Alberto Cazorla, Fernando Rejano, Diego Patrón, Arlett Diaz-Zurita, Francisco Jose Garcia-Izquierdo, David Fuertes, Lucas Alados-Arboledas, and Francisco Jose Olmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2080, https://doi.org/10.5194/egusphere-2024-2080, 2024
Short summary
Short summary
This works analyses aerosol scattering phase function for transported Saharan dust to the city of Granada – located in southwestern Europe. We use the novel technique polar imaging nephelometry that helps to determine the phase functions using a CCD camara. The capability of measuring with polarized light helps to inferr new properties about the mixture of Saharan dust particles with other of anthropogenic origin.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Cited articles
Altaratz, O., Bar-Or, R. Z., Wollner, U., and Koren, I.: Relative humidity
and its effect on aerosol optical depth in the
vicinity of convective clouds, Environ. Res. Lett., 8, 034025,
https://doi.org/10.1088/1748-9326/8/3/034025, 2013.
Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J.,
Navas-Guzmán, F., Pérez-Ramírez, D., and Olmo, F.: Optical
and microphysical properties of fresh biomass burning aerosol retrieved by
Raman lidar, and star- and sun-photometry,
Geophys. Res. Lett., 38, L01807, https://doi.org/10.1029/2010GL045999, 2011.
Amiridis, V., Balis, D., Kazadzis, S., Bais, A., Giannakaki, E., Papayannis,
A., and Zerefos, C.: Four-year aerosol
observations with a Raman lidar at Thessaloniki, Greece, in the framework of
European Aerosol Research Lidar Network
(EARLINET), J. Geophys. Res., 110, D21203,https://doi.org/10.1029/2005JD006190,
2005.
Amiridis, V., Balis, D. S., Giannakaki, E., Stohl, A., Kazadzis, S., Koukouli, M. E., and Zanis, P.: Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements, Atmos. Chem. Phys., 9, 2431–2440, https://doi.org/10.5194/acp-9-2431-2009, 2009.
Ångström, A.: On the atmospheric transmission of sun radiation and
on dust in the air, Geogr. Ann., 12, 156–166,
https://doi.org/10.1080/20014422.1929.11880498, 1929.
Ansmann, A., Tesche, M., Knippertz, P., Bierwirth, E., Althausen, D.,
Mueller, D., and Schulz, O.: Vertical profiling of
convective dust plumes in Southern Morocco during SAMUM, Tellus B, 61, 340–353, https://doi.org/10.1111/j.1600-0889.2008.00384.x, 2009.
Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig, M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017, Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018.
Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016.
Baars, H., Ansmann, A., Ohneiser, K., Haarig, M., Engelmann, R., Althausen, D., Hanssen, I., Gausa, M., Pietruczuk, A., Szkop, A., Stachlewska, I. S., Wang, D., Reichhardt, J., Skupin, A., Mattis, I., Trickl, T., Vogelmann, H., Navas-Guzmán, F., Haefele, A., Acheson, K., Ruth, A. A., Tatarov, B., Müller, D., Hu, Q., Podvin, T., Goloub, P., Vesselovski, I., Pietras, C., Haeffelin, M., Fréville, P., Sicard, M., Comerón, A., Fernández García, A. J., Molero Menéndez, F., Córdoba-Jabonero, C., Guerrero-Rascado, J. L., Alados-Arboledas, L., Bortoli, D., Costa, M. J., Dionisi, D., Liberti, G. L., Wang, X., Sannino, A., Papagiannopoulos, N., Boselli, A., Mona, L., D'Amico, G., Romano, S., Perrone, M. R., Belegante, L., Nicolae, D., Grigorov, I., Gialitaki, A., Amiridis, V., Soupiona, O., Papayannis, A., Mamouri, R.-E., Nisantzi, A., Heese, B., Hofer, J., Schechner, Y. Y., Wandinger, U., and Pappalardo, G.: The unprecedented 2017–2018 stratospheric smoke event: Decay phase and aerosol properties observed with EARLINET, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-615, in review, 2019.
Barlage, M., Miao, S., and Chen, F.: Impact of physics parameterizations on
high-resolution weather prediction over two
Chinese megacities, J. Geophys. Res., 121, 4487–4498,
https://doi.org/10.1002/2015JD024450, 2016.
Bennouna, Y., Cachorro, V. E., Mateos, D., Burgos, M. A., Toledano, C.,
Torres, B., and de Frutos, A.: Long-term
comparative study of columnar and surface mass concentration aerosol
properties in a background environment, Atmos.
Environ., 140, 261–272, https://doi.org/10.1016/j.atmosenv.2016.05.061,
2016.
Béghein C., Allery C., Wacławczyk C., and Pozorski J.: Application of
POD-based dynamical systems to dispersion and
deposition of particles in turbulent channel flow, Int. J. Multiphase Flow,
58, 97–113, https://doi.org/10.1016/j.ijmultiphaseflow.2013.09.001, 2014.
Bergin, M. H., Schwartz, S. E., Halthore, R. N., Ogren, J. A., and Hlavka,
D. L.: Comparison of aerosol optical depth inferred
surface measurements with that determined by Sun photometry for cloud-free
conditions at a continental US site, J. Geophys.
Res., 105, 6807–6816, https://doi.org/10.1029/1999JD900454, 2000.
Binietoglou, I., Basart, S., Alados-Arboledas, L., Amiridis, V., Argyrouli, A., Baars, H., Baldasano, J. M., Balis, D., Belegante, L., Bravo-Aranda, J. A., Burlizzi, P., Carrasco, V., Chaikovsky, A., Comerón, A., D'Amico, G., Filioglou, M., Granados-Muñoz, M. J., Guerrero-Rascado, J. L., Ilic, L., Kokkalis, P., Maurizi, A., Mona, L., Monti, F., Muñoz-Porcar, C., Nicolae, D., Papayannis, A., Pappalardo, G., Pejanovic, G., Pereira, S. N., Perrone, M. R., Pietruczuk, A., Posyniak, M., Rocadenbosch, F., Rodríguez-Gómez, A., Sicard, M., Siomos, N., Szkop, A., Terradellas, E., Tsekeri, A., Vukovic, A., Wandinger, U., and Wagner, J.: A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals, Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015, 2015.
Böckmann, C., Wandinger, U., Ansmann, A., Bösenberg, J., Amiridis,
V., Boselli, A., Delaval, A., De Tomasi, F., Frioud,
M., and Grigorov, I. V.: Aerosol lidar intercomparison in the framework of
the EARLINET project. 2. Aerosol backscatter
algorithms, Appl. Opt., 43, 977–989, https://doi.org/10.1364/AO.43.000977,
2004.
Böckmann, C., Mironova, I., Müller, D., Schneidenbach, L., and Nessler,
R.: Microphysical aerosol parameters from multiwavelength
lidar, J. Opt. Soc. Am. A, 22, 518–528,
https://doi.org/10.1364/JOSAA.22.000518, 2005.
Bonn, B., von Schneidemesser, E., Andrich, D., Quedenau, J., Gerwig, H., Lüdecke, A., Kura, J., Pietsch, A., Ehlers, C., Klemp, D., Kofahl, C., Nothard, R., Kerschbaumer, A., Junkermann, W., Grote, R., Pohl, T., Weber, K., Lode, B., Schönberger, P., Churkina, G., Butler, T. M., and Lawrence, M. G.: BAERLIN2014 – the influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin, Atmos. Chem. Phys., 16, 7785–7811, https://doi.org/10.5194/acp-16-7785-2016, 2016.
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012.
Burton, S. P., Hair, J. W., Kahnert, M., Ferrare, R. A., Hostetler, C. A., Cook, A. L., Harper, D. B., Berkoff, T. A., Seaman, S. T., Collins, J. E., Fenn, M. A., and Rogers, R. R.: Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar, Atmos. Chem. Phys., 15, 13453–13473, https://doi.org/10.5194/acp-15-13453-2015, 2015.
Chen, B. and Kan, H.: Air pollution and population health: A global
challenge, Environ. Health Prev. Med., 13, 94–101,
https://doi.org/10.1007/s12199-007-0018-5, 2008.
Cheng, Y. F., Wiedensohler, A., Eichler, H., Heintzenberg, J., Tesche, M.,
Ansmann, A., Wendisch, M., Su, H., Althausen,
D., Herrmann, H., Gnauk, T., Brüggemann, E., Hu, M., and Zhang, Y. H.:
Relative humidity dependence of aerosol
optical properties and direct radiative forcing in the surface boundary
layer at Xinken in Pearl River Delta of China: An
observation based numerical study, Atmos. Environ., 42, 6373–6397,
https://doi.org/10.1016/j.atmosenv.2008.04.009,
2008.
Chilinski, M. T., Markowicz, K. M., Zawadzka, O., Stachlewska, I. S.,
Kumala, W., Petelski, T., Makuch, P., Westphal, D.
L., and Zagajewski, B.: Modelling and Observation of Mineral Dust Optical
Properties over Central Europe, Acta
Geophys., 64, 2550–2590, https://doi.org/10.1515/acgeo-2016-0069, 2016.
Comerón, A., Sicard, M., and Rocadenbosch, F.: Wavelet Correlation
Transform Method and Gradient Method to Determine
Aerosol Layering from Lidar Returns: Some Comments, J. Atmos. Ocean. Tech.,
30, 1189–1193, https://doi.org/10.1175/JTECH-D-12-00233.1, 2013.
Costa-Surós, M., Stachlewska, I. S., Nemuc, A., Talianu, C., Heese, B.,
and Engelmann, R.: Study case of air-mass
modification over Poland and Romania observed by the means of
multiwavelength Raman depolarization lidars, 27th
International Laser Radar Conference, New York, USA, 5–10 July 2015, 1–4,
2015.
Dang, R., Yang, Y., Hu, X.-M., Wang, Z., and Zhang, S.: A Review of Techniques
for Diagnosing the Atmospheric Boundary Layer
Height (ABLH) Using Aerosol Lidar Data, Remote Sens., 11, 1590,
https://doi.org/10.3390/rs11131590, 2019.
Dawson, K. W., Meskhidze, N., Josset, D., and Gassó, S.: Spaceborne observations of the lidar ratio of marine aerosols, Atmos. Chem. Phys., 15, 3241–3255, https://doi.org/10.5194/acp-15-3241-2015, 2015.
Delanoë, J. and Hogan, R. J.: A variational scheme for retrieving ice
cloud properties from combined radar, lidar, and infrared
radiometer, J. Geophys. Res., 113, D07204, https://doi.org/10.1029/2007JD009000, 2008.
De Leeuw, F., Sluyter, R., van Breugel, P., and Bogman, F.: Air Pollution by
ozone in Europe in 1999 and the summer of
2000, European Environmental Agency Topic Report number 1/2001, EEA,
Copenhagen, Denmark, 2001.
Di Biagio, C., Pelon, J., Ancellet, G., Bazureau, A., and Mariage, V.:
Sources, load, vertical distribution, and fate of wintertime
aerosol north of Svalbard from combined V4 CALIOP data, ground-based IAOOS
lidar observations and trajectory analysis, J.
Geophys. Res.-Atmos., 123, 1363–1383, https://doi.org/10.1002/2017JD027530,
2018.
Dörnbrack, A., Stachlewska, I. S., Ritter, C., and Neuber, R.: Aerosol distribution around Svalbard during intense easterly winds, Atmos. Chem. Phys., 10, 1473–1490, https://doi.org/10.5194/acp-10-1473-2010, 2010.
Du, C., Liu, S., Yu, X., Li, X., Chen, C., Peng, Y., Dong, Y., Dong, Z., and
Wang, F.: Urban boundary layer height
characteristics and relationship with particulate matter mass concentrations
in Xi'an, Central China, aerosol, Air Qual.
Res., 13, 1598–1607, https://https://doi.org/10.4209/aaqr.2012.10.0274, 2013.
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016.
Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol cloud
interactions: Mechanisms, significance, and challenges, J.
Atmos. Sci., 73, 4221–4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
Feingold, G., McComiskey, A., Yamaguchi, T., Johnson, J., Carslaw, K., and Schmidt, K. S.: New approaches to quantifying aerosol
influence on the cloud radiative effect, P. Nat. Acad. Sci. USA, 113,
5812–5819, https://doi.org/10.1073/pnas.1514035112, 2016.
Fiebig, M., Stohl, A., Wendisch, M., Eckhardt, S., and Petzold, A.: Dependence of solar radiative forcing of forest fire aerosol on ageing and state of mixture, Atmos. Chem. Phys., 3, 881–891, https://doi.org/10.5194/acp-3-881-2003, 2003.
Filip, L. and Stefan, S.: Study of the correlation between the near-ground
PM10 mass concentration and the aerosol optical
Depth, J. Atmos. Sol.-Terr. Phys., 73, 1883–1889,
https://doi.org/10.1016/j.jastp.2011.04.027, 2011.
Flentje, H., Heese, B., Reichardt, J., and Thomas, W.: Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss., 3, 3643–3673, https://doi.org/10.5194/amtd-3-3643-2010, 2010.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M.,
Ansmann, A., Müller, D., Althausen, D., Wirth, M.,
Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer,
M., and Seefeldner, M.: Depolarization ratio
profiling at several wavelengths in pure Saharan dust during SAMUM 2006,
Tellus B, 61, 165–179,
https://https://doi.org/10.1111/j.1600-0889.2008.00396.x, 2009.
Freudenthaler, V., Linné, H., Chaikovski, A., Rabus, D., and Groß, S.: EARLINET lidar quality assurance tools, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-395, in review, 2018.
Foth, A., Kanitz, T., Engelmann, R., Baars, H., Radenz, M., Seifert, P., Barja, B., Fromm, M., Kalesse, H., and Ansmann, A.: Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2∘ S and 70.9∘ W), during ALPACA, Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, 2019.
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., Williams, M., and Gilardoni, S.: Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, 2015.
Gasteiger, J. and Freudenthaler, V.: Benefit of depolarization ratio at λ = 1064 nm for the retrieval of the aerosol microphysics from lidar measurements, Atmos. Meas. Tech., 7, 3773–3781, https://doi.org/10.5194/amt-7-3773-2014, 2014.
Gayatri, K., Patade, S., and Prabha, T. V.: Aerosol–Cloud interaction in
deep convective clouds over the Indian Peninsula using
spectral (bin) microphysics, J. Atmos. Sci., 74, 3145–3166,
https://doi.org/10.1175/JAS-D-17-0034.1, 2017.
Geiß, A., Wiegner, M., Bonn, B., Schäfer, K., Forkel, R., von Schneidemesser, E., Münkel, C., Chan, K. L., and Nothard, R.: Mixing layer height as an indicator for urban air quality?, Atmos. Meas. Tech., 10, 2969–2988, https://doi.org/10.5194/amt-10-2969-2017, 2017.
Giannakaki, E., Balis, D. S., Amiridis, V., and Zerefos, C.: Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece, Atmos. Meas. Tech., 3, 569–578, https://doi.org/10.5194/amt-3-569-2010, 2010.
Ghan, S. J., Wang, M., Zhang, S., Ferrachat, S., Gettleman, A., Griesfeller,
J., Kipling, Z., Lohmann, U., Morrison, H., Neubauer,
D., Partridge, D. G., Stier, P., Takemura, T., Wang, H., and Zhang, K.:
Challenges in constraining anthropogenic aerosol effects
on cloud radiative forcing using present-day spatiotemporal variability, P.
Natl. Acad. Sci. USA, 113, 5804–5811, https://doi.org/10.1073/pnas.1514036113, 2016.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Granados-Muñoz, M. J., Navas-Guzmán, F., Bravo-Aranda, J. A., Guerrero-Rascado, J. L., Lyamani, H., Valenzuela, A., Titos, G., Fernández-Gálvez, J., and Alados-Arboledas, L.: Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain, Atmos. Meas. Tech., 8, 705–718, https://doi.org/10.5194/amt-8-705-2015, 2015.
Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M.,
Ansmann, A., Althausen, D., and Seefeldner, M.:
Characterization of Saharan dust, marine aerosol and mixtures of
biomass-burning aerosol and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2,
Tellus B, 63,
706–724, https://doi.org/10.1111/j.1600-0889.2011.00556.x, 2011.
Groß, S., Esselborn, M., Weinzierl, B., Wirth, M., Fix, A., and Petzold, A.: Aerosol classification by airborne high spectral resolution lidar observations, Atmos. Chem. Phys., 13, 2487–2505, https://doi.org/10.5194/acp-13-2487-2013, 2013.
Groß, S., Freudenthaler, V., Schepanski, K., Toledano, C., Schäfler, A., Ansmann, A., and Weinzierl, B.: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements, Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, 2015.
Grund, C. J. and Eloranta, E. W.: University of Wisconsin High Spectral
Resolution Lidar, Opt. Eng., 30, 6–12, 1991.
Guo, H., Wang, Y., and Zhang, H.: Characterization of criteria air
pollutants in Beijing during 2014–2015, Environ. Res.,
154, 334–344, https://doi.org/10.1016/j.envres.2017.01.029, 2017.
Guo, J.-P., Zhang, X.-Y., Che, H.-Z., Gong, S.-L., An, X., Cao, C.-X.,
Guang, J., Zhang, H., Wang, Y.-Q., Zhang, X.-C.,
Xue, M., and Li, X.-W.: Correlation between PM concentrations and aerosol
optical depth in eastern China, Atmos.
Environ., 43, 5876–5886, https://doi.org/10.1016/j.atmosenv.2009.08.026,
2009.
Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D., Baars,
H., Radenz, M., and Farrell, D. A.: Dry versus
wet marine particle optical properties: RH dependence of depolarization
ratio, backscatter, and extinction from
multiwavelength lidar measurements during SALTRACE, Atmos. Chem. Phys., 17,
14199–14217, https://doi.org/10.5194/acp-17-14199-2017, 2017.
Haarig, M., Ansmann, A., Baars, H., Jimenez, C., Veselovskii, I., Engelmann, R., and Althausen, D.: Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke, Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, 2018.
Haeffelin, M., Angelini, F., Morille, Y., Martucci, G., Frey, S., Gobbi, G.
P., Lolli, S., O'Dowd, C. D., Sauvage, L., XuerefRémy,
I., Wastine, B., and Feist, D. G: Evaluation of mixing height retrievals
from automatic profiling lidars and ceilometers in view
of future integrated networks in Europe, Bound.-Lay. Meteorol., 143, 49–75,
https://doi.org/10.1007/s10546-011-9643-z, 2012.
Harrison, L., Michalsky, J., and Berndt, J.: Automated multifilter rotating
shadow-band radiometer: An instrument for
optical depth and radiation measurements, Appl. Opt., 33, 5118–5125,
https://doi.org/10.1364/AO.33.005118, 1994.
He, Q., Li, C., Mao, J., Lau, A. K. H., and Chu, D.: Analysis of aerosol
vertical distribution and variability in Hong Kong, J.
Geophys. Res., 113, D14211, https://doi.org/10.1029/2008JD009778, 2008.
Heese, B. and Wiegner, M.: Vertical aerosol profiles from Raman
polarization lidar observations during the dry season
AMMA field campaign, J. Geophys. Res., 113, D00C11,
https://doi.org/10.1029/2007JD009487, 2008.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y. J.,
Nakjima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A
federated instrument network and data archive for
aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Horvath, H., Alados Arboledas, L., and Olmo Reyes, F. J.: Angular scattering of the Sahara dust aerosol, Atmos. Chem. Phys., 18, 17735–17744, https://doi.org/10.5194/acp-18-17735-2018, 2018.
Hu, Q., Goloub, P., Veselovskii, I., Bravo-Aranda, J.-A., Popovici, I. E., Podvin, T., Haeffelin, M., Lopatin, A., Dubovik, O., Pietras, C., Huang, X., Torres, B., and Chen, C.: Long-range-transported Canadian smoke plumes in the lower stratosphere over northern France, Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, 2019.
Hutchison, K. D., Faruqui, S. J., and Smith, S.: Improving correlations
between MODIS aerosol optical thickness and
ground-based PM2.5 observations through 3D spatial analyses, Atmos.
Environ., 42, 530–543, https://doi.org/10.1016/j.atmosenv.2007.09.050, 2008.
Iarlori, M., Madonna, F., Rizi, V., Trickl, T., and Amodeo, A.: Effective resolution concepts for lidar observations, Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, 2015.
Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H.,
Clerbaux, N., Cole, J., Delanoë, J., Domenech, C.,
Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A.,
Kollias, P., Kubota, T., Nakajima, T., Nakajima, T.Y.,
Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M.,
Shephard, M., Velázquez-Blázquez, A., Wandinger, U.,
Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite: The next step
forward in global measurements of clouds, aerosol,
precipitation and radiation, B. Am. Meteorol. Soc., 96, 1311–1332,
https://doi.org/10.1175/BAMS-D-12-00227.1, 2015.
Iqbal, M.: An introduction to solar radiation, Acadamec Press, Ontario,
1983.
Janicka, L., Stachlewska, I. S., Veselovskii, I., and Baars, H.: Temporal
variations in optical and microphysical properties of
mineral dust and biomass burning aerosol derived from daytime Raman lidar
observations over Warsaw, Poland, Atmos.
Environ., 169, 162–174, https://doi.org/10.1016/j.atmosenv.2017.09.022,
2017.
Juda-Rezler, K., Reizer, M., and Oudinet, J. P.: Determination and analysis of
PM10 source apportionment during episodes of
air pollution in Central Eastern European urban areas: The case of
wintertime 2006, Atmos. Environ., 45, 6557–6566,
https://doi.org/10.1016/j.atmosenv.2011.08.020, 2011.
Juda-Rezler, K., Reizer, M., Huszar, P., Krueger, B., Zanis, P., Syrakov,
D., Katragkou, E., Trapp, W., Melas, D.,
Chervenkov, H., Tegoulias, I., and Halenka, T.: Modelling the effects of
climate change on air quality over central and
Eastern Europe: concept, evaluation and projections, Clim. Res., 53,
179–203, https://doi.org/10.3354/cr01072, 2012.
Jung, E., Albrecht, B. A., Feingold, G., Jonsson, H. H., Chuang, P., and Donaher, S. L.: Aerosols, clouds, and precipitation in the North Atlantic trades observed during the Barbados aerosol cloud experiment – Part 1: Distributions and variability, Atmos. Chem. Phys., 16, 8643–8666, https://doi.org/10.5194/acp-16-8643-2016, 2016.
Kaufman, Y. J., Tanré, D., and Boucher, O.: A satellite view of aerosol
in the climate system, Nature, 419, 215–223,
https://doi.org/10.1038/nature01091, 2002.
Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K.: What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, 2016.
Koffi, B., Schulz, M., Breon, F. M., Dentener, F., Steensen, B. M.,
Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S. E.,
Bellouin, N., Berntsen, T., Bian, H. S., Chin, M., Diehl, T., Easter, R.,
Ghan, S., Hauglustaine, D. A., Iversen, T., Kirkevag, A.,
Liu, X. H., Lohmann, U., Myhre, G., Rasch, P., Seland, O., Skeie, R. B.,
Steenrod, S. D., Stier, P., Tackett, J., Takemura, T.,
Tsigaridis, K., Vuolo, M. R., Yoon, J., and Zhang, K.: Evaluation of the
aerosol vertical distribution in global aerosol models
through comparison against CALIOP measurements: AeroCom phase II results, J.
Geophys. Res.-Atmos., 121, 7254–7283,
https://doi.org/10.1002/2015JD024639, 2016.
Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The
contribution of outdoor air pollution sources to
premature mortality on a global scale, Nature, 525, 367–371,
https://doi.org/10.1038/nature15371, 2015.
Li, X., Ma, Y., Wang, Y., Liu, N., and Hong, Y.: Temporal and spatial
analyses of particulate matter (PM10 and PM2.5)
and its relationship with meteorological parameters over an urban city in
Northeast China, Atmos. Res., 198, 185–193,
https://doi.org/10.1016/j.atmosres.2017.08.023, 2017.
Lisok, J., Rozwadowska, A., Pedersen, J. G., Markowicz, K. M., Ritter, C., Kaminski, J. W., Struzewska, J., Mazzola, M., Udisti, R., Becagli, S., and Gorecka, I.: Radiative impact of an extreme Arctic biomass-burning event, Atmos. Chem. Phys., 18, 8829–8848, https://doi.org/10.5194/acp-18-8829-2018, 2018.
Liu, Y., Franklin, M., Kahn, R., and Koutrakis, P.: Using aerosol optical
thickness to predict ground-level PM2.5
concentrations in the St. Louis area: A comparison between MISR and MODIS,
Remote Sens. Environ., 107, 33–44,
https://doi.org/10.1016/j.rse.2006.05.022, 2007.
Lolli, S. and Di Girolamo, P.: Principal Component Analysis Approach to Evaluate Instrument Performances in Developing a Cost-Effective Reliable Instrument
Network for Atmospheric Measurements, J. Atmos. Ocean.
Tech., 32, 1642–1649,
https://doi.org/10.1175/JTECH-D-15-0085.1
Lolli, S., Madonna, F., Rosoldi, M., Campbell, J. R., Welton, E. J., Lewis, J. R., Gu, Y., and Pappalardo, G.: Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects, Atmos. Meas. Tech., 11, 1639–1651, https://doi.org/10.5194/amt-11-1639-2018, 2018.
Marinou, E., Amiridis, V., Binietoglou, I., Tsikerdekis, A., Solomos, S., Proestakis, E., Konsta, D., Papagiannopoulos, N., Tsekeri, A., Vlastou, G., Zanis, P., Balis, D., Wandinger, U., and Ansmann, A.: Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset, Atmos. Chem. Phys., 17, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, 2017.
Markowicz, K., Chilinski, M. T., Lisok, J., Zawadzka, O., Stachlewska, I. S.,
Janicka, L., Rozwadowska, A., Makuch, P.,
Pakszys, P., Zielinski, T., Petelski, T., Posyniak, M., Pietruczuk, A.,
Szkop, A., and Westphal, D. L.: Study of aerosol
optical properties during long-range transport of biomass burning from
Canada to Central Europe in July 2013, J. Aeros.
Sci., 101, 156–173, https://doi.org/10.1016/j.jaerosci.2016.08.006, 2016.
Masonis, S. J., Anderson, T. L., Covert, D. S., Kapustin, V., Clarke, A. D.,
Howell, S., and Moore, K.: A study of the
extinction-to-backscatter ratio of marine aerosol during the shoreline
environment aerosol study, J. Atmos. Ocean. Tech.,
20, 1388–1402, https://doi.org/10.1175/1520-0426(2003)020<1388:ASOTER>2.0.CO;2, 2003.
Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C.,
Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I.,
Lonnoy, E., Maycock, T., Tignor, M., and Waterfield, T.:
Global Warming of 1.5 ∘C, An IPCC Special Report on
the impacts of global warming of 1.5 ∘C above pre-industrial levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the
threat of climate change, sustainable development, and efforts to eradicate
poverty, IPCC, 2018.
Matthias, V., Balis, D., Bösenberg, J., Eixmann, R., Iarlori, M.,
Komguem, L., Mattis, I., Papayannis, A., Pappalardo, G.,
and Perrone, M.: Vertical aerosol distribution over Europe: Statistical
analysis of Raman lidar data from 10 European
aerosol research lidar network (EARLINET) stations, J. Geophys. Res., 109, D18201,
https://doi.org/10.1029/2004JD004638,
2004.
Mattis, I., Ansmann, A., Müller, D., Wandinger, U., and Althausen, D.:
Multiyear aerosol observations with dual-wavelength
Raman lidar in the framework of EARLINET, J. Geophys. Res., 109, D13203,
https://doi.org/10.1029/2004JD004600, 2004.
Mona, L., Amodeo, A., D'Amico, G., Giunta, A., Madonna, F., and Pappalardo, G.: Multi-wavelength Raman lidar observations of the Eyjafjallajökull volcanic cloud over Potenza, southern Italy, Atmos. Chem. Phys., 12, 2229–2244, https://doi.org/10.5194/acp-12-2229-2012, 2012.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U.,
Althausen, D., and Pisani, G.: Aerosol-type-dependent lidar
ratios observed with Raman lidar, J. Geophys. Res., 112, D16202,
https://doi.org/10.1029/2006JD008292, 2007.
Navas-Guzmán, F., Martucci, G., Collaud Coen, M., Granados-Muñoz, M. J., Hervo, M., Sicard, M., and Haefele, A.: Characterization of aerosol hygroscopicity using Raman lidar measurements at the EARLINET station of Payerne, Atmos. Chem. Phys., 19, 11651–11668, https://doi.org/10.5194/acp-19-11651-2019, 2019.
Nemuc, A., Vasilescu, J., Talianu, C., Belegante, L., and Nicolae, D.: Assessment of aerosol's mass concentrations from measured linear particle depolarization ratio (vertically resolved) and simulations, Atmos. Meas. Tech., 6, 3243–3255, https://doi.org/10.5194/amt-6-3243-2013, 2013.
Nemuc, A., Stachlewska, I. S., Valilescu, J., Górska, A., Nicolae, D.,
and Talianu, C.: Optical Properties of Long-Range
Transported Volcanic Ash over Romania and Poland During Eyjafjallajökull
Eruption in 2010, Acta Geophys., 62, 350–366
https://doi.org/10.2478/s11600-013-0180-7, 2014.
Nicolae, D., Vasilescu, J., Talianu, C., Binietoglou, I., Nicolae, V., Andrei, S., and Antonescu, B.: A neural network aerosol-typing algorithm based on lidar data, Atmos. Chem. Phys., 18, 14511–14537, https://doi.org/10.5194/acp-18-14511-2018, 2018.
Ortiz-Amezcua, P., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Benavent-Oltra, J. A., Böckmann, C., Samaras, S., Stachlewska, I. S., Janicka, Ł., Baars, H., Bohlmann, S., and Alados-Arboledas, L.: Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations, Atmos. Chem. Phys., 17, 5931–5946, https://doi.org/10.5194/acp-17-5931-2017, 2017.
Pan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P. R., Diehl, T. L., Takemura, T., Pozzoli, L., Tsigaridis, K., Bauer, S., and Bellouin, N.: A multi-model evaluation of aerosols over South Asia: common problems and possible causes, Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, 2015.
Papagiannopoulos, N., Mona, L., Alados-Arboledas, L., Amiridis, V., Baars, H., Binietoglou, I., Bortoli, D., D'Amico, G., Giunta, A., Guerrero-Rascado, J. L., Schwarz, A., Pereira, S., Spinelli, N., Wandinger, U., Wang, X., and Pappalardo, G.: CALIPSO climatological products: evaluation and suggestions from EARLINET, Atmos. Chem. Phys., 16, 2341–2357, https://doi.org/10.5194/acp-16-2341-2016, 2016.
Papagiannopoulos, N., Mona, L., Amodeo, A., D'Amico, G., Gumà Claramunt, P., Pappalardo, G., Alados-Arboledas, L., Guerrero-Rascado, J. L., Amiridis, V., Kokkalis, P., Apituley, A., Baars, H., Schwarz, A., Wandinger, U., Binietoglou, I., Nicolae, D., Bortoli, D., Comerón, A., Rodríguez-Gómez, A., Sicard, M., Papayannis, A., and Wiegner, M.: An automatic observation-based aerosol typing method for EARLINET, Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, 2018.
Papayannis, A., Amiridis, V., Mona, L., Tsaknakis, G., Balis, D., Bosenberg,
J., Chaikovski, A., De Tomasi, F., Grigorov, I.,
Mattis, I., Mitev, V., Muller, D., Nickovic, S., Perez, C., Pietruczuk, A.,
Pisani, G., Ravetta, F., Rizi, V., Sicard, M.,
Trickl, T., Wiegner, M., Gerding, M., Mamouri, R. E., D'Amico, G., and
Pappalardo, G.: Systematic lidar observations of
Saharan dust over Europe in the frame of EARLINET (2000–2002), J. Geophys.
Res., 113, D10204, https://doi.org/10.1029/2007JD009028, 2008.
Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H., Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis, V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, 2014.
Perrone, M. R., De Tomasi, F., and Gobbi, G. P.: Vertically resolved aerosol properties by multi-wavelength lidar measurements, Atmos. Chem. Phys., 14, 1185–1204, https://doi.org/10.5194/acp-14-1185-2014, 2014.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott,
P. J., Collett, J. L., and Moosmüller, H.: Cloud
condensation nucleation activity of biomass burning aerosol, J. Geophys.
Res., 114, D22205, https://doi.org/10.1029/2009JD012353, 2009.
Pope, S. B.: Turbulent Flows. Cambridge University Press, UK, 771 pp., 2000.
Popovici, I. E., Goloub, P., Podvin, T., Blarel, L., Loisil, R., Unga, F., Mortier, A., Deroo, C., Victori, S., Ducos, F., Torres, B., Delegove, C., Choël, M., Pujol-Söhne, N., and Pietras, C.: Description and applications of a mobile system performing on-road aerosol remote sensing and in situ measurements, Atmos. Meas. Tech., 11, 4671–4691, https://doi.org/10.5194/amt-11-4671-2018, 2018.
Pósfai, M., Gelencsér, A., Simonics, R., Arató, K., Li, J.,
Hobbs, P. V., and Buseck, P. R.: Atmospheric tar balls: Particles
from biomass and biofuel burning, J. Geophys. Res., 109, D06213,
https://doi.org/10.1029/2003JD004169, 2004.
Proestakis, E., Amiridis, V., Marinou, E., Binietoglou, I., Ansmann, A., Wandinger, U., Hofer, J., Yorks, J., Nowottnick, E., Makhmudov, A., Papayannis, A., Pietruczuk, A., Gialitaki, A., Apituley, A., Szkop, A., Muñoz Porcar, C., Bortoli, D., Dionisi, D., Althausen, D., Mamali, D., Balis, D., Nicolae, D., Tetoni, E., Liberti, G. L., Baars, H., Mattis, I., Stachlewska, I. S., Voudouri, K. A., Mona, L., Mylonaki, M., Perrone, M. R., Costa, M. J., Sicard, M., Papagiannopoulos, N., Siomos, N., Burlizzi, P., Pauly, R., Engelmann, R., Abdullaev, S., and Pappalardo, G.: EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product, Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, 2019.
Qin, K., Zou, J., Guo, J., Lu, M., Bilal, M., Zhang, K., Ma, F., and Zhang,
Y.: Estimating PM1 concentrations from MODIS over
Yangtze River Delta of China during 2014–2017. Atmos. Environ., 195,
149–158, https://doi.org/10.1016/j.atmosenv.2018.09.054, 2018.
Reizer, M. and Juda-Rezler, K.: Explaining the high PM10 concentrations
observed in Polish urban areas, Air Qual. Atmos
Health., 9, 517–531, https://doi.org/10.1007/s11869-015-0358-z, 2015.
Rost, J., Holst, T., Sähn, E., Klingner, M., Anke, K., Ahrens, D., and
Mayer, H.: Variability of PM10 concentrations
dependent on meteorological conditions, Intern. J. Environ. Poll., 36, 3–18,
https://doi.org/10.1504/IJEP.2009.021813, 2009.
Sakai, T., Nagai, T., Zaizen, Y., and Mano, Y.: Backscattering linear
depolarization ratio measurements of mineral, sea-salt,
and ammonium sulfate particles simulated in a laboratory chamber, Appl.
Opt., 49, 4441–4449, https://doi.org/10.1364/AO.49.004441, 2010.
Schaap, M., Apituley, A., Timmermans, R. M. A., Koelemeijer, R. B. A., and de Leeuw, G.: Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands, Atmos. Chem. Phys., 9, 909–925, https://doi.org/10.5194/acp-9-909-2009, 2009.
Schäfer, K., Emeis, S., Hoffmann, H., and Jahn, C.: Influence of mixing
layer height upon air pollution in urban and sub-urban areas, Meteorol. Z., 15, 647–658,
https://doi.org/10.1127/0941-2948/2006/0164, 2006.
Schmeisser, L., Andrews, E., Ogren, J. A., Sheridan, P., Jefferson, A., Sharma, S., Kim, J. E., Sherman, J. P., Sorribas, M., Kalapov, I., Arsov, T., Angelov, C., Mayol-Bracero, O. L., Labuschagne, C., Kim, S.-W., Hoffer, A., Lin, N.-H., Chia, H.-P., Bergin, M., Sun, J., Liu, P., and Wu, H.: Classifying aerosol type using in situ surface spectral aerosol optical properties, Atmos. Chem. Phys., 17, 12097–12120, https://doi.org/10.5194/acp-17-12097-2017, 2017.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J.,
Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B.,
Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A.,
Penner, J. E., Prather, K. A., Ramanathan, V.,
Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens,
G., and Wood, R.: Improving our fundamental
understanding of the role of aerosol–cloud interactions in the climate
system, P. Natl. Acad. Sci. USA, 113, 5781–5790,
https://doi.org/10.1073/pnas.1514043113, 2016.
Sicard, M., Rocadenbosch, F., Reba, M. N. M., Comerón, A., Tomás, S., García-Vízcaino, D., Batet, O., Barrios, R., Kumar, D., and Baldasano, J. M.: Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over Northeastern Spain, Atmos. Chem. Phys., 11, 175–190, https://doi.org/10.5194/acp-11-175-2011, 2011.
Siomos, N., Balis, D. S., Poupkou, A., Liora, N., Dimopoulos, S., Melas, D., Giannakaki, E., Filioglou, M., Basart, S., and Chaikovsky, A.: Investigating the quality of modeled aerosol profiles based on combined lidar and sunphotometer data, Atmos. Chem. Phys., 17, 7003–7023, https://doi.org/10.5194/acp-17-7003-2017, 2017.
Siomos, N., Balis, D. S., Voudouri, K. A., Giannakaki, E., Filioglou, M., Amiridis, V., Papayannis, A., and Fragkos, K.: Are EARLINET and AERONET climatologies consistent? The case of Thessaloniki, Greece, Atmos. Chem. Phys., 18, 11885–11903, https://doi.org/10.5194/acp-18-11885-2018, 2018.
Sharma, A., Mandal, T., Sharma, S., Shukla, D., and Singh, S.: Relationships
of surface ozone with its precursors, particulate
matter and meteorology over Delhi, J. Atmos. Chem., 74, 451–474,
https://doi.org/10.1007/s10874-016-9351-7, 2017.
Stachlewska, I., Piądłowski, M., Migacz, S., Szkop, A., Zielińska,
A., and Swaczyna, P.: Ceilometer observations of the boundary
layer over Warsaw, Poland, Acta Geophys., 60, 1386–1412,
https://doi.org/10.2478/s11600-012-0054-4, 2012.
Stachlewska, I. S., Costa-Surós, M., and Althausen, D.: Raman lidar
water vapour profiling over Warsaw, Poland, Atmos.
Res., 194, 258–267, https://doi.org/10.1016/j.atmosres.2017.05.004, 2017a.
Stachlewska, I. S., Zawadzka, O., and Engelmann, R.: Effect of heat wave
conditions on aerosol optical properties derived
from satellite and ground-based remote sensing over Poland, Remote Sens., 9,
1199, https://doi.org/10.3390/rs9111199, 2017b.
Stachlewska, I. S., Samson, M., Zawadzka, O., Harenda, K. M., Janicka, L.,
Poczta, P., Szczepanik, D., Heese, B., Wang, D.,
and Borek, K. Tetoni, E., Proestakis, E., Siomos, N., Nemuc, A., Chojnicki,
B. H., Markowicz, K. M., Pietruczuk, A.,
Szkop, A., Althausen, D., Stebel, K., Schuettemeyer, D., and Zehner, C.:
Modification of local urban aerosol properties by
long-range transport of biomass burning aerosol, Remote Sens., 10, 412,
https://doi.org/10.3390/rs10030412, 2018.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D.,
and Ngan, F.: NOAA's HYSPLIT Atmospheric
Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96,
2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J.,
Nauels, A., Xia, Y., Bex, V., and Midgley, P.: IPCC,
2013: Climate Change 2013: The Physical Science Basis, Contribution of
Working Group I to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, Cambridge Univ.
Press, Cambridge, UK, and New York, 1535 pp., 2013.
Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1988.
Szczepanik, D. and Markowicz, K.: The relation between columnar and surface
aerosol optical properties in a background
environment, Atmos. Poll. Res., 9, 246–256,
https://doi.org/10.1016/j.apr.2017.10.001, 2018.
Szczepanik, D., Tetoni, E., Wang, D., and Stachlewska, I.: Lidar Based
Separation of Polluted Dust Observed over Warsaw (Case
Study on 09 August 2013), the 29th International Laser Radar
Conference, Hefei, China, 24–28 June 2019, 1–5, 2019.
Szkop, A. and Pietruczuk, A.: Analysis of aerosol transport over southern
Poland in August 2015 based on a synergy of
remote sensing and backward trajectory techniques, J. Appl. Remote. Sens.,
11, 016039, https://doi.org/10.1117/1.JRS.11.016039, 2017.
Tang, I. N.: Chemical and size effects of hygroscopic aerosol on light
scattering coefficients, J. Geophys. Res., 101, 19245–19250, https://doi.org/10.1029/96JD03003, 1996.
The EARLINET publishing group 2000–2015: EARLINET All 2000–2015, World Data
Center for Climate (WDCC) at
DKRZ, https://doi.org/10.1594/WDCC/EARLINET_All_2000-2015, 2018.
Tian, P., Cao, X., Zhang, L., Sun, N., Sun, L., Logan, T., Shi, J., Wang, Y., Ji, Y., Lin, Y., Huang, Z., Zhou, T., Shi, Y., and Zhang, R.: Aerosol vertical distribution and optical properties over China from long-term satellite and ground-based remote sensing, Atmos. Chem. Phys., 17, 2509–2523, https://doi.org/10.5194/acp-17-2509-2017, 2017.
Trickl, T., Vogelmann, H., Flentje, H., and Ries, L.: Stratospheric ozone in boreal fire plumes – the 2013 smoke season over central Europe, Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, 2015.
Trippetta, S., Sabia, S., and Caggiano, R.: Fine aerosol particles (PM1):
Natural and anthropogenic contributions and health risk
assessment, Air Qual. Atmos. Hlth., 9, 621–629,
https://doi.org/10.1007/s11869-015-0373-0, 2016.
Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U.,
and Whiteman, D. N.: Inversion with regularization for the
retrieval of tropospheric aerosol parameters from multiwavelength lidar
sounding, Appl. Opt., 41, 3685–3699, https://doi.org/10.1364/AO.41.003685, 2002.
Wałaszek, K., Kryza, M., and Werner, M.: The role of precursor emissions
on ground level ozone concentration during
summer season in Poland, J. Atmos. Chem., 75, 181–204,
https://doi.org/10.1007/s10874-017-9371-y, 2018.
Wandinger, U., Freudenthaler, V., Baars, H., Amodeo, A., Engelmann, R., Mattis, I., Groß, S., Pappalardo, G., Giunta, A., D'Amico, G., Chaikovsky, A., Osipenko, F., Slesar, A., Nicolae, D., Belegante, L., Talianu, C., Serikov, I., Linné, H., Jansen, F., Apituley, A., Wilson, K. M., de Graaf, M., Trickl, T., Giehl, H., Adam, M., Comerón, A., Muñoz-Porcar, C., Rocadenbosch, F., Sicard, M., Tomás, S., Lange, D., Kumar, D., Pujadas, M., Molero, F., Fernández, A. J., Alados-Arboledas, L., Bravo-Aranda, J. A., Navas-Guzmán, F., Guerrero-Rascado, J. L., Granados-Muñoz, M. J., Preißler, J., Wagner, F., Gausa, M., Grigorov, I., Stoyanov, D., Iarlori, M., Rizi, V., Spinelli, N., Boselli, A., Wang, X., Lo Feudo, T., Perrone, M. R., De Tomasi, F., and Burlizzi, P.: EARLINET instrument intercomparison campaigns: overview on strategy and results, Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, 2016.
Wang, D., Stachlewska, I. S., Song, X., Heese, B., and Nemuc, A.: Variability
of boundary layer over an
urban continental site based on 10 years of active remote sensing
observations in Warsaw, Remote Sens., in review, 2019.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived
aerosol optical thickness and PM2.5 mass:
Implications for air quality studies, Geophys. Res. Lett., 30, 2095,
https://doi.org/10.1029/2003GL018174, 2003.
Winker, D. M., Hunt, W. H., and McGill, M. J.: Initial performance
assessment of CALIOP, Geophys. Res. Lett., 34, L19803,
https://doi.org/10.1029/2007GL030135, 2007.
Wolff, H. and Perry, L.: Policy monitor: Trends in clean air legislation in
Europe: Particulate matter and low emission zones, Rev.
Environ. Econ. Policy, 4, 293–308, https://doi.org/10.1093/reep/req008, 2010.
Xie, C., Nishizawa, T., Sugimoto, N., Matsui, I., and Wang, Z.:
Characteristics of aerosol optical properties in pollution and
Asian dust episodes over Beijing, China, Appl. Opt., 47, 4945–4951,
https://doi.org/10.1364/AO.47.004945, 2008.
Zang, Z. L., Wang, W. Q., You, W., Li, Y., Ye, F., and Wang, C. M.:
Estimating ground-level PM2.5 concentrations in
Beijing, China using aerosol optical depth and parameters of the temperature
inversion layer, Sci. Total Environ., 575, 1219–1227, https://doi.org/10.1016/j.scitotenv.2016.09.186, 2017.
Zawadzka, O., Markowicz, K., Pietruczuk, A., Zielinski, T., and Jaroslawski,
J.: Impact of urban pollution emitted in
Warsaw on aerosol properties, Atmos. Environ., 69, 15–28,
https://doi.org/10.1016/j.atmosenv.2012.11.065, 2013.
Zhang, H., Wang, Y., Hu, J., Ying, Q., and Hu, X.-M.: Relationships between
meteorological parameters and criteria air pollutants in three megacities in China, Environ. Res., 140, 242–254,
https://doi.org/10.1016/j.envres.2015.04.004, 2015.
Zheng, S., Pozzer, A., Cao, C. X., and Lelieveld, J.: Long-term (2001–2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China, Atmos. Chem. Phys., 15, 5715–5725, https://doi.org/10.5194/acp-15-5715-2015, 2015.
Altmetrics
Final-revised paper
Preprint