Articles | Volume 19, issue 19
https://doi.org/10.5194/acp-19-12431-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-12431-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Microphysics of summer clouds in central West Antarctica simulated by the Polar Weather Research and Forecasting Model (WRF) and the Antarctic Mesoscale Prediction System (AMPS)
Keith M. Hines
CORRESPONDING AUTHOR
Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA
David H. Bromwich
Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA
Atmospheric Sciences Program, Department of Geography, The Ohio State University, Columbus, OH 43210, USA
Sheng-Hung Wang
Polar Meteorology Group, Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA
Israel Silber
Department of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, PA 16802, USA
Johannes Verlinde
Department of Meteorology and Atmospheric Sciences, The Pennsylvania State University, University Park, PA 16802, USA
Dan Lubin
Scripps Institution of Oceanography, University of California, San
Diego, La Jolla, CA 96802, USA
Related authors
No articles found.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Israel Silber, Jennifer M. Comstock, Michael R. Kieburtz, and Lynn M. Russell
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-127, https://doi.org/10.5194/essd-2024-127, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
We present ARMTRAJ, a set of multi-purpose trajectory datasets generated using HYSPLIT informed by ERA5 reanalysis at 0.25° resolution, which augments cloud, aerosol, and boundary layer studies utilizing the U.S. DOE ARM data. ARMTRAJ data include ensemble run statistics that enhance consistency and serve as uncertainty metrics for airmass coordinates and state variables. ARMTRAJ is expected to become a near real-time product that will accompany past, ongoing, and future ARM deployments.
Zhenhai Zhang, F. Martin Ralph, Xun Zou, Brian Kawzenuk, Minghua Zheng, Irina V. Gorodetskaya, Penny M. Rowe, and David H. Bromwich
EGUsphere, https://doi.org/10.5194/egusphere-2024-254, https://doi.org/10.5194/egusphere-2024-254, 2024
Short summary
Short summary
Atmospheric rivers are long and narrow corridors of strong water vapor transport in the atmosphere. ARs play an important role in extreme weather in polar regions, including heavy rain/snow, heat wave, and surface melt. The standard AR scale is developed based on the mid-latitude climate and is insufficient for polar regions. This paper introduces an extended version of the AR scale tuned to polar regions, aiming to quantify polar ARs objectively based on their strength and impact.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Jeramy L. Dedrick, Georges Saliba, Abigail S. Williams, Lynn M. Russell, and Dan Lubin
Atmos. Meas. Tech., 15, 4171–4194, https://doi.org/10.5194/amt-15-4171-2022, https://doi.org/10.5194/amt-15-4171-2022, 2022
Short summary
Short summary
A new method is presented to retrieve the sea spray aerosol size distribution by combining submicron size and nephelometer scattering based on Mie theory. Using available sea spray tracers, we find that this approach serves as a comparable substitute to supermicron size distribution measurements, which are limited in availability at marine sites. Application of this technique can expand sea spray observations and improve the characterization of marine aerosol impacts on clouds and climate.
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022, https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
Short summary
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or space-borne) lidar and radar simulator and subcolumn generator designed for large-scale models, in particular climate models, applicable also for high-resolution models. EMC2 emulates measurements while remaining faithful to large-scale models' physical assumptions implemented in their cloud or radiation schemes. We demonstrate the use of EMC2 to compare AWARE measurements with the NASA GISS ModelE3 and LES.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Stefanie Kremser, Mike Harvey, Peter Kuma, Sean Hartery, Alexia Saint-Macary, John McGregor, Alex Schuddeboom, Marc von Hobe, Sinikka T. Lennartz, Alex Geddes, Richard Querel, Adrian McDonald, Maija Peltola, Karine Sellegri, Israel Silber, Cliff S. Law, Connor J. Flynn, Andrew Marriner, Thomas C. J. Hill, Paul J. DeMott, Carson C. Hume, Graeme Plank, Geoffrey Graham, and Simon Parsons
Earth Syst. Sci. Data, 13, 3115–3153, https://doi.org/10.5194/essd-13-3115-2021, https://doi.org/10.5194/essd-13-3115-2021, 2021
Short summary
Short summary
Aerosol–cloud interactions over the Southern Ocean are poorly understood and remain a major source of uncertainty in climate models. This study presents ship-borne measurements, collected during a 6-week voyage into the Southern Ocean in 2018, that are an important supplement to satellite-based measurements. For example, these measurements include data on low-level clouds and aerosol composition in the marine boundary layer, which can be used in climate model evaluation efforts.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Peter Kuma, Adrian J. McDonald, Olaf Morgenstern, Richard Querel, Israel Silber, and Connor J. Flynn
Geosci. Model Dev., 14, 43–72, https://doi.org/10.5194/gmd-14-43-2021, https://doi.org/10.5194/gmd-14-43-2021, 2021
Jun Liu, Jeramy Dedrick, Lynn M. Russell, Gunnar I. Senum, Janek Uin, Chongai Kuang, Stephen R. Springston, W. Richard Leaitch, Allison C. Aiken, and Dan Lubin
Atmos. Chem. Phys., 18, 8571–8587, https://doi.org/10.5194/acp-18-8571-2018, https://doi.org/10.5194/acp-18-8571-2018, 2018
Short summary
Short summary
Observations of the organic components of the natural aerosol are scarce in Antarctica, which limits our understanding of natural aerosols and their connection to cloud albedo. We took yearlong measurements of organic aerosols at McMurdo Station. The natural organic aerosol was 150 times higher in summer than in winter. We showed the natural sources of OM were characterized by amide, which may be from seabird populations. Acid was high in summer and likely formed by secondary reactions.
Flavio Justino, Douglas Lindemann, Fred Kucharski, Aaron Wilson, David Bromwich, and Frode Stordal
Clim. Past, 13, 1081–1095, https://doi.org/10.5194/cp-13-1081-2017, https://doi.org/10.5194/cp-13-1081-2017, 2017
Short summary
Short summary
These modeling results have enormous implications for paleoreconstructions of the MIS31 climate that assume overall ice-free conditions in the vicinity of the Antarctic continent. Since these reconstructions may depict dominant signals in a particular time interval and locale, they cannot be assumed to geographically represent large-scale domains, and their ability to reproduce long-term environmental conditions should be considered with care.
Yinghui Lu, Zhiyuan Jiang, Kultegin Aydin, Johannes Verlinde, Eugene E. Clothiaux, and Giovanni Botta
Atmos. Meas. Tech., 9, 5119–5134, https://doi.org/10.5194/amt-9-5119-2016, https://doi.org/10.5194/amt-9-5119-2016, 2016
Short summary
Short summary
The database contains the complete (polarimetric) scattering information for different types of ice particles at different incident and scattered radiation directions at four microwave wavelengths. These results are useful for understanding the dependence of ice-particle scattering properties on ice-particle orientation with respect to the incident and scattered radiation. It is also useful in ice-property retrievals, radar forward simulation.
Israel Silber, Colin Price, and Craig J. Rodger
Atmos. Chem. Phys., 16, 3279–3288, https://doi.org/10.5194/acp-16-3279-2016, https://doi.org/10.5194/acp-16-3279-2016, 2016
Short summary
Short summary
We report for the first time that the semi-annual oscillation (SAO) is one of the dominant oscillations in the nighttime lower ionosphere, using ground-based measurements of VLF signals reflected off the lower part of the ionosphere. We conclude that the origins of this oscillation are oscillatory changes of the D region's electrical characteristics, driven by NOx transport from the lower thermosphere. This oscillation should be considered in lower ionospheric and VLF wave propagation models.
C. Wesslén, M. Tjernström, D. H. Bromwich, G. de Boer, A. M. L. Ekman, L.-S. Bai, and S.-H. Wang
Atmos. Chem. Phys., 14, 2605–2624, https://doi.org/10.5194/acp-14-2605-2014, https://doi.org/10.5194/acp-14-2605-2014, 2014
B. H. Kahn, F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. M. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. R. Worden
Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, https://doi.org/10.5194/acp-14-399-2014, 2014
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
The role of ascent timescale for WCB moisture transport into the UTLS
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Potential impacts of marine fuel regulations on Arctic clouds and radiative feedbacks
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
The Impact of Aerosol on Cloud Water: A Heuristic Perspective
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Diurnal variation of amplified canopy urban heat island in Beijing megacity during heat wave periods: Roles of mountain-valley circulation and urban morphology
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Diurnal evolution of non-precipitating marine stratocumuli in an LES ensemble
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
WRF-SBM Numerical Simulation of Aerosol Effects on Stratiform Warm Clouds in Jiangxi, China
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Cloud properties and their projected changes in CMIP models with low to high climate sensitivity
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 2: The imprint of the atmospheric circulation at different scales
Impact of urban land use on mean and heavy rainfall during the Indian summer monsoon
Towards a more reliable forecast of ice supersaturation: concept of a one-moment ice-cloud scheme that avoids saturation adjustment
Opinion: Tropical cirrus – from micro-scale processes to climate-scale impacts
Water isotopic characterisation of the cloud–circulation coupling in the North Atlantic trades – Part 1: A process-oriented evaluation of COSMOiso simulations with EUREC4A observations
Assimilation of 3D polarimetric microphysical retrievals in a convective-scale NWP system
Sensitivity of cloud-phase distribution to cloud microphysics and thermodynamics in simulated deep convective clouds and SEVIRI retrievals
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun
Atmos. Chem. Phys., 24, 10793–10814, https://doi.org/10.5194/acp-24-10793-2024, https://doi.org/10.5194/acp-24-10793-2024, 2024
Short summary
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Cornelis Schwenk and Annette Miltenberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2402, https://doi.org/10.5194/egusphere-2024-2402, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast and slow rising air to see how moisture is (differently) transported. We find that for fast ascending air more ice particles reach higher into the atmosphere, and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2301, https://doi.org/10.5194/egusphere-2024-2301, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital to investigate cloud seeding impacts, but in many cases seeding signature is immersed in natural variability. In this study, the reflectivity change induced by glaciogenic seeding using different AgI concentrations is investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results are helpful in operational seeding decision making of the AgI amount dispersed.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1891, https://doi.org/10.5194/egusphere-2024-1891, 2024
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity which may lead to further climatic feedbacks. We investigate, using an atmospheric model and results from marine engine experiments which focused on fuel sulfur content reduction and exhaust wet scrubbing, how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1725, https://doi.org/10.5194/egusphere-2024-1725, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying out the foundation for so-called aerosol-cloud-climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
EGUsphere, https://doi.org/10.5194/egusphere-2024-1341, https://doi.org/10.5194/egusphere-2024-1341, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe INP concentrations from observations at Princess Elisabeth Station and other sites to the model. We assess how Antarctic clouds respond to INP concentration changes, validating results with cloud observations from the station. Our results show that aerosol-cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1200, https://doi.org/10.5194/egusphere-2024-1200, 2024
Short summary
Short summary
In the background of global warming and the rapid urbanization, heat wave have emerged as increasingly frequent occurrences. Despite this, the specific roles played by local circulation patterns and urban morphology in the synergistic interaction between HW and CUHI remain elusive. To address this gap, this paper used automatic weather stations data and meachine learning model to delve into the spatiotemporal patterns governing the intricate interactions between HW and CUHI.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
EGUsphere, https://doi.org/10.5194/egusphere-2024-1033, https://doi.org/10.5194/egusphere-2024-1033, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow clouds that covers the vast areas of Earth's surface. They play an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Yi Li, Xiaoli Liu, and Hengjia Cai
EGUsphere, https://doi.org/10.5194/egusphere-2023-2644, https://doi.org/10.5194/egusphere-2023-2644, 2024
Short summary
Short summary
Different aerosol modes' influence on cloud processes remains controversial. As a result, we modified the aerosol spectrum and concentration to simulated a warm stratiform cloud process in Jiangxi, China by WRF-SBM scheme. Research shows that: different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
EGUsphere, https://doi.org/10.5194/egusphere-2024-618, https://doi.org/10.5194/egusphere-2024-618, 2024
Short summary
Short summary
Clouds play a crucial role in the energy balance of the earth, as they can either warm up or cool down the area they cover depending on their height and depth. It is expected that they will alter their behaviour under climate change, which will affect the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect by simulating a climate where clouds are transparent. Results show that, with the model used, clouds have a stabilising effect on climate.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Lisa Bock and Axel Lauer
Atmos. Chem. Phys., 24, 1587–1605, https://doi.org/10.5194/acp-24-1587-2024, https://doi.org/10.5194/acp-24-1587-2024, 2024
Short summary
Short summary
Climate model simulations still show a large range of effective climate sensitivity (ECS) with high uncertainties. An important contribution to ECS is cloud climate feedback. We investigate the representation of cloud physical and radiative properties from Coupled Model Intercomparison Project models grouped by ECS. We compare the simulated cloud properties of today’s climate from three ECS groups and quantify how the projected changes in cloud properties and cloud radiative effects differ.
Leonie Villiger and Franziska Aemisegger
Atmos. Chem. Phys., 24, 957–976, https://doi.org/10.5194/acp-24-957-2024, https://doi.org/10.5194/acp-24-957-2024, 2024
Short summary
Short summary
Three numerical simulations performed with an isotope-enabled weather forecast model are used to investigate the cloud–circulation coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. It is shown that stable water isotopes near cloud base in the tropics reflect (1) the diel cycle of the atmospheric circulation, which drives the formation and dissipation of clouds, and (2) changes in the large-scale circulation over the North Atlantic.
Renaud Falga and Chien Wang
Atmos. Chem. Phys., 24, 631–647, https://doi.org/10.5194/acp-24-631-2024, https://doi.org/10.5194/acp-24-631-2024, 2024
Short summary
Short summary
The impact of urban land use on regional meteorology and rainfall during the Indian summer monsoon has been assessed in this study. Using a cloud-resolving model centered around Kolkata, we have shown that the urban heat island effect led to a rainfall enhancement via the amplification of convective activity, especially during the night. Furthermore, the results demonstrated that the kinetic effect of the city induced the initiation of a nighttime storm.
Dario Sperber and Klaus Gierens
Atmos. Chem. Phys., 23, 15609–15627, https://doi.org/10.5194/acp-23-15609-2023, https://doi.org/10.5194/acp-23-15609-2023, 2023
Short summary
Short summary
A significant share of aviation's climate impact is due to persistent contrails. Avoiding their creation is a step toward sustainable air transportation. For this purpose, a reliable forecast of so-called ice-supersaturated regions is needed, which then allows one to plan aircraft routes without persistent contrails. Here, we propose a method that leads to the better prediction of ice-supersaturated regions.
Blaž Gasparini, Sylvia C. Sullivan, Adam B. Sokol, Bernd Kärcher, Eric Jensen, and Dennis L. Hartmann
Atmos. Chem. Phys., 23, 15413–15444, https://doi.org/10.5194/acp-23-15413-2023, https://doi.org/10.5194/acp-23-15413-2023, 2023
Short summary
Short summary
Tropical cirrus clouds are essential for climate, but our understanding of these clouds is limited due to their dependence on a wide range of small- and large-scale climate processes. In this opinion paper, we review recent advances in the study of tropical cirrus clouds, point out remaining open questions, and suggest ways to resolve them.
Leonie Villiger, Marina Dütsch, Sandrine Bony, Marie Lothon, Stephan Pfahl, Heini Wernli, Pierre-Etienne Brilouet, Patrick Chazette, Pierre Coutris, Julien Delanoë, Cyrille Flamant, Alfons Schwarzenboeck, Martin Werner, and Franziska Aemisegger
Atmos. Chem. Phys., 23, 14643–14672, https://doi.org/10.5194/acp-23-14643-2023, https://doi.org/10.5194/acp-23-14643-2023, 2023
Short summary
Short summary
This study evaluates three numerical simulations performed with an isotope-enabled weather forecast model and investigates the coupling between shallow trade-wind cumulus clouds and atmospheric circulations on different scales. We show that the simulations reproduce key characteristics of shallow trade-wind clouds as observed during the field experiment EUREC4A and that the spatial distribution of stable-water-vapour isotopes is shaped by the overturning circulation associated with these clouds.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Cunbo Han, Corinna Hoose, Martin Stengel, Quentin Coopman, and Andrew Barrett
Atmos. Chem. Phys., 23, 14077–14095, https://doi.org/10.5194/acp-23-14077-2023, https://doi.org/10.5194/acp-23-14077-2023, 2023
Short summary
Short summary
Cloud phase has been found to significantly impact cloud thermodynamics and Earth’s radiation budget, and various factors influence it. This study investigates the sensitivity of the cloud-phase distribution to the ice-nucleating particle concentration and thermodynamics. Multiple simulation experiments were performed using the ICON model at the convection-permitting resolution of 1.2 km. Simulation results were compared to two different retrieval products based on SEVIRI measurements.
Cited articles
Andreas, E. L, Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136, 927–943, https://doi.org/10.1002/qj.618, 2010.
Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A. J., and Xiao, Q.-N.: A
three-dimensional (3DVAR) data assimilation system for use with MM5:
Implementation and initial results, Mon. Weather Rev., 132, 897–914,
https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2, 2004.
Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J.,
Rasmussen, R., Livneh, B., Ek, M., and Mitchell, K.: Noah land model
modifications to improve snowpack prediction in the Colorado Rocky
Mountains, J. Geophys. Res., 115, D22101, https://doi.org/10.1029/2009JD013470, 2010.
Bracegirdle, T. J. and Marshal, G. J.: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses, J. Climate, 25, 7138–7146, https://doi.org/10.1175/JCLI-D-11-00685.1, 2012.
Bromwich, D. H., Hines, K. M., and Bai, L. S.: Development and testing of Polar WRF: 2. Arctic Ocean, J. Geophys. Res., 114, D08122,
https://doi.org/10.1029/2008JD010300, 2009.
Bromwich, D. H., Nicolas, J. P., Hines, K. M., Kay, J. E., Key, E., Lazzara,
M. A., Lubin, D., McFarquhar, G. M., Gorodetskaya, I., Grosvenor, D. P.,
Lachlan-Cope, T. A., and van Lipzig, N.: Tropospheric clouds in Antarctica, Rev. Geophys., 50, RG1004, https://doi.org/10.1029/2011RG000363, 2012.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.: Central West Antarctica among the most
rapidly warming regions on Earth, Nat. Geosci., 6, 139–145,
https://doi.org/10.1038/ngeo1671, 2013a.
Bromwich, D. H., Otieno, F. O., Hines, K., Manning, K., and Shilo, E.: Comprehensive evaluation of polar weather research and forecasting
performance in the Antarctic, J. Geophys. Res., 118, 274–292,
https://doi.org/10.1029/2012JD018139, 2013b.
Bromwich, D. H., Nicolas, J. P., Monaghan, A. J., Lazzara, M. A., Keller, L. M., Weidner, G. A., and Wilson, A. B.: Corrigendum: Central West Antarctica among the most rapidly warming regions on Earth, Nat. Geosci., 7, 76,
https://doi.org/10.1038/ngeo2016, 2014.
Cadeddu, M.: G-Band Vapor Radiometer Profiler (GVRP) Handbook,
Office of Science, DOE Office of Biological and
Environmental Research, USA, DOE/SC-ARM/TR-091, https://doi.org/10.2172/982364, 2010.
Cadeddu, M. P., Turner, D. D., and Liljegren, J. C.: A Neural Network for Real-Time Retrievals of PWV and LWP From Arctic Millimeter-Wave Ground-Based
Observations, IEEE T. Geosci. Remote, 47,
1887–1900, https://doi.org/10.1109/TGRS.2009.2013205, 2009.
Cassano, J. J., DuViviera, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke,
M., Craig, A., Fisel, B., Gutowski, W., Hamman, J., Higgins, M., Maslowski,
W., Nijssen, B., Osinski, R., and Zeng, X.: Development of the Regional Arctic System Model (RASM): Near surface atmospheric climate sensitivity, J.
Climate, 30, 5729–5753, https://doi.org/10.1175/JCLI-D-15-0775.1, 2017.
Chou, M. D., Suarez, M. J., Liang, X. Z., and Yan, M. M. H.: A thermal infrared radiation parameterization for atmospheric studies, NASA/TM-2001-104606, 19, 56 pp., 2001.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: A summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Cook, D.: ARM: Surface Energy Balance System (SEBS) Handbook, Atmospheric
Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory, Argonne,
IL, 2018.
Cooper, W. A.: Ice initiation in natural clouds, Precipitation
Enhancement – A Scientific Challenge, Meteorol. Mon., 29–32, 1986.
Deb, P., Orr, A., Hosking, J. S., Phillips, T., Turner, J., Bannister, D.,
Pope, J. O., and Colwell, S.: An assessment of the Polar Weather Research and
Forecasting (WRF) model representation of near-surface meteorological
variables over West Antarctica, J. Geophys. Res., 121, 1532–1548,
https://doi.org/10.1002/2015jd024037, 2016.
DeConto, R.M., Pollard, D.: Contributions of Antarctica to past and future
sea level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach,
H., Holm, E.V., Isaksen, L.,i Kalberg, P., Kohler, M., Matricardi, M.,
McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C.,
de Rosnay, P., Tavolato, C., Thepaut, J.-N., Vitart, F.: The ERA-Interim
reanalysis: Configuration and performance of the data assimilation system,
Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dooraghi, M., Reda, I., Xie, Y., Morris, V., Andreas, A., Kutchenreiter, M.,
Habte, A., and Sengupta, M.: ARM: Sky Radiation Sensor: 60-Second Downwelling
Irradiances (Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), https://doi.org/10.5439/1025281, 1996.
Flynn, C. J., Mendoza, A., Zheng, Y., and Mathurb, S.: Novel
polarization-sensitive micropulse lidar measurement technique, Opt. Express, 15, 2785–2790, https://doi.org/10.1364/OE.15.002785, 2007.
Fogt, R. L. and Bromwich, D. H.: Atmospheric moisture and cloud cover
characteristics forecast by AMPS, Weather Forecast., 23, 914–930,
https://doi.org/10.1175/2008/WAF2006100.1, 2008.
Grosvenor, D. P., Choularton, T. W., Lachlan-Cope, T., Gallagher, M. W., Crosier, J., Bower, K. N., Ladkin, R. S., and Dorsey, J. R.: In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf, Atmos. Chem. Phys., 12, 11275–11294, https://doi.org/10.5194/acp-12-11275-2012, 2012.
Hines, K. M. and Bromwich, D. H.: Development and testing of Polar Weather Research and Forecasting (WRF) model. Part I: Greenland Ice Sheet meteorology, Mon. Weather Rev., 136, 1971–1989, https://doi.org/10.1175/2007MWR2112.1,
2008.
Hines, K. M. and Bromwich, D. H.: Simulation of late summer Arctic clouds during ASCOS with Polar WRF, Mon. Weather Rev., 145, 521–541, https://doi.org/10.1175/MWR-D-16-0079.1, 2017.
Hines, K. M., Bromwich, D. H., Bai, L.-S., Barlage, M., and Slater, A. S.: Development and testing of polar Weather Research and Forecasting Model: Part III. Arctic land, J. Climate, 24, 26–48, https://doi.org/10.1175/2010JCLI3460.1, 2011.
Hines, K. M., Bromwich, D. H., Bai, L., Bitz, C. M., Powers, J. G., and Manning,
K. W.: Sea ice enhancements to Polar WRF, Mon. Weather Rev., 143, 2363–2385, https://doi.org/10.1175/MWR-D-14-00344.1, 2015.
Hogan, A. W.: Aerosol exchange in the remote troposphere, Tellus, 38, 197–213, 1986.
Holdridge, D. and Kyrouac, J.: ARM: ARM-Standard Meteorological Instrumentation at Surface (Atmospheric Radiation Measurement (ARM) Archive, Oak Ridge National Laboratory (ORNL), https://doi.org/10.5439/1025220, 1993.
Hong, S.-Y., Dudhia, J., and Chen, S.-H.: A revised approach to ice
microphysical processes for the bulk parameterization of clouds and
precipitation, Mon. Weather Rev., 132, 103–120,
https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2,
2004.
Janjć, Z. I.: The step-mountain Eta coordinate model: Further
developments of the convection, viscous sublayer, and turbulence closure
schemes, Mon. Weather Rev., 122, 927–945,
https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2,
1994.
Kain, J. S.: The Kain–Fritsch convective parameterization: An update, J. Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)04360;0170:tkcpau62;2.0.co;2, 2004.
Kato, S., Rose F. G., Sun-Mack S., Miller W. F., Chen Y., Rutan D. A., Stephens G. L., Loeb N. G., Minnis P., Wielicki B. A., Winker D. M., Charlock T. P., Stackhouse P. W., Xu K.-M., and Collins W.: Computation of top-of-atmosphere and
surface irradiances with CALIPSO, CloudSat, and MODIS-derived cloud and aerosol properties. J. Geophys. Res., 116, D19209. https://doi.org/10.1029/2011JD016050, 2011.
King J. C., Gadian, A., Kirchgaessner, A., Kuipers, Munneke, P.,
Lachlan-Cope, T. A., Orr, A., Reijmer, C., van den Broeke, M. R., van Wessem, J. M., and Weeks, M.: Validation of the summertime surface energy budget of Larsen C Ice Shelf (Antarctica) as represented in three high-resolution atmospheric models, J. Geophys. Res., 120, 1335–1347,
https://doi.org/10.1002/2014JD022604, 2015.
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., Avramov, A., de
Boer, G. Chen, M., Cole, J. N. S., Del Genio, A., Falk, M., Foster, M. J.,
Fridlind, A. M., Golaz, J.-C., Hashino, T., Harrington, J. Y., Hoose, C.,
Khairoutdinov, M., Larson, V. E., Liu, X., Luo, Y., McFarquhar, G., Menon,
S., Neggers, R. A. J., Park, S., Poellot, M., Schmidt, J. M., Sednev, I.,
Shipway, B. J., Shupe, M. D., Spangenberg, D., Sud, Y. C., Turner, D. D., Veron, D. E., von Salzen, K., Walker, G., Wang, Z., Wolf, A.B., Xie, S., Xu, K., Yang, F., and Zhang G.: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single-layer cloud, Q. J. Roy. Meteor. Soc., 135, 979–1002, https://doi.org/10.1002/qj.416, 2009.
Lachlan-Cope, T., Listowski, C., and O'Shea, S.: The microphysics of clouds over the Antarctic Peninsula – Part 1: Observations, Atmos. Chem. Phys., 16, 15605–15617, https://doi.org/10.5194/acp-16-15605-2016, 2016.
Lazzara, M. A., Weidner, G. A., Keller, L. M., Thom, J. E., and Cassano, J. J.: Antarctic Automatic Weather Station Program: 30 years of polar observations, B. Am. Meteorol. Soc., 93, 1519–1537, https://doi.org/10.1175/BAMS-D-11-00015.1, 2012.
Listowski, C. and Lachlan-Cope, T.: The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF, Atmos. Chem. Phys., 17, 10195–10221, https://doi.org/10.5194/acp-17-10195-2017, 2017.
Lubin, D., Chen, B., Bromwich, D. H., Somerville, R. C. J., Lee, W.-H., and Hines, K. M.: The impact of Antarctic cloud radiative properties on a GCM climate simulation, J. Climate, 11, 447–462, https://doi.org/10.1175/1520-0442(1998)0112.0, 1998.
Mather, J. H. and Voyles, J. W.: The ARM climate research facility: A review of structure and capabilities, B. Am. Meteorol. Soc., 94, 377–392,
https://doi.org/10.1175/BAMS-D-11-00218.1, 2013.
McCoy, D. T., Hartmann, D. L., Zelinka, M. D., Ceppi, P., and Grosvenor, D. P.: Mixed-phase cloud physics and Southern Ocean cloud feedback in climate
models, J. Geophys. Res., 120, 9539–9554, https://doi.org/10.1002/2015JD023603, 2015.
Milbrandt, J. A. and Morrison, H.: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories, J. Atmos. Sci., 73, 975–995,
https://doi.org/10.1175/JAS-D-15-0204.1, 2016.
Milbrandt, J. A. and Yau, M. K.: A multimoment bulk microphysics
parameterization. Part II: A proposed three-moment closure and scheme
description, J. Atmos. Sci., 62, 3065–3081, https://doi.org/10.1175/JAS3535.1, 2005.
Morris, V. R.: Microwave radiometer (MWR) handbook, ARM-TR-016, DOE Office of Science, Office of Biological and Environmental Research, 20 pp.,
https://doi.org/10.2172/1020715, 2006.
Morrison, H. and Milbrandt, J. A.: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme
description and idealized tests, J. Atmos. Sci., 72, 287–311,
https://doi.org/10.1175/JAS-D-14-0065.1, 2015.
Morrison, H. and Pinto, J. O.: Intercomparison of bulk cloud microphysics
schemes in mesoscale simulations of springtime Arctic mixed-phase stratiform
clouds, Mon. Weather Rev., 134, 1880–1990, 2006.
Morrison, H., Curry, J. A., and Khvorostyanov, V. I.: A new double-moment
microphysics scheme for application in cloud and climate models. Part I:
Description, J. Atmos. Sci., 62, 1665–1677, https://doi.org/10.1175/JAS3446.1, 2005.
Morrison, H., Pinto, J. O., Curry, J. A., and McFarquhar, G. M.: Sensitivity of modeled Arctic mixed-phase stratocumulus to cloud condensation and ice
nuclei over regionally varying surface conditions, J. Geophys. Res., 113,
D05203, https://doi.org/10.1029/2007JD008729, 2008.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall
line: Comparison of one- and two-moment schemes, Mon. Weather Rev., 137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
Nakanishi, M. and Niino, H.: An improved Mellor-Yamada level-3 model: Its
numerical stability and application to a regional prediction of advection
fog, Bound.-Lay. Meteorol., 119, 397–407, https://doi.org/10.1007/s10546-005-9030-8,
2006.
NCAR Mesoscale and Microscale Meteorology: The Weather Research and Forecasting model, available at: https://www.mmm.ucar.edu/weather-research-and-forecasting-model, last accessed 7 August 2019.
Nicolas, J. P. and Bromwich, D. H.: Climate of West Antarctica and influence of marine air intrusions, J. Climate, 24, 49–67, https://doi.org/10.1175/2010JCLI3322.1, 2011.
Nicolas, J. P. and Bromwich, D. H.: New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global reanalyses, J. Climate, 27, 8070–8093, https://doi.org/10.1175/JCLI-D-13-00733.1, 2014.
Nicolas, J. P, Scott, R. C., Cadeddu, M. P., Bromwich, D. H., Verlinde, J.,
Lubin, D., Russell, L. M., Jenkinson, C., Powers, H. H., Ryczek, M., Stone,
G., and Wille, J.: January 2016 extensive summer melt in West Antarctica
favoured by strong El Nino, Nat. Commun., 8, 15799, https://doi.org/10.1038/ncomms15799, 2017.
NOAA Environmental Modeling Center: The GFS Atmospheric Model, NCEP Office
Note 442, 14 pp., available at: https://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf (last access: 27 September 2019), 2003.
O'Shea, S. J., Choularton, T. W., Flynn, M., Bower, K. N., Gallagher, M., Crosier, J., Williams, P., Crawford, I., Fleming, Z. L., Listowski, C., Kirchgaessner, A., Ladkin, R. S., and Lachlan-Cope, T.: In situ measurements of cloud microphysics and aerosol over coastal Antarctica during the MAC campaign, Atmos. Chem. Phys., 17, 13049–13070, https://doi.org/10.5194/acp-17-13049-2017, 2017.
Pavolonis, M. and Key, J.: Antarctic cloud radiative forcing at the surface
estimated from the AVHRR Polar Pathfinder and ISCCP D1 datasets, 1985–93, J.
Appl. Meteorol., 42, 827–840, https://doi.org/10.1175/1520-0450(2003)042<0827:ACRFAT>2.0.CO;2, 2003.
Polar Meteorology Group: AMPS database, available at: http://polarmet.osu.edu/AMPS/, last access: 29 September 2017.
Polar Meteorology Group: The Polar WRF model, available at: http://polarmet.osu.edu/PWRF/registration.php, last access: 7 August 2019.
Pon, K.: The representation of low cloud in the Antarctic Mesoscale
Prediction System, MS thesis, Atmospheric Sciences Program, Dept. of
Geography, The Ohio State University, 80 pp., 2015.
Powers, J. G., Manning, K. W., Bromwich, D. H., Cassano, J. J., and Cayette, A. M.: A decade of Antarctic science support through AMPS, B. Am. Meteorol. Soc., 93, 1699–1712, https://doi.org/10.1175/BAMS-D-11-00186.1, 2012.
Rignot, E.: Changes in West Antarctic ice stream dynamics observed with ALOS
PALSAR data, Geophys. Res. Lett., 35, L12505, https://doi.org/10.1029/2008GL033365,
2008.
Schmeisser, L., Backman, J., Ogren, J. A., Andrews, E., Asmi, E., Starkweather, S., Uttal, T., Fiebig, M., Sharma, S., Eleftheriadis, K., Vratolis, S., Bergin, M., Tunved, P., and Jefferson, A.: Seasonality of aerosol optical properties in the Arctic, Atmos. Chem. Phys., 18, 11599–11622, https://doi.org/10.5194/acp-18-11599-2018, 2018.
Scott, R. C. and Lubin, D.: Unique manifestations of mixed-phase cloud
microphysics over Ross Island and the Ross Ice Shelf, Antarctica, Geophys.
Res. Lett., 43, 2936–2945, https://doi.org/10.1002/2013JD021132, 2016.
Scott, R. C., Lubin, D., Vogelmann, A. M., and Kato, S.: West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites, J. Climate, 30, 6151–6170, https://doi.org/10.1175/JCLI-D-16-0644.1, 2017.
Shupe, M. and Intrieri, J.: Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zenith angle, J.
Climate, 17, 616–628, https://doi.org/10.1175/1520-0442(2004)017<0616:CRFOTA>2.0.CO;2, 2004.
Shupe, M. D.: Clouds at Arctic atmospheric observatories. Part II:
Thermodynamic phase characteristics, J. Appl. Meteorol. Clim., 50, 645–661,
https://doi.org/10.1175/2010JAMC2468.1, 2011.
Silber, I., Verlinde, J., Eloranta, E. W., and Cadeddu, M.: Antarctic cloud
macrophysical, thermodynamic phase, and atmospheric inversion coupling
properties at McMurdo Station: I. Principal data processing and climatology,
J. Geophys. Res., 123, 6099–6121, https://doi.org/10.1029/2018JD028279, 2018a.
Silber, I., Verlinde, J., Eloranta, E. W., Flynn, C. J., and Flynn, D. M.:
Reprocessed MPL data sets, https://doi.org/10.5439/1468777, 2018b.
Silber, I., Verlinde, J., Eloranta, E. W., Flynn, C. J., and Flynn, D. M.: Polar liquid cloud base detection algorithms for high spectral resolution or
micropulse lidar data, J. Geophys. Res.-Atmos., 123, 4310–4322, https://doi.org/10.1029/2017JD027840, 2018c.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X.-Y., Wang, W., and Powers, J. G: A description of the Advanced Research WRF Version 3, NCAR Tech, Note NCAR/TN-475+STR, 125 pp., 2008.
Slingo, J. M.: The development and verification of a cloud prediction scheme
for the ECMWF model, Q. J. Roy. Meteor. Soc., 113, 899–927,
https://doi.org/10.1002/qj.49711347710, 1987.
Solomon, A., Shupe, M. D., Persson, P. O. G., and Morrison, H.: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion, Atmos. Chem. Phys., 11, 10127–10148, https://doi.org/10.5194/acp-11-10127-2011, 2011.
Solomon, A., Shupe, M. D., Persson, O., Morrison, H., Yamaguchi, T.,
Caldwell, P. M., and de Boer, G.: The sensitivity of springtime Arctic
mixed-phase stratocumulus clouds to surface-layer and cloud-top
inversion-layer moisture sources, J. Atmos. Sci., 71, 574–595,
https://doi.org/10.1175/JAS-D-13-0179, 2014.
Solomon, A., Feingold, G., and Shupe, M. D.: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus, Atmos. Chem. Phys., 15, 10631–10643, https://doi.org/10.5194/acp-15-10631-2015, 2015.
Steig, E. J. Schneider, D. P., Rutherford, S. D., Mann, M. E., Comiso, J. C., and Shindell, D. T.: Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year, Nature, 457, 459–462,
https://doi.org/10.1038/nature07669, 2009.
Thompson, G., and Eidhammer, T.: A study of aerosol impacts on clouds and
precipitation development in a large winter cyclone, J. Atmos. Sci., 71,
3636–3658, https://doi.org/10.1175/JAS-D-13-0305.1, 2014.
Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Mon. Weather Rev., 136, 5095–5115, https://doi.org/10.1175/2008MWR2387.1, 2008.
Tjernström, M., Leck, C., Birch, C. E., Bottenheim, J. W., Brooks, B. J., Brooks, I. M., Bäcklin, L., Chang, R. Y.-W., de Leeuw, G., Di Liberto, L., de la Rosa, S., Granath, E., Graus, M., Hansel, A., Heintzenberg, J., Held, A., Hind, A., Johnston, P., Knulst, J., Martin, M., Matrai, P. A., Mauritsen, T., Müller, M., Norris, S. J., Orellana, M. V., Orsini, D. A., Paatero, J., Persson, P. O. G., Gao, Q., Rauschenberg, C., Ristovski, Z., Sedlar, J., Shupe, M. D., Sierau, B., Sirevaag, A., Sjogren, S., Stetzer, O., Swietlicki, E., Szczodrak, M., Vaattovaara, P., Wahlberg, N., Westberg, M., and Wheeler, C. R.: The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design, Atmos. Chem. Phys., 14, 2823–2869, https://doi.org/10.5194/acp-14-2823-2014, 2014.
Turner, J., Lachlan-Cope, T. A., Colwell, S., Marshall, G. J., and Connolley,
W. M.: Significant warming of the Antarctic winter troposphere, Science,
311, 1914–1917, https://doi.org/10.1126/science.1121652, 2006.
van Tricht K., Lhermitte, S., Lenaerts, J. T. M., Gorodetskaya, I. V.,
L'Ecuyer, T. S., Noah, B., van den Broeke, R., Turner D. D., and van Lipzig,
N. P. M.: Clouds enhance Greenland ice sheet meltwater runoff, Nat. Commun.,
7, 10266, https://doi.org/10.1038/ncomms10266, 2016.
Wagenbach, D., Gorlach, U., Moser, K., and Munnich, K. O.: Coastal Antarctic
aerosol: the seasonal pattern of its chemical composition and radionuclide
content, Tellus B, 40, 426–436, 1988.
Wille, J. D., Bromwich, D. H., Cassano, J. J., Nigro, M. A., Mateling, M. E., and Lazzara, M. A.: Evaluation of the AMPS boundary layer simulations on the Ross Ice Shelf, Antarctica, with unmanned aircraft observations, J. Appl.
Meteorol. Clim., 56, 2239–2258, https://doi.org/10.1175/JAMC-D-16-0339.1, 2017.
Wilson, A. B., Bromwich, D. H., and Hines, K. M.: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain: Surface and upper air analysis, J. Geophys. Res., 116, D11112, https://doi.org/10.1029/2010JD015013, 2011.
Wilson, A. B., Bromwich, D. H., and Hines, K. M.: Evaluation of Polar WRF forecasts on the Arctic System Reanalysis domain. Part II. Atmospheric hydrologic cycle, J. Geophys. Res., 117, D04107, https://doi.org/10.1029/2011JD016765, 2012.
Witze, A.: Antarctic clouds studied for first time in five decades, Nature,
529, 12–12, https://doi.org/10.1038/529012a, 2016.
Short summary
We explore how well clouds are represented in numerical weather prediction over Antarctica, a very difficult environment for field programs where few studies have been conducted. Fortunately, a 2015–2017 field program for West Antarctica supplied observations. We achieve promising results with newer, more advanced cloud schemes. We need to understand the role of clouds and precipitation in the maintenance of the Antarctic ice mass to understand and predict sea level change over the 21st century.
We explore how well clouds are represented in numerical weather prediction over Antarctica, a...
Altmetrics
Final-revised paper
Preprint