Articles | Volume 19, issue 16
https://doi.org/10.5194/acp-19-10739-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-10739-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Core and margin in warm convective clouds – Part 2: Aerosol effects on core properties
Reuven H. Heiblum
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
Lital Pinto
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
Orit Altaratz
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
Guy Dagan
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
now at: Atmospheric, Oceanic and Planetary Physics, Department of
Physics, University of Oxford, Oxford, UK
Department of Earth and Planetary Sciences, Weizmann Institute of
Science, Rehovot, Israel
Related authors
No articles found.
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574, https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
Short summary
Clouds play a crucial role in Earth's climate by reflecting sunlight and trapping heat. Understanding how clouds respond to global warming (cloud feedback) is essential for climate change. However, the natural climate variability, like ENSO, can distort these estimates. Relying on long-term reanalysis data and simulations, this study finds that ENSO with a typical periodicity of 2–7 years can introduce a significant bias on cloud feedback estimates on even decadal to century time scales.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545, https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Short summary
This letter explores a novel approach for the formation of cloud droplets in rising adiabatic air parcels. Our approach combines microphysical equations accounting for moisture, updrafts and concentration of aerosols. Our analysis reveals three regimes: A) Low moisture and high concentration can hinder activation; B) Droplets can activate and stabilize above critical sizes, and C) sparse clouds can have droplets exhibiting activation and deactivation cycles.
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023, https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Short summary
Clouds' responses to global warming contribute the largest uncertainty in climate prediction. Here, we analyze 42 years of global cloud cover in reanalysis data and show a decreasing trend over most continents and an increasing trend over the tropical and subtropical oceans. A reduction in near-surface relative humidity can explain the decreasing trend in cloud cover over land. Our results suggest potential stress on the terrestrial water cycle, associated with global warming.
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022, https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary
Short summary
We used record-breaking statistics together with spatial information to create record-breaking SST maps. The maps reveal warming patterns in the overwhelming majority of the ocean and coherent islands of cooling, where low records occur more frequently than high ones. Some of these cooling spots are well known; however, a surprising elliptical area in the Southern Ocean is observed as well. Similar analyses can be performed on other key climatological variables to explore their trend patterns.
Guy Dagan
Atmos. Chem. Phys., 22, 15767–15775, https://doi.org/10.5194/acp-22-15767-2022, https://doi.org/10.5194/acp-22-15767-2022, 2022
Short summary
Short summary
Using idealized simulations we demonstrate that the equilibrium climate sensitivity (ECS), i.e. the increase in surface temperature under equilibrium conditions due to doubling of the CO2 concentration, increases with the aerosol concentration. The ECS increase is explained by a faster increase in precipitation efficiency with warming under high aerosol concentrations, which more efficiently depletes the water from the cloud and thus is manifested as an increase in the cloud feedback parameter.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Eshkol Eytan, Ilan Koren, Orit Altaratz, Mark Pinsky, and Alexander Khain
Atmos. Chem. Phys., 21, 16203–16217, https://doi.org/10.5194/acp-21-16203-2021, https://doi.org/10.5194/acp-21-16203-2021, 2021
Short summary
Short summary
Describing cloud mixing processes is among the most challenging fronts in cloud physics. Therefore, the adiabatic fraction (AF) that serves as a mixing measure is a valuable metric. We use high-resolution (10 m) simulations of single clouds with a passive tracer to test the skill of different methods used to derive AF. We highlight a method that is insensitive to the available cloud samples and allows considering microphysical effects on AF estimations in different environmental conditions.
Tom Dror, Mickaël D. Chekroun, Orit Altaratz, and Ilan Koren
Atmos. Chem. Phys., 21, 12261–12272, https://doi.org/10.5194/acp-21-12261-2021, https://doi.org/10.5194/acp-21-12261-2021, 2021
Short summary
Short summary
A part of continental shallow convective cumulus (Cu) was shown to share properties such as organization and formation over vegetated areas, thus named green Cu. Mechanisms behind the formed patterns are not understood. We use different metrics and an empirical orthogonal function (EOF) to decompose the dataset and quantify organization factors (cloud streets and gravity waves). We show that clouds form a highly organized grid structure over hundreds of kilometers at the field lifetime.
Tom Dror, J. Michel Flores, Orit Altaratz, Guy Dagan, Zev Levin, Assaf Vardi, and Ilan Koren
Atmos. Chem. Phys., 20, 15297–15306, https://doi.org/10.5194/acp-20-15297-2020, https://doi.org/10.5194/acp-20-15297-2020, 2020
Short summary
Short summary
We used in situ aerosol measurements over the Atlantic, Caribbean, and Pacific to initialize a cloud model and study the impact of aerosol concentration and sizes on warm clouds. We show that high aerosol concentration increases cloud mass and reduces surface rain when giant particles (diameter > 9 µm) are present. The large aerosols changed the timing and magnitude of internal cloud processes and resulted in an enhanced evaporation below cloud base and dramatically reduced surface rain.
Cited articles
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008.
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud
invigoration by aerosols – Coupling between microphysics and dynamics,
Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Betts, A. K.: Saturation point analysis of moist convective overturning, J.
Atmos. Sci., 39, 1484–1505, https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2, 1982.
Betts, A. K. and Silva Dias, M. F.: Unsaturated downdraft thermodynamics in
cumulonimbus, J. Atmos. Sci., 36, 1061–1071,
https://doi.org/10.1175/1520-0469(1979)036<1061:UDTIC>2.0.CO;2,
1979.
Carrió, G. G. and Cotton, W. R.: On the buffering of CCN impacts on
wintertime orographic clouds: An idealized examination, Atmos. Res., 137,
136–144, https://doi.org/10.1016/j.atmosres.2013.09.011, 2014.
Dagan, G., Koren, I., and Altaratz, O.: Aerosol effects on the timing of warm
rain processes, Geophys. Res. Lett., 42, 4590–4598,
https://doi.org/10.1002/2015GL063839, 2015a.
Dagan, G., Koren, I., and Altaratz, O.: Competition between core and periphery-based processes in warm convective clouds – from invigoration to suppression, Atmos. Chem. Phys., 15, 2749–2760, https://doi.org/10.5194/acp-15-2749-2015, 2015b.
Dagan, G., Koren, I., Altaratz, O., and Heiblum, R. H.: Aerosol effect on the
evolution of the thermodynamic properties of warm convective cloud fields,
Sci. Rep.-UK, 6, 38769, https://doi.org/10.1038/srep38769, 2016.
Dagan, G., Koren, I., Altaratz, O., and Heiblum, R. H.: Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading, Atmos. Chem. Phys., 17, 7435–7444, https://doi.org/10.5194/acp-17-7435-2017, 2017.
Dey, S., Di Girolamo, L., Zhao, G., Jones, A. L., and McFarquhar, G. M.:
Satellite-observed relationships between aerosol and trade-wind cumulus
cloud properties over the Indian Ocean, Geophys. Res. Lett., 38, L01804,
https://doi.org/10.1029/2010GL045588, 2011.
Glassmeier, F. and Lohmann, U.: Precipitation Susceptibility and Aerosol
Buffering of Warm- and Mixed-Phase Orographic Clouds in Idealized
Simulations, J. Atmos. Sci., 75, 1173–1194, https://doi.org/10.1175/JAS-D-17-0254.1,
2018.
Grant, L. D. and van den Heever, S. C.: Cold pool and precipitation
responses to aerosol loading: modulation by dry layers, J. Atmos. Sci.,
72, 1398–1408, https://doi.org/10.1175/JAS-D-14-0260.1, 2015.
Heiblum, R. H., Altaratz, O., Koren, I., Feingold, G., Kostinski, A. B.,
Khain, A. P., Ovchinnikov, M., Fredj, E., Dagan, G., Pinto, L., Yaish, R.,
and Chen, Q.: Characterization of cumulus cloud fields using trajectories in
the center of gravity versus water mass phase space: 1. Cloud tracking and
phase space description, J. Geophys. Res.-Atmos., 121, 6336–6355,
https://doi.org/10.1002/2015JD024186, 2016a.
Heiblum, R. H., Altaratz, O., Koren, I., Feingold, G., Kostinski, A. B.,
Khain, A. P., Ovchinnikov, M., Fredj, E., Dagan, G., Pinto, L., Yaish, R.,
and Chen, Q.: Characterization of cumulus cloud fields using trajectories in
the center of gravity versus water mass phase space: 2. Aerosol effects on
warm convective clouds, J. Geophys. Res.-Atmos., 121, 6356–6373,
https://doi.org/10.1002/2015JD024193, 2016b.
Heiblum, R. H., Pinto, L., Altaratz, O., Dagan, G., and Koren, I.:
Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime, Atmos. Chem. Phys., 19, 10717–10738, https://doi.org/10.5194/acp-19-10717-2019, 2019.
Hudson, J. G. and Mishra, S.: Relationships between CCN and cloud
microphysics variations in clean maritime air, Geophys. Res. Lett., 34, L16804,
https://doi.org/10.1029/2007GL030044, 2007.
Hudson, J. G. and Yum, S. S.: Maritime–continental drizzle contrasts in
small cumuli, J. Atmos. Sci., 58, 915–926,
https://doi.org/10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2,
2001.
Igau, R. C., LeMone, M. A., and Wei, D.: Updraft and downdraft cores in TOGA
COARE: why so many buoyant downdraft cores?, J. Atmos. Sci., 56,
2232–2245, https://doi.org/10.1175/1520-0469(1999)056<2232:UADCIT>2.0.CO;2, 1999.
IPCC: Climate Change 2013: The Physical Science Basis. Working Group I
Contribution to the Fifth Assessment Report of the IPCC, Cambridge Univ.
Press, New York, 2013.
Jaenicke, R.: 9.3.1 Physical properties, in: Physical and chemical properties
of the air, edited by: Fischer, G., 405–420, Springer-Verlag,
Berlin/Heidelberg, 1988.
Jiang, H. and Feingold, G.: Effect of aerosol on warm convective clouds:
Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model, J.
Geophys. Res., 111, D01202, https://doi.org/10.1029/2005JD006138, 2006.
Jiang, H., Xue, H., Teller, A., Feingold, G., and Levin, Z.: Aerosol effects
on the lifetime of shallow cumulus, Geophys. Res. Lett., 33, L14806,
https://doi.org/10.1029/2006GL026024, 2006.
Jiang, H., Feingold, G., and Koren, I.: Effect of aerosol on trade cumulus
cloud morphology, J. Geophys. Res., 114, D11209, https://doi.org/10.1029/2009JD011750,
2009.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich, Y.: The
effect of smoke, dust, and pollution aerosol on shallow cloud development
over the Atlantic Ocean, P. Natl. Acad. Sci. USA, 102, 11207–11212,
https://doi.org/10.1073/pnas.0505191102, 2005.
Khain, A., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V.:
Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective
Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part
I: Model Description and Possible Applications, J. Atmos. Sci., 61,
2963–2982, https://doi.org/10.1175/JAS-3350.1, 2004.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of deep convective clouds, Q. J. Roy. Meteor. Soc., 131,
2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Khain, A. P., BenMoshe, N., and Pokrovsky, A.: Factors Determining the Impact
of Aerosols on Surface Precipitation from Clouds: An Attempt at
Classification, J. Atmos. Sci., 65, 1721–1748,
https://doi.org/10.1175/2007JAS2515.1, 2008.
Khairoutdinov, M. F. and Randall, D. A.: Cloud resolving modeling of the ARM
summer 1997 IOP: model formulation, results, uncertainties, and
sensitivities, J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2,
2003.
Knupp, K. R. and Cotton, W. R.: Convective cloud downdraft structure: An
interpretive survey, Rev. Geophys., 23, 183, https://doi.org/10.1029/RG023i002p00183,
1985.
Kogan, Y. L. and Martin, W. J.: Parameterization of bulk condensation in
numerical cloud models, J. Atmos. Sci., 51, 1728–1739,
https://doi.org/10.1175/1520-0469(1994)051<1728:POBCIN>2.0.CO;2,
1994.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets,
T. Faraday Soc., 32, 1152–1161, 1936.
Koren, I., Dagan, G., and Altaratz, O.: From aerosol-limited to invigoration
of warm convective clouds, Science, 344, 1143–1146,
https://doi.org/10.1126/science.1252595, 2014.
Koren, I., Altaratz, O., and Dagan, G.: Aerosol effect on the mobility of
cloud droplets, Environ. Res. Lett., 10, 104011,
https://doi.org/10.1088/1748-9326/10/10/104011, 2015.
L'Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M., and Takemura, T.: Global
observations of aerosol impacts on precipitation occurrence in warm maritime
clouds, J. Geophys. Res., 114, D09211, https://doi.org/10.1029/2008JD011273, 2009.
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., and Ding, Y.: Long-term
impacts of aerosols on the vertical development of clouds and precipitation,
Nat. Geosci., 4, 888–894, https://doi.org/10.1038/ngeo1313, 2011.
Mason, B. J. and Chien, C. W.: Cloud-droplet growth by condensation in
cumulus, Q. J. Roy. Meteor. Soc., 88,
136–142, 1962.
Mordy, W.: Computations of the growth by condensation of a population of
cloud droplets, Tellus, 11, 16–44,
https://doi.org/10.1111/j.2153-3490.1959.tb00003.x, 1959.
Paluch, I. R. and Breed, D. W.: A Continental Storm with a Steady, Adiabatic
Updraft and High Concentrations of Small Ice Particles: 6 July 1976 Case
Study, J. Atmos. Sci., 41, 1008–1024,
https://doi.org/10.1175/1520-0469(1984)041<1008:ACSWAS>2.0.CO;2,
1984.
Pinsky, M., Mazin, I. P., Korolev, A., and Khain, A.: Supersaturation and
diffusional droplet growth in liquid clouds, J. Atmos. Sci., 70,
2778–2793, https://doi.org/10.1175/JAS-D-12-077.1, 2013.
Reisin, T., Levin, Z., and Tzivion, S.: Rain Production in Convective Clouds
As Simulated in an Axisymmetric Model with Detailed Microphysics. Part I:
Description of the Model, J. Atmos. Sci., 53, 497–519,
https://doi.org/10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2,
1996.
Reutter, P., Su, H., Trentmann, J., Simmel, M., Rose, D., Gunthe, S. S., Wernli, H., Andreae, M. O., and Pöschl, U.: Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys., 9, 7067–7080, https://doi.org/10.5194/acp-9-7067-2009, 2009.
Saleeby, S. M., Herbener, S. R., van den Heever, S. C., and L'Ecuyer, T.:
Impacts of cloud droplet–nucleating aerosols on shallow tropical
convection, J. Atmos. Sci., 72, 1369–1385, https://doi.org/10.1175/JAS-D-14-0153.1,
2015.
Savane, O., Vant-Hull, B., Mahani, S., and Khanbilvardi, R.: Effects of
aerosol on cloud liquid water path: statistical method a potential source
for divergence in past observation based correlative studies, Atmosphere,
6, 273–298, https://doi.org/10.3390/atmos6030273, 2015.
Seifert, A. and Heus, T.: Large-eddy simulation of organized precipitating trade wind cumulus clouds, Atmos. Chem. Phys., 13, 5631–5645, https://doi.org/10.5194/acp-13-5631-2013, 2013.
Seifert, A., Heus, T., Pincus, R., and Stevens, B.: Large-eddy simulation of
the transient and near-equilibrium behavior of precipitating shallow
convection, J. Adv. Model. Earth Sy., 7, 1918–1937,
https://doi.org/10.1002/2015MS000489, 2015.
Seigel, R. B.: Shallow Cumulus Mixing and Subcloud-Layer Responses to
Variations in Aerosol Loading, J. Atmos. Sci., 71, 2581–2603,
https://doi.org/10.1175/JAS-D-13-0352.1, 2014.
Seiki, T. and Nakajima, T.: Aerosol effects of the condensation process on a
convective cloud simulation, J. Atmos. Sci., 71, 833–853,
https://doi.org/10.1175/JAS-D-12-0195.1, 2014.
Sheffield, A. M., Saleeby, S. M., and van den Heever, S. C.: Aerosol-induced
mechanisms for cumulus congestus growth, J. Geophys. Res.-Atmos., 120,
8941–8952, https://doi.org/10.1002/2015JD023743, 2015.
Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J.,
Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C.-H.,
Sanchez, E., Stevens, B., and Stevens, D. E.: A large eddy simulation
intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60,
1201–1219, https://doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2, 2003.
Small, J. D., Chuang, P. Y., Feingold, G., and Jiang, H.: Can aerosol
decrease cloud lifetime?, Geophys. Res. Lett., 36,
https://doi.org/10.1029/2009GL038888, 2009.
Sorooshian, A., Feingold, G., Lebsock, M. D., Jiang, H., and Stephens, G. L.:
On the precipitation susceptibility of clouds to aerosol perturbations,
Geophys. Res. Lett., 36, L13803, https://doi.org/10.1029/2009GL038993, 2009.
Squires, P.: The microstructure and colloidal stability of warm clouds,
Tellus, 10, 256–261, https://doi.org/10.1111/j.2153-3490.1958.tb02011.x, 1958.
Stevens, B.: On the growth of layers of nonprecipitating cumulus convection,
J. Atmos. Sci., 64, 2916–2931, https://doi.org/10.1175/JAS3983.1, 2007.
Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and
precipitation in a buffered system, Nature, 461, 607–613,
https://doi.org/10.1038/nature08281, 2009.
Storer, R. L. and van den Heever, S. C.: Microphysical processes evident in
aerosol forcing of tropical deep convective clouds, J. Atmos. Sci., 70,
430–446, https://doi.org/10.1175/JAS-D-12-076.1, 2013.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J.
Atmos. Sci., 34, 1149–1152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.
Tzivion, S., Feingold, G., and Levin, Z.: An efficient numerical solution to
the stochastic collection equation, J. Atmos. Sci., 44, 3139–3149,
https://doi.org/10.1175/1520-0469(1987)044<3139:AENSTT>2.0.CO;2,
1987.
Wang, C.: A modeling study of the response of tropical deep convection to
the increase of cloud condensation nuclei concentration: 1. Dynamics and
microphysics, J. Geophys. Res., 110, D21211, https://doi.org/10.1029/2004JD005720, 2005.
Warner, J.: A Reduction in Rainfall Associated with Smoke from Sugar-Cane
Fires – An Inadvertent Weather Modification?, J. Appl. Meteorol., 7,
247–251, https://doi.org/10.1175/1520-0450(1968)007<0247:ARIRAW>2.0.CO;2, 1968.
Wei, D., Blyth, A. M., and Raymond, D. J.: Buoyancy of convective clouds in
TOGA COARE, J. Atmos. Sci., 55, 3381–3391,
https://doi.org/10.1175/1520-0469(1998)055<3381:BOCCIT>2.0.CO;2,
1998.
Xu, K.-M. and Randall, D. A.: Updraft and downdraft statistics of simulated
tropical and midlatitude cumulus convection, J. Atmos. Sci., 58,
1630–1649, https://doi.org/10.1175/1520-0469(2001)058<1630:UADSOS>2.0.CO;2, 2001.
Xue, H. and Feingold, G.: Large-Eddy Simulations of Trade Wind Cumuli:
Investigation of Aerosol Indirect Effects, J. Atmos. Sci., 63,
1605–1622, https://doi.org/10.1175/JAS3706.1, 2006.
Xue, H., Feingold, G., and Stevens, B.: Aerosol effects on clouds,
precipitation, and the organization of shallow cumulus convection, J. Atmos.
Sci., 65, 392–406, https://doi.org/10.1175/2007JAS2428.1, 2008.
Yuan, T., Remer, L. A., and Yu, H.: Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train, Atmos. Chem. Phys., 11, 7119–7132, https://doi.org/10.5194/acp-11-7119-2011, 2011.
Zhao, M. and Austin, P. H.: Life cycle of numerically simulated shallow
cumulus clouds. part I: transport, J. Atmos. Sci., 62, 1269–1290,
https://doi.org/10.1175/JAS3414.1, 2005a.
Zhao, M. and Austin, P. H.: Life cycle of numerically simulated shallow
cumulus clouds. part II: mixing dynamics, J. Atmos. Sci., 62, 1291–1310,
https://doi.org/10.1175/JAS3415.1, 2005b.
Short summary
The effects of aerosol concentration on a cloud's partition to core and margin are examined. The main finding from Part I (i.e. Bcore ⊆ RHcore ⊆ Wcore) is seen for all aerosol concentrations. Clouds can produce positive buoyancy due to both saturated updrafts or unsaturated downdrafts; the latter are dependent on low aerosol concentrations. We show that a cloud's mass is mainly dependent on core processes (condensation), while its volume is mainly dependent on margin processes (evaporation).
The effects of aerosol concentration on a cloud's partition to core and margin are examined. The...
Altmetrics
Final-revised paper
Preprint