Articles | Volume 19, issue 16
https://doi.org/10.5194/acp-19-10739-2019
https://doi.org/10.5194/acp-19-10739-2019
Research article
 | 
26 Aug 2019
Research article |  | 26 Aug 2019

Core and margin in warm convective clouds – Part 2: Aerosol effects on core properties

Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, and Ilan Koren

Related authors

The ENSO-driven bias in the assessment of long-term cloud feedback to global warming
Huan Liu, Ilan Koren, Orit Altaratz, and Shutian Mu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2574,https://doi.org/10.5194/egusphere-2025-2574, 2025
Short summary
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024,https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Dynamical regimes of CCN activation in adiabatic air parcels
Manuel Santos Gutiérrez, Mickaël David Chekroun, and Ilan Koren
EGUsphere, https://doi.org/10.48550/arXiv.2405.11545,https://doi.org/10.48550/arXiv.2405.11545, 2024
Preprint withdrawn
Short summary
Opposing trends of cloud coverage over land and ocean under global warming
Huan Liu, Ilan Koren, Orit Altaratz, and Mickaël D. Chekroun
Atmos. Chem. Phys., 23, 6559–6569, https://doi.org/10.5194/acp-23-6559-2023,https://doi.org/10.5194/acp-23-6559-2023, 2023
Short summary
Record-breaking statistics detect islands of cooling in a sea of warming
Elisa T. Sena, Ilan Koren, Orit Altaratz, and Alexander B. Kostinski
Atmos. Chem. Phys., 22, 16111–16122, https://doi.org/10.5194/acp-22-16111-2022,https://doi.org/10.5194/acp-22-16111-2022, 2022
Short summary

Cited articles

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 
Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008. 
Altaratz, O., Koren, I., Remer, L. A., and Hirsch, E.: Review: Cloud invigoration by aerosols – Coupling between microphysics and dynamics, Atmos. Res., 140–141, 38–60, https://doi.org/10.1016/j.atmosres.2014.01.009, 2014. 
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. 
Betts, A. K.: Saturation point analysis of moist convective overturning, J. Atmos. Sci., 39, 1484–1505, https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2, 1982. 
Short summary
The effects of aerosol concentration on a cloud's partition to core and margin are examined. The main finding from Part I (i.e. Bcore ⊆ RHcore ⊆ Wcore) is seen for all aerosol concentrations. Clouds can produce positive buoyancy due to both saturated updrafts or unsaturated downdrafts; the latter are dependent on low aerosol concentrations. We show that a cloud's mass is mainly dependent on core processes (condensation), while its volume is mainly dependent on margin processes (evaporation).
Share
Altmetrics
Final-revised paper
Preprint