Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10161-2019
https://doi.org/10.5194/acp-19-10161-2019
Research article
 | 
13 Aug 2019
Research article |  | 13 Aug 2019

On the contribution of chemical oscillations to ozone depletion events in the polar spring

Maximilian Herrmann, Le Cao, Holger Sihler, Ulrich Platt, and Eva Gutheil

Related authors

Ozone depletion events in the Arctic spring of 2019: a new modeling approach to bromine emissions
Maximilian Herrmann, Moritz Schöne, Christian Borger, Simon Warnach, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 22, 13495–13526, https://doi.org/10.5194/acp-22-13495-2022,https://doi.org/10.5194/acp-22-13495-2022, 2022
Short summary
Time-dependent 3D simulations of tropospheric ozone depletion events in the Arctic spring using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)
Maximilian Herrmann, Holger Sihler, Udo Frieß, Thomas Wagner, Ulrich Platt, and Eva Gutheil
Atmos. Chem. Phys., 21, 7611–7638, https://doi.org/10.5194/acp-21-7611-2021,https://doi.org/10.5194/acp-21-7611-2021, 2021
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Soil deposition of atmospheric hydrogen constrained using planetary-scale observations
Alexander K. Tardito Chaudhri and David S. Stevenson
Atmos. Chem. Phys., 25, 7369–7385, https://doi.org/10.5194/acp-25-7369-2025,https://doi.org/10.5194/acp-25-7369-2025, 2025
Short summary
Comparative ozone production sensitivity to NOx and VOCs in Quito, Ecuador, and Santiago, Chile
María Cazorla, Melissa Trujillo, Rodrigo Seguel, and Laura Gallardo
Atmos. Chem. Phys., 25, 7087–7109, https://doi.org/10.5194/acp-25-7087-2025,https://doi.org/10.5194/acp-25-7087-2025, 2025
Short summary
South Asia anthropogenic ammonia emission inversion through assimilating IASI observations
Ji Xia, Yi Zhou, Li Fang, Yingfei Qi, Dehao Li, Hong Liao, and Jianbing Jin
Atmos. Chem. Phys., 25, 7071–7086, https://doi.org/10.5194/acp-25-7071-2025,https://doi.org/10.5194/acp-25-7071-2025, 2025
Short summary
A new parameterization of photolysis rates for oxygenated volatile organic compounds (OVOCs)
Yuwen Peng, Bin Yuan, Sihang Wang, Xin Song, Zhe Peng, Wenjie Wang, Suxia Yang, Jipeng Qi, Xianjun He, Yibo Huangfu, Xiao-Bing Li, and Min Shao
Atmos. Chem. Phys., 25, 7037–7052, https://doi.org/10.5194/acp-25-7037-2025,https://doi.org/10.5194/acp-25-7037-2025, 2025
Short summary
Constraining the budget of NOx and volatile organic compounds at a remote tropical island using multi-platform observations and WRF-Chem model simulations
Catalina Poraicu, Jean-François Müller, Trissevgeni Stavrakou, Crist Amelynck, Bert W. D. Verreyken, Niels Schoon, Corinne Vigouroux, Nicolas Kumps, Jérôme Brioude, Pierre Tulet, and Camille Mouchel-Vallon
Atmos. Chem. Phys., 25, 6903–6941, https://doi.org/10.5194/acp-25-6903-2025,https://doi.org/10.5194/acp-25-6903-2025, 2025
Short summary

Cited articles

Abbatt, J. P. D., Thomas, J. L., Abrahamsson, K., Boxe, C., Granfors, A., Jones, A. E., King, M. D., Saiz-Lopez, A., Shepson, P. B., Sodeau, J., Toohey, D. W., Toubin, C., von Glasow, R., Wren, S. N., and Yang, X.: Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions, Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012, 2012. a
Adams, J. W., Holmes, N. S., and Crowley, J. N.: Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233 K, Atmos. Chem. Phys., 2, 79–91, https://doi.org/10.5194/acp-2-79-2002, 2002. a
Alfonso, A., Georges, L. B., Gérard, L. V., and Gilles, P.: The BrO+Ch3O2 reaction: Kinetics and role in the atmospheric ozone budget, Geophys. Res. Lett., 24, 2745–2748, https://doi.org/10.1029/97GL02686, 1997. a, b
Artiglia, L., Edebeli, J., Orlando, F., Chen, S., Lee, M.-T., Arroyo, P. C., Gilgen, A., Bartels-Rausch, T., Kleibert, A., Vazdar, M., Andres Carignano, M., Francisco, J. S., Shepson, P. B., Gladich, I., and Ammann, M.: A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface, Nat. Commun., 8, 700, https://doi.org/10.1038/s41467-017-00823-x, 2017. a
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae
Download
Short summary
The oscillations of tropospheric ODEs in the Arctic spring is studied numerically. After the termination of an ODE, the reactive bromine is deposited onto aerosols/the snow surface, and the ozone may regenerate. The replenished ozone is available for the next autocatalytic bromine release, leading to the oscillation of an ODE. Its dependence on the NOx mixing ratio, the inversion layer strength, the ambient temperature, the aerosol density, and the solar radiation is investigated.
Share
Altmetrics
Final-revised paper
Preprint