Articles | Volume 19, issue 15
https://doi.org/10.5194/acp-19-10161-2019
https://doi.org/10.5194/acp-19-10161-2019
Research article
 | 
13 Aug 2019
Research article |  | 13 Aug 2019

On the contribution of chemical oscillations to ozone depletion events in the polar spring

Maximilian Herrmann, Le Cao, Holger Sihler, Ulrich Platt, and Eva Gutheil

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Maximilian Herrmann on behalf of the Authors (23 May 2019)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (25 Jun 2019) by Laurens Ganzeveld
AR by Maximilian Herrmann on behalf of the Authors (04 Jul 2019)  Author's response   Manuscript 
ED: Publish subject to technical corrections (08 Jul 2019) by Laurens Ganzeveld
AR by Maximilian Herrmann on behalf of the Authors (08 Jul 2019)  Author's response   Manuscript 
Download
Short summary
The oscillations of tropospheric ODEs in the Arctic spring is studied numerically. After the termination of an ODE, the reactive bromine is deposited onto aerosols/the snow surface, and the ozone may regenerate. The replenished ozone is available for the next autocatalytic bromine release, leading to the oscillation of an ODE. Its dependence on the NOx mixing ratio, the inversion layer strength, the ambient temperature, the aerosol density, and the solar radiation is investigated.
Altmetrics
Final-revised paper
Preprint