Articles | Volume 18, issue 10
Atmos. Chem. Phys., 18, 7251–7262, 2018
Atmos. Chem. Phys., 18, 7251–7262, 2018

Research article 25 May 2018

Research article | 25 May 2018

Bridging the condensation–collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds

Sisi Chen et al.

Related authors

Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach
Sisi Chen, Lulin Xue, and Man-Kong Yau
Atmos. Chem. Phys., 20, 10111–10124,,, 2020
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Cold cloud microphysical process rates in a global chemistry–climate model
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505,,, 2021
Short summary
Precipitation enhancement in stratocumulus clouds through airborne seeding: sensitivity analysis by UCLALES-SALSA
Juha Tonttila, Ali Afzalifar, Harri Kokkola, Tomi Raatikainen, Hannele Korhonen, and Sami Romakkaniemi
Atmos. Chem. Phys., 21, 1035–1048,,, 2021
Short summary
Secondary ice production in summer clouds over the Antarctic coast: an underappreciated process in atmospheric models
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771,,, 2021
Short summary
Opinion: Cloud-phase climate feedback and the importance of ice-nucleating particles
Benjamin J. Murray, Kenneth S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 21, 665–679,,, 2021
Short summary
On the ice-nucleating potential of warm hydrometeors in mixed-phase clouds
Michael Krayer, Agathe Chouippe, Markus Uhlmann, Jan Dušek, and Thomas Leisner
Atmos. Chem. Phys., 21, 561–575,,, 2021
Short summary

Cited articles

Ayala, O., Rosa, B., Wang, L.-P., and Grabowski, W. W.: Effects of turbulence on the geometric collision rate of sedimenting droplets, Part 1 – Results from direct numerical simulation, New J. Phys., 10, 075015,, 2008.
Baker, M., Corbin, R., and Latham, J.: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inhomogeneous mixing, Q. J. Roy. Meteor. Soc., 106, 581–598, 1980.
Blyth, A. M., Lasher-Trapp, S. G., Cooper, W. A., Knight, C. A., and Latham, J.: The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds, J. Atmos. Sci., 60, 2557–2572, 2003.
Brenguier, J.-L. and Chaumat, L.: Droplet Spectra Broadening in Cumulus Clouds. Part I: Broadening in Adiabatic Cores, J. Atmos. Sci., 58, 628–641, 2001.
Chen, S., Bartello, P., Yau, M. K., Vaillancourt, P. A., and Zwijsen, K.: Cloud Droplet Collisions in Turbulent Environment: Collision Statistics and Parameterization, J. Atmos. Sci., 73, 621–636, 2016.

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This paper introduces a sophisticated approach to incorporate the droplet hydrodynamic collision and condensation processes into a single DNS modeling framework. Arguably, this model provides a sophisticated approach to study the warm-rain initiation problem that has puzzled the cloud physics community for decades. The results show the increased condensation-mediated collisions when turbulence intensifies, indicating a positive impact of turbulence on droplet condensational–collisional growth.
Final-revised paper