Articles | Volume 18, issue 8
https://doi.org/10.5194/acp-18-5391-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-5391-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality
Peeyush Khare
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
Drew R. Gentner
CORRESPONDING AUTHOR
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
SEARCH (Solutions for Energy, Air, Climate and Health) Center, Yale University, New Haven, CT 06511, USA
Related authors
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Sunhye Kim, Jo Machesky, Drew R. Gentner, and Albert A. Presto
Atmos. Chem. Phys., 24, 1281–1298, https://doi.org/10.5194/acp-24-1281-2024, https://doi.org/10.5194/acp-24-1281-2024, 2024
Short summary
Short summary
Cooking emissions are often an overlooked source of air pollution. We used a mobile lab to measure the characteristics of particles emitted from cooking sites in two cities. Our findings showed that cooking releases a substantial number of fine particles. While most emissions were similar, a bakery site showed distinctive chemical compositions with higher nitrogen compound levels. Thus, understanding the particle emissions from different cooking activities is crucial.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Benjamin N. Murphy, Darrell Sonntag, Karl M. Seltzer, Havala O. T. Pye, Christine Allen, Evan Murray, Claudia Toro, Drew R. Gentner, Cheng Huang, Shantanu Jathar, Li Li, Andrew A. May, and Allen L. Robinson
Atmos. Chem. Phys., 23, 13469–13483, https://doi.org/10.5194/acp-23-13469-2023, https://doi.org/10.5194/acp-23-13469-2023, 2023
Short summary
Short summary
We update methods for calculating organic particle and vapor emissions from mobile sources in the USA. Conventionally, particulate matter (PM) and volatile organic carbon (VOC) are speciated without consideration of primary semivolatile emissions. Our methods integrate state-of-the-science speciation profiles and correct for common artifacts when sampling emissions in a laboratory. We quantify impacts of the emission updates on ambient pollution with the Community Multiscale Air Quality model.
Misti Levy Zamora, Colby Buehler, Abhirup Datta, Drew R. Gentner, and Kirsten Koehler
Atmos. Meas. Tech., 16, 169–179, https://doi.org/10.5194/amt-16-169-2023, https://doi.org/10.5194/amt-16-169-2023, 2023
Short summary
Short summary
We assessed five pairs of co-located reference and low-cost sensor data sets (PM2.5, O3, NO2, NO, and CO) to make recommendations for best practices regarding the field calibration of low-cost air quality sensors. We found diminishing improvements for calibration periods longer than about 6 weeks for all sensors and that co-location can be minimized if the period is strategically selected and monitored so that the calibration period is representative of the desired measurement setting.
Peeyush Khare, Jordan E. Krechmer, Jo E. Machesky, Tori Hass-Mitchell, Cong Cao, Junqi Wang, Francesca Majluf, Felipe Lopez-Hilfiker, Sonja Malek, Will Wang, Karl Seltzer, Havala O. T. Pye, Roisin Commane, Brian C. McDonald, Ricardo Toledo-Crow, John E. Mak, and Drew R. Gentner
Atmos. Chem. Phys., 22, 14377–14399, https://doi.org/10.5194/acp-22-14377-2022, https://doi.org/10.5194/acp-22-14377-2022, 2022
Short summary
Short summary
Ammonium adduct chemical ionization is used to examine the atmospheric abundances of oxygenated volatile organic compounds associated with emissions from volatile chemical products, which are now key contributors of reactive precursors to ozone and secondary organic aerosols in urban areas. The application of this valuable measurement approach in densely populated New York City enables the evaluation of emissions inventories and thus the role these oxygenated compounds play in urban air quality.
Katherine L. Hayden, Shao-Meng Li, John Liggio, Michael J. Wheeler, Jeremy J. B. Wentzell, Amy Leithead, Peter Brickell, Richard L. Mittermeier, Zachary Oldham, Cristian M. Mihele, Ralf M. Staebler, Samar G. Moussa, Andrea Darlington, Mengistu Wolde, Daniel Thompson, Jack Chen, Debora Griffin, Ellen Eckert, Jenna C. Ditto, Megan He, and Drew R. Gentner
Atmos. Chem. Phys., 22, 12493–12523, https://doi.org/10.5194/acp-22-12493-2022, https://doi.org/10.5194/acp-22-12493-2022, 2022
Short summary
Short summary
In this study, airborne measurements provided the most detailed characterization, to date, of boreal forest wildfire emissions. Measurements showed a large diversity of air pollutants expanding the volatility range typically reported. A large portion of organic species was unidentified, likely comprised of complex organic compounds. Aircraft-derived emissions improve wildfire chemical speciation and can support reliable model predictions of pollution from boreal forest wildfires.
Jenna C. Ditto, Jo Machesky, and Drew R. Gentner
Atmos. Chem. Phys., 22, 3045–3065, https://doi.org/10.5194/acp-22-3045-2022, https://doi.org/10.5194/acp-22-3045-2022, 2022
Short summary
Short summary
We analyzed gases and aerosols sampled in summer and winter in a coastal region that is often downwind of urban areas and observed large contributions of nitrogen-containing organic compounds influenced by a mix of biogenic, anthropogenic, and/or marine sources as well as photochemical and aqueous-phase atmospheric processes. The results show the prevalence of key reduced and oxidized nitrogen functional groups and advance knowledge on the chemical structure of nitrogen-containing compounds.
Colby Buehler, Fulizi Xiong, Misti Levy Zamora, Kate M. Skog, Joseph Kohrman-Glaser, Stefan Colton, Michael McNamara, Kevin Ryan, Carrie Redlich, Matthew Bartos, Brandon Wong, Branko Kerkez, Kirsten Koehler, and Drew R. Gentner
Atmos. Meas. Tech., 14, 995–1013, https://doi.org/10.5194/amt-14-995-2021, https://doi.org/10.5194/amt-14-995-2021, 2021
Short summary
Short summary
In this paper we develop a stationary and portable low-cost multipollutant monitor capable of measuring a variety of human-health- and climate-related pollutants. While traditional reference instrumentation is sparsely spaced, these monitors can be deployed as a network to gain insight into the spatial and temporal variability within an urban setting, or in other targeted studies. We also implement an online calibration system to address long-term drift of sensors and adjust calibrations.
Jenna C. Ditto, Megan He, Tori N. Hass-Mitchell, Samar G. Moussa, Katherine Hayden, Shao-Meng Li, John Liggio, Amy Leithead, Patrick Lee, Michael J. Wheeler, Jeremy J. B. Wentzell, and Drew R. Gentner
Atmos. Chem. Phys., 21, 255–267, https://doi.org/10.5194/acp-21-255-2021, https://doi.org/10.5194/acp-21-255-2021, 2021
Short summary
Short summary
Forest fires are an important source of reactive organic gases and aerosols to the atmosphere. We analyzed organic aerosols collected from an aircraft above a boreal forest fire and reported an increasing contribution from compounds containing oxygen, nitrogen, and sulfur as the plume aged, with sulfide and ring-bound nitrogen functionality. Our results demonstrated chemistry that is important in biomass burning but also in urban/developing regions with high local nitrogen and sulfur emissions.
Haley M. Rogers, Jenna C. Ditto, and Drew R. Gentner
Atmos. Chem. Phys., 20, 671–682, https://doi.org/10.5194/acp-20-671-2020, https://doi.org/10.5194/acp-20-671-2020, 2020
Short summary
Short summary
This study combines surface-level air quality measurements with satellite imagery and back-trajectory modeling to investigate the long-distance transport of these emissions to the New York City metropolitan area and the northeastern US. Two events in August 2018 were traced to biomass burning on the western coast of Canada and from the southeastern US, highlighting the importance of understanding long-distance transport of fire emissions in air quality planning.
Cited articles
Algrim, L. B. and Ziemann, P. J.: Effect of the Keto Group on Yields and Composition of Organic Aerosol Formed from OH Radical-Initiated Reactions of Ketones in the Presence of NOx, J. Phys. Chem. A, 6978–6989, https://doi.org/10.1021/acs.jpca.6b05839, 2016.
Bahreini, R., Middlebrook, A. M., de Gouw, J. A., Warneke, C., Trainer, M., Brock, C. A., Stark, H., Brown, S. S., Dube, W. P., Gilman, J. B., Hall, K., Holloway, J. S., Kuster, W. C., Perring, a. E., Prevot, A. S. H., Schwarz, J. P., Spackman, J. R., Szidat, S., Wagner, N. L., Weber, R. J., Zotter, P., and Parrish, D. D.: Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass, Geophys. Res. Lett., 39, L06805, https://doi.org/10.1029/2011GL050718, 2012.
Batterman, S. A., Chernyak, S., Jia, C., Godwin, C., and Charles, S.: Concentrations and emissions of polybrominated diphenyl ethers from U.S. houses and garages., Environ. Sci. Technol., 43, 2693–2700, https://doi.org/10.1021/ES8029957, 2009.
Bishop, G. A. and Stedman, D. H.: A Decade of On-road Emissions Measurements, Environ. Sci. Technol., 42, 1651–1656, https://doi.org/10.1021/es702413b, 2008.
Brodzik, K., Faber, J., Łomankiewicz, D., and Gołda-Kopek, A.: In-vehicle VOCs composition of unconditioned, newly produced cars, J. Environ. Sci., 26, 1052–1061, https://doi.org/10.1016/S1001-0742(13)60459-3, 2014.
Bruns, E. A., Slowik, J. G., El Haddad, I., Kilic, D., Klein, F., Dommen, J., Temime-Roussel, B., Marchand, N., Baltensperger, U., and Prévôt, A. S. H.: Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry: fresh and aged residential wood combustion emissions, Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, 2017.
California Air Resources Board: Aerosol Coatings & Consumer Products Methodology, Sect. 6.1 Consum. Prod., available at: https://www.arb.ca.gov/ei/areasrc/arbsolevapaercoatcp.htm (last access: 24 February 2017), 2000.
California Air Resources Board: EMFAC2014 Web Database (v1.0.7), available at: http://www.arb.ca.gov/emfac/2014/ (last access: 13 April 2018), 2014.
California Air Resources Board: Consumer Products Program Regulations, available at: https://www.arb.ca.gov/consprod/regs/regs.htm (last access: 23 February 2017), 2015a.
California Air Resources Board: Regulation for reducing emissions from consumer products, Sacramento, available at: https://www.arb.ca.gov/consprod/regs/2015/regs-all_final_1-22-15.pdf (last access: 13 April 2018), 2015b.
California Air Resources Board: Off-Road Mobile Sources Emission Reduction Program, available at: https://www.arb.ca.gov/msprog/offroad/offroad.htm, last access: 15 August 2017.
California Air Resources Board and Sonoma Technology Inc.: Attachment C: Asphalt Paving and Roofing, CCOS II Emiss. Invent. Proj., 2003.
Carter, W. P. L.: SAPRC Atmospheric Chemical Mechanisms and VOC Reactivity Scales, available at: http://www.cert.ucr.edu/~carter/SAPRC/ (last access: 13 April 2018), 2007.
Caserini, S., Fraccaroli, A., Monguzzi, A. M., Moretti, M., Giudici, A., and Gurrieri, G. L.: A detailed Emission Inventory for air quality planning at local scale: the Lombardy (Italy) experience, in: 13th International Emission Inventory Conference “Working for Clean Air in Clearwater,” Clearwater, FL, 8–10 June 2004, available at: https://www3.epa.gov/ttn/chief/conference/ei13/poster/caserini.pdf, 2004.
Cavallari, J. M., Osborn, L. V., Snawder, J. E., Kriech, A. J., Olsen, L. D., Herrick, R. F., and Mcclean, M. D.: Predictors of Airborne Exposures to Polycyclic Aromatic Compounds and Total Organic Matter among Hot-Mix Asphalt Paving Workers and Influence of Work Conditions and Practices, Ann. Occup. Hyg., 56, 138–147, https://doi.org/10.1093/annhyg/mer088, 2012a.
Cavallari, J. M., Zwack, L. M., Lange, C. R., Herrick, R. F., and Mcclean, M. D.: Temperature-Dependent Emission Concentrations of Polycyclic Aromatic Hydrocarbons in Paving and Built-Up Roofing Asphalts, Ann. Occup. Hyg., 56, 148–160, https://doi.org/10.1093/annhyg/mer107, 2012b.
Cavallari, J. M., Zwack, L. M., Lange, C. R., Herrick, R. F., and Mcclean, M. D.: Temperature-Dependent Emission Concentrations of Polycyclic Aromatic Hydrocarbons in Paving and Built-Up Roofing Asphalts, Ann. Occup. Hyg., 56, 148–160, https://doi.org/10.1093/annhyg/mer107, 2012c.
Ceburnis, D., Garbaras, A., Szidat, S., Rinaldi, M., Fahrni, S., Perron, N., Wacker, L., Leinert, S., Remeikis, V., Facchini, M. C., Prevot, A. S. H., Jennings, S. G., Ramonet, M., and O'Dowd, C. D.: Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis, Atmos. Chem. Phys., 11, 8593–8606, https://doi.org/10.5194/acp-11-8593-2011, 2011.
Censullo, A. C., Jones, D. R., and Wills, M. T.: Investigation of Low Reactivity Solvents- Final Report to California Air Resources Board Research Division on Contract No. 98-310, 2002.
Chacon-Madrid, H. J., Presto, A. A., and Donahue, N. M.: Functionalization vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation, Phys. Chem. Chem. Phys., 12, 13975, https://doi.org/10.1039/c0cp00200c, 2010.
Chan, A. W. H., Chan, M. N., Surratt, J. D., Chhabra, P. S., Loza, C. L., Crounse, J. D., Yee, L. D., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Role of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation, Atmos. Chem. Phys., 10, 7169–7188, https://doi.org/10.5194/acp-10-7169-2010, 2010.
Chang, J. C. S., Tichenor, B. A., Guo, Z., and Krebs, K. A.: Substrate Effects on VOC Emissions from a Latex Paint, Indoor Air, 7, 241–247, https://doi.org/10.1111/j.1600-0668.1997.00003.x, 1997.
Chang, Y.-M., Hu, W.-H., Fang, W.-B., Chen, S.-S., Chang, C.-T., and Ching, H.-W.: A study on dynamic volatile organic compound emission characterization of water-based paints, J. Air Waste Manag. Assoc., 61, 35–45, 2011.
Chen, C. H., Li, L., Huang, C., Chen, Z., Wang, H. L., Huang, H. Y., and Al, E.: Study on the air pollution control countermeasures for 2010 EXPO, Shanghai Academy of Environmental Sciences, Shanghai, China, 2009.
Cherin, N., Roustan, Y., Musson-Genon, L., and Seigneur, C.: Modelling atmospheric dry deposition in urban areas using an urban canopy approach, Geosci. Model Dev., 8, 893–910, https://doi.org/10.5194/gmd-8-893-2015, 2015.
Clausen, P. A., Wolkoff, P., and Nielsen, P. A.: Long-term environmental chamber tests of waterborne paints (in Danish) (SBI report 207), Horsholm, Denmark, 1990.
Clausen, P. A., Wolkoff, P., Hoist, E., and Nielsen, P. A.: Long-term Emission of Volatile Organic Compounds from Waterborne Paints – Methods of Comparison, Indoor Air, 1, 562–576, https://doi.org/10.1111/j.1600-0668.1991.00019.x, 1991.
Clausen, P. A., Laursen, B., Wolkoff, P., Rasmusen, E., and Nielsen, P. A.: Emission of Volatile Organic Compounds from a Vinyl Floor Covering, in: Modeling of Indoor Air Quality and Exposure, edited by: Nagda, N. L., 3–11, ASTM International, Philadelphia, 1993.
Clausen, P. A., Hansen, V., Gunnarsen, L., Afshari, A., and Wolkoff, P.: Emission of di-2-ethylhexyl phthalate from PVC flooring into air and uptake in dust: emission and sorption experiments in FLEC and CLIMPAQ, Environ. Sci. Technol., 38, 2531–2537, 2004.
Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J. M., and others: The global burden of disease due to outdoor air pollution, J. Toxicol. Environ. Heal. Part A, 68, 1301–1307, 2005.
Cox, P., Delao, A., and Komorniczak, A.: The California Almanac of Emissions and Air Quality – 2013 Edition, California Air Resources Board, Sacramento CA USA, 2013.
Daumit, K. E., Carrasquillo, A. J., Sugrue, R. A., and Kroll, J. H.: Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation, J. Phys. Chem. A, 120, 1386–1394, https://doi.org/10.1021/acs.jpca.5b06160, 2016.
de Gouw, J. A., Middlebrook, A. M., Warneke, C., Ahmadov, R., Atlas, E. L., Bahreini, R., Blake, D. R., Brock, C. A., Brioude, J., Fahey, D. W., Fehsenfeld, F. C., Holloway, J. S., Le Henaff, M., Lueb, R. A., McKeen, S. A., Meagher, J. F., Murphy, D. M., Paris, C., Parrish, D. D., Perring, A. E., Pollack, I. B., Ravishankara, A. R., Robinson, A. L., Ryerson, T. B., Schwarz, J. P., Spackman, J. R., Srinivasan, A., and Watts, L. A.: Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill, Science, 331, 1295–1299, https://doi.org/10.1126/science.1200320, 2011.
de Gouw, J. A., Gilman, J. B., Borbon, A., Warneke, C., Kuster, W. C., Goldan, P. D., Holloway, J. S., Peischl, J., Ryerson, T. B., Parrish, D. D., and Others: Increasing atmospheric burden of ethanol in the United States, Geophys. Res. Lett., 39, L15803, https://doi.org/10.1029/2012GL052109, 2012.
Deguillaume, L., Beekmann, M., and Derognat, C.: Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile-de-France region during summer periods, J. Geophys. Res., 113, D02304, https://doi.org/10.1029/2007JD009081, 2008.
Destaillats, H., Lunden, M. M., Singer, B. C., Coleman, B. K., Hodgson, A. T., Weschler, C. J., and Nazaroff, W. W.: Indoor Secondary Pollutants from Household Product Emissions in the Presence of Ozone: A Bench-Scale Chamber Study, Environ. Sci. Technol., 40, 4421–4428, https://doi.org/10.1021/ES052198Z, 2006.
Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D., Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently-proposed secondary organic aerosol models for a case study in Mexico City, Atmos. Chem. Phys., 9, 5681–5709, https://doi.org/10.5194/acp-9-5681-2009, 2009.
Ensberg, J. J., Hayes, P. L., Jimenez, J. L., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Holloway, J. S., Gordon, T. D., Jathar, S., Robinson, A. L., and Seinfeld, J. H.: Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation, Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, 2014.
European Commission: VOC Solvents Emissions Directive - Environment - European Commission, available at: http://ec.europa.eu/environment/archives/air/stationary/solvents/legislation.htm (last access: 17 February 2017), 2014.
European Environment Agency: Emissions of ozone precursors, Copenhagen, 2010.
European Environment Agency: European Union emission inventory report 1990–2015 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP) – European Environment Agency, EEA Report, No. 9/2017 available at: https://www.eea.europa.eu/publications/annual-eu-emissions-inventory-report (last access: 20 February 2018), 2017.
Faber, J., Brodzik, K., Gołda-Kopek, A., and Łomankiewicz, D.: Benzene, toluene and xylenes levels in new and used vehicles of the same model, J. Environ. Sci., 25, 2324–2330, https://doi.org/10.1016/S1001-0742(12)60333-7, 2013.
Fortin, T. J., Howard, B. J., Parrish, D. D., Goldan, P. D., Kuster, W. C., Atlas, E. L. and Harley, R. A.: Temporal changes in U.S. benzene emissions inferred from atmospheric measurements, Environ. Sci. Technol., 39, 1403–1408, https://doi.org/10.1021/ES049316N, 2005.
Gasthauer, E., Mazé, M., Marchand, J. P., and Amouroux, J.: Characterization of asphalt fume composition by GC/MS and effect of temperature, Fuel, 87, 1428–1434, https://doi.org/10.1016/j.fuel.2007.06.025, 2008.
GEIA: Emissions of atmospheric Compounds & Compilation of Ancillary Data (ECCAD) – The Global Emissions InitiAtive (GEIA) Database, available at: http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_login.jsf, ast access: 24 February 2017.
Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions, P. Natl. Acad. Sci. USA, 109, 18318–18323, https://doi.org/10.1073/pnas.1212272109, 2012.
Gentner, D. R., Worton, D. R., Isaacman, G., Davis, L. C., Dallmann, T. R., Wood, E. C., Herndon, S. C., Goldstein, A. H., and Harley, R. A.: Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production, Environ. Sci. Technol., 47, 11837–11848, https://doi.org/10.1021/es401470e, 2013.
Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I., Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J., Goldstein, A. H., Harley, R. A., Jimenez, J. L., Prévôt, A. S. H., and Robinson, A. L.: Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions, Environ. Sci. Technol., 51, 1074–1093, https://doi.org/10.1021/acs.est.6b04509, 2017.
Giannouli, M., Kalognomou, E.-A., Mellios, G., Moussiopoulos, N., Samaras, Z., and Fiala, J.: Impact of European emission control strategies on urban and local air quality, Atmos. Environ., 45, 4753–4762, https://doi.org/10.1016/j.atmosenv.2010.03.016, 2011.
Gold, M. D., Blum, A., and Ames, B. N.: Another flame retardant, tris-(1,3-dichloro-2-propyl)-phosphate, and its expected metabolites are mutagens., Science, 200, 785–787, 1978.
Goldstein, A. H. and Galbally, I. E.: Known and Unexplored Organic Constituents in the Earth's Atmosphere, Environ. Sci. Technol., 41, 1514–1521, https://doi.org/10.1021/es072476p, 2007.
Gordon, T. D., Tkacik, D. S., Presto, A. A., Zhang, M., Jathar, S. H., Nguyen, N. T., Massetti, J., Truong, T., Cicero-Fernandez, P., Maddox, C., Rieger, P., Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A. L.: Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines, Environ. Sci. Technol., 47, 14137–14146, https://doi.org/10.1021/es403556e, 2013.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hansen, C. M.: The Air Drying of Latex Coatings, Ind. Eng. Chem. Prod. Res. Dev., 13, 150–152, https://doi.org/10.1021/i360050a015, 1974.
Hao, J., Wang, L., Shen, M., Li, L., and Hu, J.: Air quality impacts of power plant emissions in Beijing, Environ. Pollut., 147, 401–408, https://doi.org/10.1016/j.envpol.2006.06.013, 2007.
Hayes, P. L., Ortega, A. M., Cubison, M. J., Froyd, K. D., Zhao, Y., Cliff, S. S., Hu, W. W., Toohey, D. W., Flynn, J. H., Lefer, B. L., Grossberg, N., Alvarez, S., Rappenglück, B., Taylor, J. W., Allan, J. D., Holloway, J. S., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Massoli, P., Zhang, X., Liu, J., Weber, R. J., Corrigan, A. L., Russell, L. M., Isaacman, G., Worton, D. R., Kreisberg, N. M., Goldstein, A. H., Thalman, R., Waxman, E. M., Volkamer, R., Lin, Y. H., Surratt, J. D., Kleindienst, T. E., Offenberg, J. H., Dusanter, S., Griffith, S., Stevens, P. S., Brioude, J., Angevine, W. M., and Jimenez, J. L.: Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign, J. Geophys. Res.-Atmos., 118, 9233–9257, https://doi.org/10.1002/jgrd.50530, 2013.
Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappenglück, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prévôt, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, 2015.
Hernandez, I.: 2012 Area Source Emissions Inventory Methodology; 540-Asphalt Paving, Imperial County Air Pollution Control District, California, 2016.
Isman, M. B.: Plant essential oils for pest and disease management, Crop Prot., 19, 603–608, https://doi.org/10.1016/S0261-2194(00)00079-X, 2000.
Jathar, S. H., Gordon, T. D., Hennigan, C. J., Pye, H. O. T., Pouliot, G., Adams, P. J., Donahue, N. M., and Robinson, A. L.: Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States, P. Natl. Acad. Sci. USA, 111, 10473–10478, https://doi.org/10.1073/pnas.1323740111, 2014.
Jerrett, M., Burnett, R. T., Pope, C. A., Ito, K., Thurston, G., Krewski, D., Shi, Y., Calle, E., and Thun, M.: Long-term ozone exposure and mortality, N. Engl. J. Med., 360, 1085–1095, 2009.
Jia, L. and Xu, Y.: Effects of Relative Humidity on Ozone and Secondary Organic Aerosol Formation from the Photooxidation of Benzene and Ethylbenzene, Aerosol Sci. Technol., 48, 1–12, https://doi.org/10.1080/02786826.2013.847269, 2014.
Kemmlein, S., Hahn, O., and Jann, O.: Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials, Atmos. Environ., 37, 5485–5493, https://doi.org/10.1016/j.atmosenv.2003.09.025, 2003.
Kirchstetter, T. W., Singer, B. C., Harley, R. A., Kendall, G. R., and Traverse, M.: Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 1. Mass Emission Rates, Environ. Sci. Technol., 33, 318–328, https://doi.org/10.1021/es9803714, 1999.
Kitto, A. M., Pirbazari, M., Badriyha, B. N., Ravindran, V., Tyner, R., and Synolakis, C. E.: Emissions of Volatile and Semi-Volatile Organic Compounds and Particulate Matter from Hot Asphalts, Environ. Technol., 18, 121–138, https://doi.org/10.1080/09593331808616520, 1997.
Klein, F., Platt, S. M., Farren, N. J., Detournay, A., Bruns, E. A., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K., Pieber, S. M., Slowik, J. G., Temime-Roussel, B., Marchand, N., Hamilton, J. F., Baltensperger, U., Prévôt, A. S. H., and El Haddad, I.: Characterization of Gas-Phase Organics Using Proton Transfer Reaction Time-of-Flight Mass Spectrometry: Cooking Emissions, Environ. Sci. Technol., 50, 1243–1250, https://doi.org/10.1021/acs.est.5b04618, 2016.
Knudsen, H. N., Kjaer, U. D., Nielsen, P. A., and Wolkoff, P.: Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity, Atmos. Environ., 33, 1217–1230, https://doi.org/10.1016/S1352-2310(98)00278-7, 1999.
Kodjak, D.: Policies to Reduce Fuel Consumption, Air Pollution, and Carbon Emissions from Vehicles in G20 Nations, available at: http://www.theicct.org/sites/default/files/publications/ICCT_G20-briefing-paper_Jun2015_updated.pdf (last access: 13 April 2018), 2015.
Kriech, A. J., Kurek, J. T., Wissel, H. L., Osborn, L. V., and Blackburn, G. R.: Evaluation of Worker Exposure to Asphalt Paving Fumes Using Traditional and Nontraditional Techniques, AIHA J., 63, 628–635, https://doi.org/10.1080/15428110208984749, 2002.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere, Atmos. Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003, 2008.
Kumar, J. and Parmar, B. S.: Physicochemical and Chemical Variation in Neem Oils and Some Bioactivity Leads against Spodoptera litura F, J. Agric. Food Chem., 44, 2137–2143, 19996.
Kwok, E. and Atkinson, R.: Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update, Atmos. Environ., 29, 1685–1695, https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Lange, C. R. and Stroup-Gardiner, M.: Temperature-Dependent Chemical-Specific Emission Rates of Aromatics and Polyaromatic Hydrocarbons (PAHs) in Bitumen Fume, J. Occup. Environ. Hyg., 4, 72–76, https://doi.org/10.1080/15459620701385279, 2007.
Lange, C., Stroup-Gardiner, M., and Cr, L.: Quantification of Potentially Odorous Volatile Organic Compounds from Asphalt Binders Using Head-Space Gas Chromatography, J. Test. Eval., 33, 1–9, https://doi.org/10.1520/JTE11800, 2005.
Lewis, R. G.: Pesticides, in: Indoor Air Quality Handbook, edited by: Spengler, J. D., McCarthy, J. F., and Samet, J. M., 35.1–35.21, McGraw-Hill, USA, 2001.
Lu, S. H., Liu, Y., Shao, M., and Huang, S.: Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer in Beijing, Front. Environ. Sci. Eng. China, 1, 147–152, 2007.
Ma, P. K., Zhao, Y., Robinson, A. L., Worton, D. R., Goldstein, A. H., Ortega, A. M., Jimenez, J. L., Zotter, P., Prévôt, A. S. H., Szidat, S., and Hayes, P. L.: Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA, Atmos. Chem. Phys., 17, 9237–9259, https://doi.org/10.5194/acp-17-9237-2017, 2017.
Markakis, K., Im, U., Unal, A., Melas, D., Yenigun, O., and Incecik, S.: A computational approach for the compilation of a high spatially and temporally resolved emission inventory for the Istanbul Greater Area, in: Paper presented at the 7th International Conference of Air Quality Science and Application, Istanbul, 24–27 March 2009.
May, A. A., Nguyen, N. T., Presto, A. A., Gordon, T. D., Lipsky, E. M., Karve, M., Gutierrez, A., Robertson, W. H., Zhang, M., Brandow, C., Chang, O., Chen, S., Cicero-Fernandez, P., Dinkins, L., Fuentes, M., Huang, S.-M., Ling, R., Long, J., Maddox, C., Massetti, J., McCauley, E., Miguel, A., Na, K., Ong, R., Pang, Y., Rieger, P., Sax, T., Truong, T., Vo, T., Chattopadhyay, S., Maldonado, H., Maricq, M. M., and Robinson, A. L.: Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles, Atmos. Environ., 88, 247–260, https://doi.org/10.1016/j.atmosenv.2014.01.046, 2014.
McDonald, B. C., Gentner, D. R., Goldstein, A. H., and Harley, R. A.: Long-term trends in motor vehicle emissions in U.S. urban areas, Environ. Sci. Technol., 47, 10022–10031, https://doi.org/10.1021/es401034z, 2013.
McDonald, B. C., Goldstein, A. H., and Harley, R. A.: Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol, Environ. Sci. Technol., 49, 5178–5188, https://doi.org/10.1021/es505912b, 2015.
Menut, L.: Adjoint modeling for atmospheric pollution process sensitivity at regional scale, J. Geophys. Res., 108, 8562, https://doi.org/10.1029/2002JD002549, 2003.
Miller, J. D. and Facanha, C.: The State of Clean Transport Policy – A 2014 Synthesis of Vehicle and Fuel Policy developments, International Council on Clean Transportation, Washington D.C., USA, 2014.
Ministry of Environmental Protection: Ambient air quality standards (GB 3095–2012), available at: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.htm (last access: 13 April 2018), 2012.
Mitro, S. D., Dodson, R. E., Singla, V., Adamkiewicz, G., Elmi, A. F., Tilly, M. K., and Zota, A. R.: Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies, Environ. Sci. Technol., 50, 10661–10672, https://doi.org/10.1021/acs.est.6b02023, 2016.
Murphy, B. N., Donahue, N. M., Robinson, A. L., and Pandis, S. N.: A naming convention for atmospheric organic aerosol, Atmos. Chem. Phys., 14, 5825–5839, https://doi.org/10.5194/acp-14-5825-2014, 2014.
National Research Council: Air Quality Management in the United States, National Academies Press, Washington, D.C., 2004.
Nazaroff, W. W. and Weschler, C. J.: Cleaning products and air fresheners: exposure to primary and secondary air pollutants, Atmos. Environ., 38, 2841–2865, https://doi.org/10.1016/j.atmosenv.2004.02.040, 2004.
Neligan, R. E.: Hydrocarbons in the Los Angeles atmosphere. A comparison between the hydrocarbons in automobile exhaust and those found in the Los Angeles atmosphere, Arch. Environ. Health, 5, 581–591, https://doi.org/10.1080/00039896.1962.10663334, 1962.
Ng, N. L., Kroll, J. H., Keywood, M. D., Bahreini, R., Varutbangkul, V., Flagan, R. C., Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 40, 2283–2297, https://doi.org/10.1021/es052269u, 2006.
Nielsen, O.-K., Winther, M., Mikkelsen, M. H., Hoffmann, L., Nielsen, M., Gyldenkærne, S., Fauser, P., Jensen, M. T., Plejdrup, M. S., and Illerup, J. B.: Annual Danish Emission Inventory Report to UNECE. Inventories from the base year of the protocols to year 2006, available at: http://www.dmu.dk/Pub/FR675.pdf (last access: 13 April 2018), 2008.
Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds, Atmos. Chem. Phys., 8, 2773–2796, https://doi.org/10.5194/acp-8-2773-2008, 2008.
Parker, D., Sonne, J., and Sherwin, J.: Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Retail Strip Mall, Cocoa, Florida, 1997.
Pernigotti, D., Belis, C. A., and Spanò, L.: SPECIEUROPE: The European data base for PM source profiles, Atmos. Pollut. Res., 7, 307–314, https://doi.org/10.1016/j.apr.2015.10.007, 2016.
Piccot, S. D., Watson, J. J., and Jones, J. W.: A global inventory of volatile organic compound emissions from anthropogenic sources, J. Geophys. Res., 97, 9897–9912, https://doi.org/10.1029/92JD00682, 1992.
Platt, S. M., Haddad, I. El, Pieber, S. M., Huang, R.-J., Zardini, A. A., Clairotte, M., Suarez-Bertoa, R., Barmet, P., Pfaffenberger, L., Wolf, R., Slowik, J. G., Fuller, S. J., Kalberer, M., Chirico, R., Dommen, J., Astorga, C., Zimmermann, R., Marchand, N., Hellebust, S., Temime-Roussel, B., Baltensperger, U., and Prévôt, A. S. H.: Two-stroke scooters are a dominant source of air pollution in many cities., Nat. Commun., 5, 3749, https://doi.org/10.1038/ncomms4749, 2014.
Pomerantz, M., Pon, B., Akbari, H., and Chang, S.-C.: The Effect of Pavements' Temperatures on Air Temperatures in Large Cities, Berkeley, 2000.
Pope, C. A. I. and Dockery, D. W.: Health effects of fine particulate air pollution: lines that connect, J. Air Waste Manag. Assoc., 56, 709–742, 2006.
Poppendieck, D., Hubbard, H., Ward, M., Weschler, C., and Corsi, R. L.: Ozone reactions with indoor materials during building disinfection, Atmos. Environ., 41, 3166–3176, https://doi.org/10.1016/j.atmosenv.2006.06.060, 2007a.
Poppendieck, D. G., Hubbard, H. F., Weschler, C. J., and Corsi, R. L.: Formation and emissions of carbonyls during and following gas-phase ozonation of indoor materials, Atmos. Environ., 41, 7614–7626, https://doi.org/10.1016/j.atmosenv.2007.05.049, 2007b.
Pöschl, U. and Shiraiwa, M.: Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene, Chem. Rev., 115, 4440–4475, https://doi.org/10.1021/cr500487s, 2015.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., and Pandis, S. N.: Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging, Science, 315, 1259–1262, 2007.
Sadezky, A., Chaimbault, P., Mellouki, A., Römpp, A., Winterhalter, R., Le Bras, G., and Moortgat, G. K.: Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers, Atmos. Chem. Phys., 6, 5009–5024, https://doi.org/10.5194/acp-6-5009-2006, 2006.
Salthammer, T. and Fuhrmann, F.: Photocatalytic Surface Reactions on Indoor Wall Paint, Environ. Sci. Technol., 41, 6573–6578, https://doi.org/10.1021/ES070057M, 2007.
San Joaquin Valley Air Pollution Control District: 2008 Area Source Emissions Inventory Methodology 540 – ASPHALT PAVING, 2008.
Sarwar, G., Olson, D. A., Corsi, R. L., and Weschler, C. J.: Indoor Fine Particles: The Role of Terpene Emissions from Consumer Products, J. Air Waste Manage. Assoc., 54, 367–377, https://doi.org/10.1080/10473289.2004.10470910, 2004.
Shin, H.-M., McKone, T. E., and Bennett, D. H.: Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres, Atmos. Environ., 108, 98–106, https://doi.org/10.1016/j.atmosenv.2015.02.067, 2015.
Sillman, S.: The relation between ozone , NO and hydrocarbons in urban and polluted rural environments, Atmos. Environ., 33, 1821–1845, 1999.
Singer, B. C., Coleman, B. K., Destaillats, H., Hodgson, A. T., Lunden, M. M., Weschler, C. J., and Nazaroff, W. W.: Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone, Atmos. Environ., 40, 6696–6710, https://doi.org/10.1016/j.atmosenv.2006.06.005, 2006.
Song, Y., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., and Xie, S.: Source apportionment of ambient volatile organic compounds in Beijing, Environ. Sci. Technol., 41, 4348–4353, 2007.
Sparks, L. E., Guo, Z., Chang, J. C., and Tichenor, B. A.: Volatile Organic Compound Emissions from Latex Paint – Part 2. Test House Studies and Indoor Air Quality (IAQ) Modeling, Indoor Air, 9, 18–25, https://doi.org/10.1111/j.1600-0668.1999.t01-3-00004.x, 1999.
Sullivan, D. A.: Water and solvent evaporation from latex and latex paint films, J. Paint Technol., 47, 60–67, 1975.
Tessum, C. W., Hill, J. D., and Marshall, J. D.: Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States, P. Natl. Acad. Sci. USA, 111, 18490–18495, https://doi.org/10.1073/pnas.1406853111, 2014.
The Asphalt Institute: Asphalt Usage Survey for the United States and Canada, Asphalt Institute, Lexington, KY, USA, 2015.
The Asphalt Institute and European Bitumen Association: The bitumen industry: A global perspective: Production, chemistry, use, specification and occupational exposure, Asphalt Institute, Lexington KY USA, Eurobitume, Brussels, Belgium, 2015.
Toftum, J., Freund, S., Salthammer, T., and Weschler, C. J.: Secondary organic aerosols from ozone-initiated reactions with emissions from wood-based materials and a “green” paint, Atmos. Environ., 42, 7632–7640, https://doi.org/10.1016/j.atmosenv.2008.05.071, 2008.
Tsimpidi, A. P., Karydis, V. A., Zavala, M., Lei, W., Molina, L., Ulbrich, I. M., Jimenez, J. L., and Pandis, S. N.: Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525–546, https://doi.org/10.5194/acp-10-525-2010, 2010.
U.S. Environmental Protection Agency: 2011 National Emissions Inventory (NEI) Data, United States Environmental Protection Agency, Washington D.C., USA, 2011.
U.S. Environmental Protection Agency: SPECIATE 4.4. available at: https://www.epa.gov/air-emissions-modeling/speciate-version-45-through-32 (last access: 13 April 2018), 2014.
U.S. Environmental Protection Agency and Office of Air Quality Planning and Standards: National Air Pollutant Emission Estimates 1940-1989, Research Triangle Park, North Carolina. available at: nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=00002PB0.TXT (last access: 13 April 2018), 1991.
U.S. EPA: Emissions Factors & AP 42, Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Chapter 4: Evaporation Loss Sources, 1995.
U.S. EPA: Regulations for Emissions from Nonroad Vehicles and Engines, available at: https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-emissions-nonroad-vehicles-and-engines, last access: 15 August 2017.
van den Born, G. J., Bouwman, A. F., Oliver, J. G. J., and Swart, R. J.: The Emission of Greenhouse Gases in the Netherlands (Report no. 222901003), the Netherlands, 1991.
von Schneidemesser, E., Coates, J., Denier van der Gon, H. A. C., Visschedijk, A. J. H., and Butler, T. M.: Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone, Atmos. Environ., 135, 59–72, https://doi.org/10.1016/j.atmosenv.2016.03.057, 2016.
Warneke, C., de Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D., Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions, J. Geophys. Res.-Atmos., 117, D00V17, https://doi.org/10.1029/2012JD017899, 2012.
Washenfelder, R. A., Young, C. J., Brown, S. S., Angevine, W. M., Atlas, E. L., Blake, D. R., Bon, D. M., Cubison, M. J., de Gouw, J. A., Dusanter, S., Flynn, J., Gilman, J. B., Graus, M., Griffith, S., Grossberg, N., Hayes, P. L., Jimenez, J. L., Kuster, W. C., Lefer, B. L., Pollack, I. B., Ryerson, T. B., Stark, H., Stevens, P. S., and Trainer, M. K.: The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010, J. Geophys. Res.-Atmos., 116, D00V02, https://doi.org/10.1029/2011JD016314, 2011.
Weiss, M., Bonnel, P., Hummel, R., Provenza, A., and Manfredi, U.: On-Road Emissions of Light-Duty Vehicles in Europe, Environ. Sci. Technol., 45, 8575–8581, https://doi.org/10.1021/es2008424, 2011.
Wensing, M., Uhde, E., and Salthammer, T.: Plastics additives in the indoor environment – flame retardants and plasticizers, Sci. Total Environ., 339, 19–40, https://doi.org/10.1016/j.scitotenv.2004.10.028, 2005.
Weschler, C. J.: Chemistry in indoor environments: 20 years of research, Indoor Air, 21, 205–218, https://doi.org/10.1111/j.1600-0668.2011.00713.x, 2011.
Weschler, C. J. and Nazaroff, W. W.: Semivolatile organic compounds in indoor environments, Atmos. Environ., 42, 9018–9040, https://doi.org/10.1016/j.atmosenv.2008.09.052, 2008.
Weschler, C. J. and Nazaroff, W. W.: SVOC partitioning between the gas phase and settled dust indoors, Atmos. Environ., 44, 3609–3620, https://doi.org/10.1016/j.atmosenv.2010.06.029, 2010.
Wilke, O., Jann, O., and Brodner, D.: VOC- and SVOC-emissions from adhesives, floor coverings and complete floor structures, Indoor Air, 14, 98–107, https://doi.org/10.1111/j.1600-0668.2004.00314.x, 2004.
Wolkoff, P.: Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products, Atmos. Environ., 32, 2659–2668, https://doi.org/10.1016/S1352-2310(97)00402-0, 1998.
Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V, de Gouw, J., Baumann, K., Lee, S.-H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, P. Natl. Acad. Sci. USA, 112, 37–42, https://doi.org/10.1073/pnas.1417609112, 2015.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M. R., Takami, A., Middlebrook, A. M., Sun, Y. L., Dzepina, K., Dunlea, E., Docherty, K., DeCarlo, P. F., Salcedo, D., Onasch, T., Jayne, J. T., Miyoshi, T., Shimono, A., Hatakeyama, S., Takegawa, N., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Williams, P., Bower, K., Bahreini, R., Cottrell, L., Griffin, R. J., Rautiainen, J., Sun, J. Y., Zhang, Y. M., and Worsnop, D. R.: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, https://doi.org/10.1029/2007GL029979, 2007.
Zhao, Y., Hennigan, C. J., May, A. A., Tkacik, D. S., De Gouw, J. A., Gilman, J. B., Kuster, W. C., Borbon, A., and Robinson, A. L.: Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol, Environ. Sci Technol., 48, 13743–13750, https://doi.org/10.1021/es5035188, 2014.
Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from On-road Gasoline Vehicles and Small Off-road Gasoline Engines, Environ. Sci. Technol., 50, 4554–4563, 2016.
Zhao, Y., Saleh, R., Saliba, G., Presto, A. A., Gordon, T. D., Drozd, G. T., Goldstein, A. H., Donahue, N. M., and Robinson, A. L.: Reducing secondary organic aerosol formation from gasoline vehicle exhaust, P. Natl. Acad. Sci. USA, 114, 6984–6989, https://doi.org/10.1073/pnas.1620911114, 2017.
Zhou, Y., Levy, J. I., Hammitt, J. K., and Evans, J. S.: Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China, Atmos. Environ., 37, 815–826, https://doi.org/10.1016/S1352-2310(02)00937-8, 2003.
Zotter, P., El-Haddad, I., Zhang, Y., Hayes, P. L., Zhang, X., Lin, Y.-H., Wacker, L., Schnelle-Kreis, J., Abbaszade, G., Zimmermann, R., Surratt, J. D., Weber, R., Jimenez, J. L., Szidat, S., Baltensperger, U., and Prévôt, A. S. H.: Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex, J. Geophys. Res.-Atmos., 119, 6818–6835, https://doi.org/10.1002/2013JD021114, 2014.
Short summary
Following decades of successful regulatory policies focused on combustion-related sources (e.g. motor vehicles), emissions from non-combustion sources have become increasingly important for urban air quality. Using multiple approaches, we demonstrate that emissions from consumer, commercial, and industrial products and materials have become prominent contributors to the formation of photochemical smog (i.e. secondary organic particulate matter and ozone) and its associated health effects.
Following decades of successful regulatory policies focused on combustion-related sources (e.g....
Altmetrics
Final-revised paper
Preprint