Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Download
Short summary
This study presents a detailed analysis of regional and sectoral sources of black carbon (BC), sulfate (SO4), and PM2.5 over the Arctic. We find that anthropogenic emissions from Europe and China are the major contributors (~ 46 % and ~ 25 %) to the Arctic surface BC annually. Emissions from the residential sector within Europe and China are the primary contributors (~ 25 % and ~ 14 %) to Arctic surface BC. Additionally, the contribution of each source region varied significantly by altitude and season.
Altmetrics
Final-revised paper
Preprint
ACP | Articles | Volume 18, issue 24
Atmos. Chem. Phys., 18, 18123–18148, 2018
https://doi.org/10.5194/acp-18-18123-2018

Special issue: Global and regional assessment of intercontinental transport...

Atmos. Chem. Phys., 18, 18123–18148, 2018
https://doi.org/10.5194/acp-18-18123-2018

Research article 21 Dec 2018

Research article | 21 Dec 2018

Source sector and region contributions to black carbon and PM2.5 in the Arctic

Negin Sobhani et al.

Related authors

Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem
Maryam Abdi-Oskouei, Gabriele Pfister, Frank Flocke, Negin Sobhani, Pablo Saide, Alan Fried, Dirk Richter, Petter Weibring, James Walega, and Gregory Carmichael
Atmos. Chem. Phys., 18, 16863–16883, https://doi.org/10.5194/acp-18-16863-2018,https://doi.org/10.5194/acp-18-16863-2018, 2018
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: evolution of the aerosol optical properties in Siberian wildfire plumes
Igor B. Konovalov, Nikolai A. Golovushkin, Matthias Beekmann, and Meinrat O. Andreae
Atmos. Chem. Phys., 21, 357–392, https://doi.org/10.5194/acp-21-357-2021,https://doi.org/10.5194/acp-21-357-2021, 2021
Short summary
Global modeling of heterogeneous hydroxymethanesulfonate chemistry
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021,https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Significant wintertime PM2.5 mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational constraints on anthropogenic emission controls
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020,https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Historical and future changes in air pollutants from CMIP6 models
Steven T. Turnock, Robert J. Allen, Martin Andrews, Susanne E. Bauer, Makoto Deushi, Louisa Emmons, Peter Good, Larry Horowitz, Jasmin G. John, Martine Michou, Pierre Nabat, Vaishali Naik, David Neubauer, Fiona M. O'Connor, Dirk Olivié, Naga Oshima, Michael Schulz, Alistair Sellar, Sungbo Shim, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, Tongwen Wu, and Jie Zhang
Atmos. Chem. Phys., 20, 14547–14579, https://doi.org/10.5194/acp-20-14547-2020,https://doi.org/10.5194/acp-20-14547-2020, 2020
Short summary
Evaluating trends and seasonality in modeled PM2.5 concentrations using empirical mode decomposition
Huiying Luo, Marina Astitha, Christian Hogrefe, Rohit Mathur, and S. Trivikrama Rao
Atmos. Chem. Phys., 20, 13801–13815, https://doi.org/10.5194/acp-20-13801-2020,https://doi.org/10.5194/acp-20-13801-2020, 2020
Short summary

Cited articles

Abdi-Oskouei, M., Pfister, G., Flocke, F., Sobhani, N., Saide, P., Fried, A., Richter, D., Weibring, P., Walega, J., and Carmichael, G.: Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem, Atmos. Chem. Phys., 18, 16863–16883, https://doi.org/10.5194/acp-18-16863-2018, 2018. 
Adhikary, B., Carmichael, G. R., Tang, Y., Leung, L. R., Qian, Y., Schauer, J. J., Stone, E. A., Ramanathan, V., and Ramana, M. V: Characterization of the seasonal cycle of south Asian aerosols: A regional-scale modeling analysis, J. Geophys. Res., 112, D22S22, https://doi.org/10.1029/2006jd008143, 2007. 
AMAP: Arctic Climate Issues 2011: Changes in Arctic Snow, Water, Ice and Permafrost, Oslo, Norway, xi, 97 pp., 2011a. 
AMAP: The Impact of Black Carbon on Arctic Climate, edited by: Quinn, P. K., Stohl, A., Arneth, A., Berntsen, T., Burkhart, J. F., Christensen, J., Flanner, M., Kupiainen, K., Lihavainen, H., Shepherd, M., Shevchenko, V., Skov, H., and Vestreng, V., in: Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 72 pp., 2011b. 
Publications Copernicus
Download
Short summary
This study presents a detailed analysis of regional and sectoral sources of black carbon (BC), sulfate (SO4), and PM2.5 over the Arctic. We find that anthropogenic emissions from Europe and China are the major contributors (~ 46 % and ~ 25 %) to the Arctic surface BC annually. Emissions from the residential sector within Europe and China are the primary contributors (~ 25 % and ~ 14 %) to Arctic surface BC. Additionally, the contribution of each source region varied significantly by altitude and season.
Citation
Altmetrics
Final-revised paper
Preprint