Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-15705-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-15705-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Trends in air pollutants and health impacts in three Swedish cities over the past three decades
Atmospheric Science Unit, Department of Environmental Science and
Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
Bertil Forsberg
Division of Occupational and Environmental Medicine, Department of
Public Health and Clinical Medicine, Umeå University, 90187 Umeå,
Sweden
Hans Orru
Division of Occupational and Environmental Medicine, Department of
Public Health and Clinical Medicine, Umeå University, 90187 Umeå,
Sweden
Department of Family Medicine and Public Health, University of Tartu,
500 90 Tartu, Estonia
Mårten Spanne
Environment Department, City of Malmö, 205 80 Malmö, Sweden
Hung Nguyen
Environmental Administration in Gothenburg, P.O. Box 7012, 402 31,
Gothenburg, Sweden
Peter Molnár
Occupational and Environmental Medicine, Sahlgrenska University
Hospital & University of Gothenburg, 40530 Gothenburg, Sweden
Christer Johansson
Atmospheric Science Unit, Department of Environmental Science and
Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
Environment and Health Administration, SLB, P.O. Box 8136, 104 20
Stockholm, Sweden
Related authors
No articles found.
Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma
Atmos. Chem. Phys., 24, 807–851, https://doi.org/10.5194/acp-24-807-2024, https://doi.org/10.5194/acp-24-807-2024, 2024
Short summary
Short summary
Up-to-date information on present and near-future air quality help people avoid exposure to high levels of air pollution. We apply different machine learning models to significantly improve traditional forecasts of PM10, NOx, and O3 in Stockholm, Sweden. It is shown that forecasts of all air pollutants are improved by the input of lagged measurements and taking calendar information into account. The final modelled errors are substantially smaller than uncertainties in the measurements.
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023, https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Short summary
To investigate the properties and origin of black carbon particles in southern Sweden during late summer, we performed measurements both at a rural site and the nearby city of Malmö. We found that local traffic emissions of black carbon led to concentrations around twice as high as those at the rural site. Modeling show that these emissions are not clearly distinguishable at the rural site, unless meteorology was favourable, which shows the importance of long-range transport and processing.
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys., 22, 11359–11379, https://doi.org/10.5194/acp-22-11359-2022, https://doi.org/10.5194/acp-22-11359-2022, 2022
Short summary
Short summary
Air pollutants from wood burning become more important as other regulated emissions are being reduced, e.g. combustion of diesel. We analysed particles in residential areas and found that local wood burning was the most important source of polycyclic aromatic hydrocarbons (PAHs). Specific tracers were used to separate wood combustion from other contributions. Calculations of population exposure showed that the mix of PAHs may cause 13 cancer cases per 0.1 million inhabitants.
Stina Ausmeel, Axel Eriksson, Erik Ahlberg, Moa K. Sporre, Mårten Spanne, and Adam Kristensson
Atmos. Chem. Phys., 20, 9135–9151, https://doi.org/10.5194/acp-20-9135-2020, https://doi.org/10.5194/acp-20-9135-2020, 2020
Short summary
Short summary
Emissions from shipping have an impact on air quality, especially in coastal areas. We have measured properties of the airborne particles in several plumes from ships that are sailing within an Emission Control Area. Individual ships showed large variability in contribution to total particle mass and nitrogen dioxide. Organics and sulfate dominated the particle mass, and most plumes contained very little or no soot. We also present recommendations for future stationary ship plume measurements.
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Understanding summertime H2O2 chemistry in the North China Plain through observations and modeling studies
Volatile organic compound sources and impacts in an urban Mediterranean area (Marseille, France)
Short-lived organic nitrates in a suburban temperate forest: an indication of efficient assimilation of reactive nitrogen by the biosphere?
Spatiotemporal variations in atmospheric CH4 concentrations and enhancements in northern China based on a comprehensive dataset: ground-based observations, TROPOMI data, inventory data, and inversions
Marine emissions and trade winds control the atmospheric nitrous oxide in the Galapagos Islands
Measurement report: A complex street-level air quality observation campaign in a heavy-traffic area utilizing the multivariate adaptive regression splines method for field calibration of low-cost sensors
The impact of organic nitrates on summer ozone formation in Shanghai, China
Differences in the key volatile organic compound species between their emitted and ambient concentrations in ozone formation
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Carbonyl compounds from typical combustion sources: emission characteristics, influencing factors, and their contribution to ozone formation
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Characterization of nitrous acid and its potential effects on secondary pollution in the warm season in Beijing urban areas
Vertical changes in volatile organic compounds (VOCs) and impacts on photochemical ozone formation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate natural and anthropogenic changes in oxygen, carbon, and water cycles
Cloud processing of dimethyl sulfide (DMS) oxidation products limits sulfur dioxide (SO2) and carbonyl sulfide (OCS) production in the eastern North Atlantic marine boundary layer
Atmospheric carbonyl compounds are crucial in regional ozone heavy pollution: insights from the Chengdu Plain Urban Agglomeration, China
Evaluating urban methane emissions and their attributes in a megacity, Osaka, Japan, via mobile and eddy covariance measurements
Ozone (O3) observations in Saxony, Germany for 1997–2020: Trends, modelling and implications for O3 control
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: insights from high-resolution measurements and modeling
Measurement report: Exploring the variations in ambient BTEX in urban Europe and their environmental health implications
Seasonal air concentration variability, gas–particle partitioning, precipitation scavenging, and air–water equilibrium of organophosphate esters in southern Canada
Global Ground-based Tropospheric Ozone Measurements: Reference Data and Individual Site Trends (2000–2022) from the TOAR-II/HEGIFTOM Project
Tracing elevated abundance of CH2Cl2 in the subarctic upper troposphere to the Asian Summer Monsoon
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Hemispheric differences in ozone across the stratosphere-troposphere exchange region
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Significant influence of oxygenated volatile organic compounds on atmospheric chemistry analysis: A case study in a typical industrial city in China
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Observation and modelling of atmospheric OH and HO2 radicals at a subtropical rural site and implications for secondary pollutants
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
Can Ye, Pengfei Liu, Chaoyang Xue, Chenglong Zhang, Zhuobiao Ma, Chengtang Liu, Junfeng Liu, Keding Lu, Yujing Mu, and Yuanhang Zhang
Atmos. Chem. Phys., 25, 6991–7005, https://doi.org/10.5194/acp-25-6991-2025, https://doi.org/10.5194/acp-25-6991-2025, 2025
Short summary
Short summary
This study investigates H2O2 chemistry in rural North China. The observed H2O2 showed distinct diurnal variations influenced by photochemical reactions. A box model revealed that H2O2 is primarily produced by HO2 recombination and removed mainly via particle uptake. Reductions in NOx, PM2.5, and alkanes raised H2O2 levels, while cutting alkenes, aromatics, CO, and HONO lowered them. A dual strategy focusing on VOC and NOx control is essential to reduce both H2O2 and ozone pollution.
Marvin Dufresne, Thérèse Salameh, Thierry Leonardis, Grégory Gille, Alexandre Armengaud, and Stéphane Sauvage
Atmos. Chem. Phys., 25, 5977–5999, https://doi.org/10.5194/acp-25-5977-2025, https://doi.org/10.5194/acp-25-5977-2025, 2025
Short summary
Short summary
This paper discusses the 18-month-long measurement of non-methane hydrocarbons (NMHCs) in Marseille, where there was no measurement since early 2000, despite the impact of NMHCs on air quality and climate. Traffic-related sources are the largest contributor to NMHC concentrations in Marseille, and shipping strongly contributes to the formation of aerosols. Finally, the Covid-19 lockdown had an impact on NMHC concentrations, reaching a 50 % decrease for traffic-related sources.
Simone T. Andersen, Rolf Sander, Patrick Dewald, Laura Wüst, Tobias Seubert, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Chaoyang Xue, Abdelwahid Mellouki, Alexandre Kukui, Vincent Michoud, Manuela Cirtog, Mathieu Cazaunau, Astrid Bauville, Hichem Bouzidi, Paola Formenti, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Christopher Cantrell, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 25, 5893–5909, https://doi.org/10.5194/acp-25-5893-2025, https://doi.org/10.5194/acp-25-5893-2025, 2025
Short summary
Short summary
Measurements and modelling of reactive nitrogen gases observed in a suburban temperate forest in Rambouillet, France, circa 50 km southwest of Paris in 2022 indicate that the biosphere rapidly scavenges organic nitrates of mixed biogenic and anthropogenic origin, resulting in short lifetimes for, for example, alkyl nitrates and peroxy nitrates.
Pengfei Han, Ning Zeng, Bo Yao, Wen Zhang, Weijun Quan, Pucai Wang, Ting Wang, Minqiang Zhou, Qixiang Cai, Yuzhong Zhang, Ruosi Liang, Wanqi Sun, and Shengxiang Liu
Atmos. Chem. Phys., 25, 4965–4988, https://doi.org/10.5194/acp-25-4965-2025, https://doi.org/10.5194/acp-25-4965-2025, 2025
Short summary
Short summary
Methane (CH4) is a potent greenhouse gas. Northern China contributes a large proportion of CH4 emissions, yet large observation gaps exist. Here we compiled a comprehensive dataset, which is publicly available, that includes ground-based, satellite-based, inventory, and modeling results to show the CH4 concentrations, enhancements, and spatial–temporal variations. The data can benefit the research community and policy-makers for future observations, atmospheric inversions, and policy-making.
Timur Cinay, Dickon Young, Nazaret Narváez Jimenez, Cristina Vintimilla-Palacios, Ariel Pila Alonso, Paul B. Krummel, William Vizuete, and Andrew R. Babbin
Atmos. Chem. Phys., 25, 4703–4718, https://doi.org/10.5194/acp-25-4703-2025, https://doi.org/10.5194/acp-25-4703-2025, 2025
Short summary
Short summary
We present the initial 15 months of nitrous oxide measurements from the Galapagos Emissions Monitoring Station. The observed variability in atmospheric mole fractions during this period can be linked to several factors: seasonal variations in trade wind speed and direction across the eastern Pacific, differences in the transport history of air masses sampled, and spatiotemporal heterogeneity in regional marine nitrous oxide emissions from the coastal upwelling systems of Peru and Chile.
Petra Bauerová, Josef Keder, Adriana Šindelářová, Ondřej Vlček, William Patiño, Pavel Krč, Jan Geletič, Hynek Řezníček, Martin Bureš, Kryštof Eben, Michal Belda, Jelena Radović, Vladimír Fuka, Radek Jareš, Igor Esau, and Jaroslav Resler
Atmos. Chem. Phys., 25, 4477–4504, https://doi.org/10.5194/acp-25-4477-2025, https://doi.org/10.5194/acp-25-4477-2025, 2025
Short summary
Short summary
The study explored urban air quality in Prague using low-cost sensors and highlighted the multivariate adaptive regression splines (MARS) correction method's effectiveness in enhancing accuracy. Results showed traffic's impact on nitrogen dioxide levels and atmospheric dynamics on particulate matter. The research confirmed MARS-corrected sensors as cost-effective for monitoring, despite challenges like sensor ageing and data quality control.
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025, https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Short summary
This study reports an observation of organic nitrate (including total peroxy nitrates and total alkyl nitrates) in Shanghai, China, during the summer of 2021, by homemade thermal dissociation cavity-enhanced absorption spectroscopy (TD-CEAS; Atmos. Meas. Tech., 14, 4033–4051, 2021). The distribution of organic nitrates and their effects on local ozone production are analyzed based on field observations in conjunction with model simulations.
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025, https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Short summary
To reduce uncertainties in identifying the key volatile organic compounds (VOCs) in ozone (O3) formation from ambient concentrations, this study comprehensively calculates the emitted VOC concentrations during both nighttime and daytime using the nitrate radical, O3, and hydroxyl radical reaction rates and ambient VOC concentrations. Based on the emitted concentrations, isoprene is one of the top three species contributing to O3 formation, which may be overlooked in observed concentrations.
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025, https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Short summary
Our field campaigns observed a strong diel pattern of chloroacetic acid as well as a strong correlation between its level and that of reactive chlorine species at a coastal site. Using quantum chemical calculations and box model simulation with an updated Master Chemical Mechanism, we found that the formation pathway of chloroacetic acid involved multiphase processes. Our study enhances understanding of atmospheric organic chlorine chemistry and emphasizes the importance of multiphase reactions.
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025, https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Short summary
A full suite of radical measurements (OH, HO2, RO2, and kOH) was established to accurately elucidate the limitations of oxidation in a chemically complex atmosphere. Sensitivity tests revealed that the incorporation of complex processes enabled a balance in both radical concentrations and coordinate ratios, effectively addressing the deficiency in the ozone generation mechanism. The full-chain radical detection bridged the gap between the photochemistry and the intensive oxidation level.
Yanjie Lu, Xinxin Feng, Yanli Feng, Minjun Jiang, Yu Peng, Tian Chen, and Yingjun Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-131, https://doi.org/10.5194/egusphere-2025-131, 2025
Short summary
Short summary
The EFs of CCs from biomass burning (BB) is an order of magnitude higher than that from on-road sources. Fuel type determines the emission characteristics and composition of CCs. The formation of CCs from solid and liquid fuel sources is respectively controlled by combustion temperature and emission standards. In addition, biomass burning and agricultural machinery sources significantly contribute to the oxidizing capacity of regional atmospheres.
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025, https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary
Short summary
We considered two potential influencing factors of heavy-duty diesel vehicle emissions that are rarely mentioned in the literature: cumulative mileage and ambient temperatures. The results suggest that prolonged use of heavy-duty diesel vehicles and low ambient temperatures leads to reduced engine combustion efficiency, which in turn increases tailpipe emissions significantly.
Junling Li, Chaofan Lian, Mingyuan Liu, Hao Zhang, Yongxin Yan, Yufei Song, Chun Chen, Jiaqi Wang, Haijie Zhang, Yanqin Ren, Yucong Guo, Weigang Wang, Yisheng Xu, Hong Li, Jian Gao, and Maofa Ge
Atmos. Chem. Phys., 25, 2551–2568, https://doi.org/10.5194/acp-25-2551-2025, https://doi.org/10.5194/acp-25-2551-2025, 2025
Short summary
Short summary
As a key source of hydroxyl (OH) radical, nitrous acid (HONO) has attracted much attention for its important role in the atmospheric oxidant capacity (AOC) increase. In this study, we made a comparison of the ambient levels, variation patterns, sources, and formation pathway in the warm season on the basis of continuous intensive observations at an urban site of Beijing. This work highlights the importance of HONO for the AOC in the warm season.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
Atmos. Chem. Phys., 25, 1965–1987, https://doi.org/10.5194/acp-25-1965-2025, https://doi.org/10.5194/acp-25-1965-2025, 2025
Short summary
Short summary
The 18O/16O ratio of atmospheric oxygen, δatm(18O), is higher than that of ocean water due to isotopic effects during biospheric activities. This is known as the Dole–Morita effect, and its millennial-scale variations are recorded in ice cores. However, small variations of δatm(18O) in the present day have never been detected so far. This paper presents the first observations of diurnal, seasonal, and secular variations in δatm(18O) and applies them to evaluate oxygen, carbon, and water cycles.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Shengqian Zhou, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
Atmos. Chem. Phys., 25, 1931–1947, https://doi.org/10.5194/acp-25-1931-2025, https://doi.org/10.5194/acp-25-1931-2025, 2025
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the eastern North Atlantic. We use an observationally constrained box model to show that cloud loss is the dominant sink of HPMTF in this region over 6 weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
Atmos. Chem. Phys., 25, 1899–1916, https://doi.org/10.5194/acp-25-1899-2025, https://doi.org/10.5194/acp-25-1899-2025, 2025
Short summary
Short summary
We studied carbonyl compounds' role in ozone pollution in the Chengdu Plain Urban Agglomeration, China. During heavy pollution in August 2019, we measured carbonyls at nine sites and analyzed their impact. Areas with higher carbonyl levels, like Chengdu, had worse ozone pollution. While their abundance matters, chemical reactions with other pollutants are the main drivers. Our findings show regional cooperation is vital to reducing ozone pollution effectively.
Masahito Ueyama, Taku Umezawa, Yukio Terao, Mark Lunt, and James Lawrence France
EGUsphere, https://doi.org/10.5194/egusphere-2024-3926, https://doi.org/10.5194/egusphere-2024-3926, 2025
Short summary
Short summary
Methane (CH4) emissions were measured in Megacity Osaka, Japan, using mobile and eddy covariance methods. The CH4 emissions were much higher than those reported in local inventories, with natural gas contributing up to 74 % of the emissions. Several CH4 sources not accounted for in current inventories were identified. These results emphasize the need for more comprehensive emissions tracking in urban areas to enhance climate change mitigation efforts.
Yaru Wang, Dominik van Pinxteren, Andreas Tilgner, Erik Hans Hoffmann, Max Hell, Susanne Bastian, and Hartmut Herrmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-4202, https://doi.org/10.5194/egusphere-2024-4202, 2025
Short summary
Short summary
Tropospheric ground-level ozone (O3) is a global air-quality pollutant and greenhouse gas. Long-term O3 trends from 16 stations in Saxony, Germany, were compared over three periods, revealing worsened O3 pollution over the last decade. O3 formation has been volatile organic compound (VOC)-limited at traffic and urban sites for the past 20 years. To mitigate O3 pollution, moderate nitrogen oxides and additional VOC controls, particularly in solvent use, should be prioritized in the coming years.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
Atmos. Chem. Phys., 25, 905–921, https://doi.org/10.5194/acp-25-905-2025, https://doi.org/10.5194/acp-25-905-2025, 2025
Short summary
Short summary
Box modeling with the Master Chemical Mechanism (MCM) was used to explore summertime peroxyacetyl nitrate (PAN) formation and its link to aerosol pollution under high-ozone conditions. The MCM model is effective in the study of PAN photochemical formation and performed better during the clean period than the haze period. Machine learning analysis identified ammonia, nitrate, and fine particulate matter as the top three factors contributing to simulation bias.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco, Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Héllen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair C. Lewis, James R. Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
Atmos. Chem. Phys., 25, 625–638, https://doi.org/10.5194/acp-25-625-2025, https://doi.org/10.5194/acp-25-625-2025, 2025
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across seven European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. The risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones, highlighting the need for targeted air quality management to protect public health and improve urban air quality.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
Atmos. Chem. Phys., 25, 459–472, https://doi.org/10.5194/acp-25-459-2025, https://doi.org/10.5194/acp-25-459-2025, 2025
Short summary
Short summary
Organophosphate esters are important humanmade trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation, and surface water in Canada, we explore seasonal concentration variability, gas–particle partitioning, precipitation scavenging, and the air–water equilibrium. Whereas higher summer concentrations and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas–particle partitioning is puzzling.
Roeland Van Malderen, Anne M. Thompson, Debra E. Kollonige, Ryan M. Stauffer, Herman G. J. Smit, Eliane Maillard Barras, Corinne Vigouroux, Irina Petropavlovskikh, Thierry Leblanc, Valérie Thouret, Pawel Wolff, Peter Effertz, David W. Tarasick, Deniz Poyraz, Gérard Ancellet, Marie-Renée De Backer, Stéphanie Evan, Victoria Flood, Matthias M. Frey, James W. Hannigan, José L. Hernandez, Marco Iarlori, Bryan J. Johnson, Nicholas Jones, Rigel Kivi, Emmanuel Mahieu, Glen McConville, Katrin Müller, Tomoo Nagahama, Justus Notholt, Ankie Piters, Natalia Prats, Richard Querel, Dan Smale, Wolfgang Steinbrecht, Kimberly Strong, and Ralf Sussmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3736, https://doi.org/10.5194/egusphere-2024-3736, 2025
Short summary
Short summary
Tropospheric ozone is an important greenhouse gas and is an air pollutant. The time variability of tropospheric ozone is mainly driven by anthropogenic emissions. In this paper, we study the distribution and time variability of ozone from harmonized ground-based observations from five different measurement techniques. Our findings will provide clear standard references for atmospheric models and evolving tropospheric ozone satellite data for the 2000–2022 period.
Markus Jesswein, Valentin Lauther, Nicolas Emig, Peter Hoor, Timo Keber, Hans-Christoph Lachnitt, Linda Ort, Tanja Schuck, Johannes Strobel, Ronja Van Luijt, C. Michael Volk, Franziska Weyland, and Andreas Engel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3946, https://doi.org/10.5194/egusphere-2024-3946, 2025
Short summary
Short summary
The study investigates transport within the Asian Summer Monsoon, focussing on how CH2Cl2 reaches the subarctic tropopause region. Using data from the PHILEAS campaign in 2023, events with increased mixing ratios were detected. Their origin, the transport paths to the tropopause region and the potential entry into the stratosphere were analysed. The East Asian Summer Monsoon was identified as the main transport pathway, with only a small contribution to the stratosphere in the following days.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
Atmos. Chem. Phys., 24, 14191–14208, https://doi.org/10.5194/acp-24-14191-2024, https://doi.org/10.5194/acp-24-14191-2024, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were conducted over paddy fields in the Huaihe River Basin. Consecutive peaks in HONO and NO fluxes suggest a potentially enhanced release of HONO and NO due to soil tillage, whereas waterlogged soil may inhibit microbial nitrification processes following irrigation. Notably, biological processes and light-driven NO2 reactions at the surface may serve as sources of HONO and influence the local HONO budget during rotary tillage.
Rodrigo J. Seguel, Charlie Opazo, Yann Cohen, Owen R. Cooper, Laura Gallardo, Björn-Martin Sinnhuber, Florian Obersteiner, Andreas Zahn, Peter Hoor, and Susanne Rohs
EGUsphere, https://doi.org/10.5194/egusphere-2024-3719, https://doi.org/10.5194/egusphere-2024-3719, 2024
Short summary
Short summary
We explored differences in ozone levels between the Northern and Southern Hemispheres in the Stratosphere-troposphere exchange region. Using unique data from a research aircraft, we found significantly lower ozone levels (with stratospheric character) in the Southern Hemisphere, especially during years of severe ozone depletion. A Sudden Stratospheric Warming event in 2019 increased Southern Hemisphere ozone levels, highlighting the relationship between atmospheric events and ozone distribution.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Jingwen Dai, Kun Zhang, Yanli Feng, Xin Yi, Rui Li, Jin Xue, Qing Li, Lishu Shi, Jiaqiang Liao, Yanan Yi, Fangting Wang, Liumei Yang, Hui Chen, Ling Huang, Jiani Tan, Yangjun Wang, and Li Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3201, https://doi.org/10.5194/egusphere-2024-3201, 2024
Short summary
Short summary
Oxygenated volatile organic compounds (OVOCs) are important ozone (O3) precursors. However, most of O3 formation analysis based on the box model (OBM) don't include OVOCs constraint To access the interference of OVOCs on O3 simulation, this study conducted field campaign and OBM analysis. The results indicates that no OVOCs constraint in the OBM can lead to overestimate of OVOCs, free radicals, and O3.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3210, https://doi.org/10.5194/egusphere-2024-3210, 2024
Short summary
Short summary
We measured ambient OH and HO2 concentrations at a subtropical rural site and compared our observations with model results. During warm periods, the model overestimated the concentrations of OH and HO2, leading to overestimation of ozone and nitric acid production. Our findings highlight the need to better understand how OH and HO2are formed and removed, which is important for accurate air quality and climate predictions.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Cited articles
Airviro: Air Quality Management system, available at: https://www.airviro.com/airviro/, last access:
22 November 2017.
Bari, M. A. and Kindzierski, W. B.: Evaluation of air quality indicators in
Alberta, Canada – An international perspective, Environ. Int., 92–93,
119–129, https://doi.org/10.1016/j.envint.2016.03.021, 2016.
Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., Andersen, Z. J., Weinmayr,
G., Hoffmann, B., Wolf, K., Samoli, E., Fischer, P., Nieuwenhuijsen, M.,
Vineis, P., Xun, W. W., Katsouyanni, K., Dimakopoulou, K., Oudin, A.,
Forsberg, B., Modig, L., Havulinna, A. S., Lanki, T., Turunen, A., Oftedal,
B., Nystad, W., Nafstad, P., De Faire, U., Pedersen, N. L., Östenson, C.
G., Fratiglioni, L., Penell, J., Korek, M., Pershagen, G., Eriksen, K. T.,
Overvad, K., Ellermann, T., Eeftens, M., Peeters, P. H., Meliefste, K., Wang,
M., Bueno-de-Mesquita, B., Sugiri, D., Krämer, U., Heinrich, J., de
Hoogh, K., Key, T., Peters, A., Hampel, R., Concin, H., Nagel, G., Ineichen,
A., Schaffner, E., Probst-Hensch, N., Künzli, N., Schindler, C.,
Schikowski, T., Adam, M., Phuleria, H., Vilier, A., Clavel-Chapelon, F.,
Declercq, C., Grioni, S., Krogh, V., Tsai, M. Y., Ricceri, F., Sacerdote, C.,
Galassi, C., Migliore, E., Ranzi, A., Cesaroni, G., Badaloni, C., Forastiere,
F., Tamayo, I., Amiano, P., Dorronsoro, M., Katsoulis, M., Trichopoulou, A.,
Brunekreef, B., and Hoek, G.: Effects of long-term exposure to air pollution
on natural-cause mortality: an analysis of 22 European cohorts within the
multicentre ESCAPE project, Lancet, 383, 785–795,
https://doi.org/10.1016/S0140-6736(13)62158-3, 2014.
BilSweden: statistics on new registrations, available at:
http://www.bilsweden.se/statistik/arkiv-nyregistreringar_1, last acess:
29 August 2018.
Brunekreef, B. and Forsberg, B.: Epidemiological evidence of effects of
coarse airborne particles on health, Eur. Respir. J., 26, 309–318,
https://doi.org/10.1183/09031936.05.00001805, 2005.
Carslaw, D. C.: Evidence of an increasing
NO2 ∕NOx emissions ratio from road traffic
emissions, Atmos. Environ., 39, 4793–4802,
https://doi.org/10.1016/j.atmosenv.2005.06.023, 2005.
Carslaw, D. C. and Ropkins, K.: Openair – an R package for air quality data
analysis, Environ. Modell. Softw., 27–28, 52–61, 2012.
Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep,
K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V.,
Freedman, G., Hubbell, B., Jobling, A., Kan, H., Knibbs, L., Liu, Y., Martin,
R., Morawska, L., Pope III, C. A., Shin, H., Stralf, K., Shaddick, G.,
Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C. J. L.,
and Forouzanfar, H.: Estimates and 25-year trends of the global burden of
disease attributable to ambient air pollution: an analysis of data from the
Global Burden of Diseases Study 2015, Lancet, 389, 1907–1918,
https://doi.org/10.1016/S0140-6736(17)30505-6, 2017.
Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri,
A., Bessagnet, B., D'Angiola, A., D'Isidoro, M., Gauss, M., Meleux, F.,
Memmesheimer, M., Mieville, A., Rouïl, L., Russo, F., Solberg, S., Stordal,
F., and Tampieri, F.: Air quality trends in Europe over the past decade: a
first multi-model assessment, Atmos. Chem. Phys., 11, 11657–11678,
https://doi.org/10.5194/acp-11-11657-2011, 2011.
Correia, A. W., Pope III, C. A., Dockery, D. W., Wang, Y., Ezzati, M., and
Dominici, F.: Effect of air pollution control on life expectancy in the
United States: an analysis of 545 U.S. counties for the period from 2000 to
2007, Epidemiology, 24, 23–31, https://doi.org/10.1097/EDE.0b013e3182770237, 2013.
EEA: Air quality in Europe – 2016 report, No 28/2016, European Environment
Agency, Copenhagen, Denmark, 2016.
EEA: Air quality in Europe – 2017 report, No 13/2017, European Environment
Agency, Copenhagen, Denmark, 2017.
EU: EU Directive 2008/50/EC of the European Parliament and of the Council of
21 May 2008 on Ambient Air Quality and Cleaner Air for Europe, OJ L 152,
11 June 2008.
Faustini, A., Rapp, R., and Forastiere, F.: Nitrogen dioxide and mortality:
review and meta-analysis of long-term studies, Eur. Respir. J., 44, 744–753,
https://doi.org/10.1183/09031936.00114713, 2014.
Geddes, J. A., Martin, R. V., Boys, B. L., and van Donkelaar, A.: Long-term
trends worldwide in ambient NO2 concentrations inferred from satellite
observations, Environ. Health Perspect., 124, 281–289,
https://doi.org/10.1289/ehp.1409567, 2016.
Gidhagen, L., Johansson, C., Langner, J., and Olivares, G.: Simulation of
NOx and ultrafine particles in a street canyon in Stockholm, Sweden, Atmos.
Environ., 38, 2029–2044, https://doi.org/10.1016/j.atmosenv.2004.02.014, 2004.
Gothenburg Annual Report: Miljöförvaltningen, Göteborgs stad,
available at:
http://goteborg.se/wps/wcm/connect/48ca3c67-ced5-415f-b538-1ddf4f246e70/N800_R_2016_5.pdf?MOD=AJPERES
(last access: 7 June 2016), 2015.
Gothenburg City: Environmental Programme, available at: http://goteborg.se/wps/portal/start/miljo/miljolaget-i-goteborg/luft/luftkvaliteten-i-goteborg/!ut/p/z1/hY7RCoIwGE
afpRfYv81m83IGhhppYai7CY21BHXhpIFPnz1A9N0dzrn4
QEIFcmzenW7mzoxNv3It_VtOkjMPicDZIYhwXKR5dEqP2
f5CofwXyFXjHxMYEpBdOyB3HxBGHqE-CRjdcY9uGWZ
QhlCn12Ip3feJGFuPa5CTeqhJTehp7AyVcw5pY3SvkFXwG
qoltmLzAZX73Zg!/dz/d5/L2dBISEvZ0FBIS9nQSEh/
(last access: 14 June 2016), 2015.
Gramsch, E., Cereceda-Balic, F., Oyola, P., and von Baer, D.: Examination of
pollution trends in Santiago de Chile with cluster analysis of PM10 and
ozone data, Atmos. Environ., 40, 5464–5475,
https://doi.org/10.1016/j.atmosenv.2006.03.062, 2006.
Grice, S., Stedman, J., Kent, A., Hobson, M., Norris, J., Abbott, J., and
Cooke, S.: Recent trends and projections of primary NO2 emissions
in Europe, Atmos. Environ., 43, 2154–2167,
https://doi.org/10.1016/j.atmosenv.2009.01.019, 2009.
Grundström, M., Hak, C., Chen, D., Hallquist, M., and Pleijel, H.:
Variation and co-variation of PM10, particle number concentration,
NOx and NO2 in the urban air – Relationships with
wind speed, vertical temperature gradient and weather type, Atmos. Environ.,
120, 317–327, https://doi.org/10.1016/j.atmosenv.2015.08.057, 2015.
Guerreiro, C. B. B., Foltescu, V., and de Leeuw, F.: Air quality status and
trends in Europe, Atmos. Environ., 98, 376–384,
https://doi.org/10.1016/j.atmosenv.2014.09.017, 2014.
Henschel, S., Atkinson, R., Zeka, A., Le Tertre, A., Analitis, A.,
Katsouyanni, K., Chanel, O., Pascal, M., Forsberg, B., Medina, S., and
Goodman, P. G.: Air pollution interventions and their impact on public
health, Int. J. Public Health, 57, 757–768, https://doi.org/10.1007/s00038-012-0369-6,
2012.
Hirsch, R. M., Slack, J. R., and Smith, R. A.: Techniques of trend analysis
for monthly water-quality data, Water Resour. Res., 18, 107–121,
https://doi.org/10.1029/WR018i001p00107, 1982.
Hoek, G., Krishnan, R. M., Beelen, R., Peters, A., Ostro, B., Brunekreef, B.,
and Kaufman, J. D.: Long-term air pollution exposure and cardio- respiratory
mortality: a review, Environ. Health, 28, 43, https://doi.org/10.1186/1476-069X-12-43,
2013.
IVL: Swedish National environmental monitoring, Report C 224, IVL Svenska Miljöinstitutet AB, Box 210 60, 100
31 Stockholm, Sweden, available at:
https://www.naturvardsverket.se/upload/miljoarbete-i-samhallet/miljoarbete-i-sverige/miljoovervakning/Luft/ivl-rapport-c224-nationell-luftövervakning-sakrapport2015.pdf
(last access: 4 September 2018), 2016 (in Swedish with English
summary).
Jerrett, M., Burnett, R. T., Pope III, C. A., Ito, K., Thurston, G., Krewski,
D., Shi, Y., Calle, E., and Thun, M.: Long-term ozone exposure and mortality,
N. Engl. J. Med., 12, 1085–95, https://doi.org/10.1056/NEJMoa0803894, 2009.
Johansson, C., Norman, M., and Gidhagen, L.: Spatial & temporal variations
of PM10 and particle number concentrations in urban air, Environ. Monit.
Assess., 127, 477–487, https://doi.org/10.1007/s10661-006-9296-4, 2007.
Johansson, C., Andersson, C., Bergström, R., and Krecl, P.: Exposure to
particles due to local and non-local sources in Stockholm – Estimates based
on modelling and measurements 1997–2006, Report 175, Department of Applied
Environmental Science, Stockholm university, 106 91 Stockholm, Sweden,
available at: http://slb.nu/slb/rapporter/pdf8/itm2008_175.pdf (last
access: 4 September 2018), 2008.
Johansson, C., Burman, L., and Forsberg, B.: The effects of congestions tax
on air quality and health, Atmos. Environ., 43, 4843–4854,
https://doi.org/10.1016/j.atmosenv.2008.09.015, 2009.
Johansson, C., Löverheim, B., Schantz, P., Wahlgren, L., Almström,
P., Markstedt, A., Strömgren, M., Forsberg, B., and Nilsson Sommar, J.:
Impacts on air pollution and health by changing commuting from car to
bicycle, Sci. Total. Environ., 584–585, 55–63,
https://doi.org/10.1016/j.scitotenv.2017.01.145, 2017.
Keuken, M., Roemer, M., and van den Elshout, S.: Trend analysis of urban
NO2 concentrations and the importance of direct NO2
emissions versus ozone/NOx equilibrium, Atmos. Environ., 43,
4780–4783, https://doi.org/10.1016/j.atmosenv.2008.07.043, 2009.
Keuken, M., Zandveld, P., van den Elshout, S., Janssen, N. A. H., and Hoek,
G.: Air quality and health impact of PM10 and EC in the city of
Rotterdam, the Netherlands in 1985–2008, Atmos. Environ., 45, 5294–5301,
https://doi.org/10.1016/j.atmosenv.2011.06.058, 2011.
Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger,
P., Herry, M., Horak Jr., F., Puybonnieux-Texier, V., Quénel, P.,
Schneider, J., Seethaler, R., Vergnaud, J. C., and Sommer, H.: Public-health
impact of outdoor and traffic-related air pollution: a European assessment,
Lancet, 356, 795–801, https://doi.org/10.1016/S0140-6736(00)02653-2, 2000.
Künzli, N.: The public health relevance of air pollution abatement, Eur.
Respir. J., 20, 198–209, https://doi.org/10.1183/09031936.02.00401502, 2002.
Molnar, P., Stockfelt, L., Barregard, L., and Sallsten, G.: Residential
NOx exposure in a 35 year cohort study, Changes of exposure,
and comparison with back extrapolation for historical exposure assessment,
Atmos. Environ., 115, 62–69, https://doi.org/10.1016/j.atmosenv.2015.05.055, 2015.
Munir, S., Chen, H., and Ropkins, K.: Quantifying temporal trends in ground
level ozone concentration in the UK, Sci. Total Environ, 458–460, 217–227,
https://doi.org/10.1016/j.scitotenv.2013.04.045, 2013.
Nafstad, P., Håheim, L. L., Wisløff, T., Gram, F., Oftedal, B., Holme,
I., Hjermann, I., and Leren, P.: Urban air pollution and mortality in a
cohort of Norwegian men, Environ. Health Perspect., 112, 610–615,
https://doi.org/10.1289/ehp.6684, 2004.
Orru, H., Lövenheim, B., Johansson, C., and Forsberg, B.: Potential
health impacts of changes in air pollution exposure associated with moving
traffic into a road tunnel, J. Expo. Sci. Environ. Epidemiol., 25, 524–531,
https://doi.org/10.1038/jes.2015.24, 2015.
Pope III, C. A., Cropper, M., Coggins, J., and Cohen, A.: Health benefits of
air pollution abatement policy: Role of the shape of the
concentration-response function, J. Air Waste. Manag. Assoc., 65, 516–522,
https://doi.org/10.1080/10962247.2014.993004, 2015.
SCAC: Swedish Clean Air & Climate Research Program, available at:
http://www.scac.se/, last access: 7 September 2018.
SCB: Statistics Sweden: available at:
http://www.statistikdatabasen.scb.se/pxweb/sv/ssd/?rxid=_824e5e7c-a718-462e-9dd9-a83c29e37685,
last access: 29 September 2017.
Segersson, D., Eneroth, K., Gidhagen, L., Johansson, C., Omstedt, G.,
Engström Nylen, A., and Forsberg B.: Health Impact of PM10,
PM2.5 and black carbon exposure due to different source sectors in
Stockholm, Gothenburg and Umea, Sweden, Int. J. Environ. Res. Public Health., 14, 742, https://doi.org/10.3390/ijerph14070742, 2017.
Sen, P. K.: Estimates of regression coefficient based on Kendall's tau.: J.
Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934, 1968.
SEPA: Swedish Environmental protection agency, available at:
http://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Ozon-marknara-halter-i-luft-urban-och-regional-bakgrund-arsmedelvarden/?visuallyDisabledSeries=7bbc8e1c95d277e1,
last access: 16 November 2017a.
SEPA: Swedish Environmental protection agency, available at:
http://www.naturvardsverket.se/Sa-mar-miljon/Statistik-A-O/Partiklar-PM10-halter-i-luft-regional-bakgrund-25/?visuallyDisabledSeries=_ca9f2dd590183278,
last access: 9 December 2017b.
Sicard, P., Serra, R., and Rossello, P.: Spatiotemporal trends in
ground-level ozone concentrations and metrics in France over the time period
1999–2012, Environ. Res., 149, 122–144, https://doi.org/10.1016/j.envres.2016.05.014,
2016.
SLB: Air Pollutants in the county of Stockholm, Stockholm
air quality association, LVF 3:95, available at:
http://slb.nu/slb/rapporter/pdf8/lvf1995_003.pdf (last access:
4 September 2018), 1995 (in Swedish).
SLB: Air Quality in Stockholm – annual report 2015, SLB
Analys, Stockholms stad, available at:
http://slb.nu/slb/rapporter/pdf8/slb2016_002.pdf (last acess:
7 September 2018), 2015 (summary in English).
SLB: Air Pollutants in the region of the Eastern Sweden air quality
association, LVF 2018:22, available at:
http://slb.nu/slb/rapporter/pdf8/lvf2018_022.pdf, last access:
4 September 2018, 2018a (in Swedish).
SLB: Historiska data, available at: http://slb.nu/slbanalys/historiska-data-luft/
(last access: 29 October 2018), 2018b.
SMHI: Air Pollution Data, available at: http://shair.smhi.se/portal/concentrations-in-air,
last access: 29 October 2018.
Socialstyrelsen: The Swedish National Board of Health and Welfare, available
at:
http://www.socialstyrelsen.se/statistik/statistikdatabas/dodsorsaker, last acess: 7 September 2017
State of Global Air: Health Effects Institute, Special Report, Boston, MA:
Health Effects Institute, available at:
https://www.stateofglobalair.org/sites/.../SOGA2017_report.pdf, last
access: 18 December 2017.
Stockfelt, L., Andersson, E. M., Molnár, P., Rosengren, A., Wilhelmsen,
L., Sallsten, G., and Barregard, L.: Long term effects of residential
NOx exposure on total and cause-specific mortality and
incidence of myocardial infarction in a Swedish cohort, Environ. Res., 142,
197–206, https://doi.org/10.1016/j.envres.2015.06.045, 2015.
Stockfelt, L., Andersson, E. M., Molnár, P., Gidhagen, L., Segersson, D.,
Rosengren, A., Barregard, L., and Sallsten, G.: Long-term effects of total
and source-specific particulate air pollution on incident cardiovascular
disease in Gothenburg, Sweden, Environ. Res., 158, 61–71,
https://doi.org/10.1016/j.envres.2017.05.036, 2017.
Tang, D., Wang, C., Nie, J., Chen, R., Niu, Q., Kan, H., Chen, B., Perera,
F., and CDC, T.: Health benefits of improving air quality in Taiyuan, China,
Environ. Internat., 73, 235–242, https://doi.org/10.1016/j.envint.2014.07.016, 2014.
Theil, H.: A rank invariant method of linear and polynomial regression
analysis, Adv. St. Theo., 23, 345–381, https://doi.org/10.1007/978-94-011-2546-8_20,
1992.
Thurston, G. D., Kipen, H., Annesi-Maesano, I., Balmes, J., Brook, R. D.,
Cromar, K., De Matteis, S., Forastiere, F., Forsberg, B., Frampton, M. W.,
Grigg, J., Heederik, D., Kelly, F. J., Kuenzli, N., Laumbach, R., Peters, A.,
Rajagopalan, S. T., Rich, D., Ritz, B., Samet, J. M., Sandstrom, T.,
Sigsgaard, T., Sunyer, J., and Brunekreef, B.: A joint ERS/ATS policy
statement: what constitutes an adverse health effect of air pollution? An
analytical framework, Eur. Respir. J., 49, 1600419,
https://doi.org/10.1183/13993003.00419-2016, 2017.
Tong, D. Q., Lamsal, L., Pan, L., Ding, C., Kim, H., Lee, P., Chai, T.,
Pickering, K. E., and Stajner, I.: Long-term NOx trends over
large cities in the United States during the great recession: Comparison of
satellite retrievals, ground observations, and emission inventories, Atmos.
Environ., 107, 70–84, https://doi.org/10.1016/j.atmosenv.2015.01.035, 2015.
Turner, M. C, Jerrett, M., Pope III, C. A., Krewski, D., Gapstur, S. M.,
Diver, W. R., Beckerman, B. S., Marshall, J. D., Su J., Crouse, D. L., and
Burnett, R. T.: Long-Term Ozone Exposure and Mortality in a Large Prospective
Study, Am. J. Respir. Crit. Care. Med., 193, 1134–1142,
https://doi.org/10.1164/rccm.201508-1633OC, 2016.
WHO: WHO's Urban Ambient Air Pollution database – Update 2016, available at:
http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/,
last access: 11 August 2016a.
WHO: AirQ+: software tool for health risk assessment of air pollution,
available at:
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/activities/airq-software-tool-for-health-risk-assessment-of-air-pollution
(last access: 22 November 2017), 2016b.
Xing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.-M., and
Wei, C.: Historical gaseous and primary aerosol emissions in the United
States from 1990 to 2010, Atmos. Chem. Phys., 13, 7531–7549,
https://doi.org/10.5194/acp-13-7531-2013, 2013.
Short summary
This article analyzes the health effects caused by changes in air pollution concentrations during the period of 1990–2015 in Stockholm, Gothenburg, and Malmö: the three largest cities in Sweden. The air pollutants that have been measured and analyzed are NOx, NO2, O3, and PM10. NOx and NO2 exhibit decreasing trends during this period, with beneficial effects on public health. An overall conclusion is that public health can largely benefit from reduced air pollution levels.
This article analyzes the health effects caused by changes in air pollution concentrations...
Altmetrics
Final-revised paper
Preprint