Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-15705-2018
https://doi.org/10.5194/acp-18-15705-2018
Research article
 | 
01 Nov 2018
Research article |  | 01 Nov 2018

Trends in air pollutants and health impacts in three Swedish cities over the past three decades

Henrik Olstrup, Bertil Forsberg, Hans Orru, Mårten Spanne, Hung Nguyen, Peter Molnár, and Christer Johansson

Related authors

Improving 3-day deterministic air pollution forecasts using machine learning algorithms
Zhiguo Zhang, Christer Johansson, Magnuz Engardt, Massimo Stafoggia, and Xiaoliang Ma
Atmos. Chem. Phys., 24, 807–851, https://doi.org/10.5194/acp-24-807-2024,https://doi.org/10.5194/acp-24-807-2024, 2024
Short summary
Measurement report: Black carbon properties and concentrations in southern Sweden urban and rural air – the importance of long-range transport
Erik Ahlberg, Stina Ausmeel, Lovisa Nilsson, Mårten Spanne, Julija Pauraite, Jacob Klenø Nøjgaard, Michele Bertò, Henrik Skov, Pontus Roldin, Adam Kristensson, Erik Swietlicki, and Axel Eriksson
Atmos. Chem. Phys., 23, 3051–3064, https://doi.org/10.5194/acp-23-3051-2023,https://doi.org/10.5194/acp-23-3051-2023, 2023
Short summary
Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys., 22, 11359–11379, https://doi.org/10.5194/acp-22-11359-2022,https://doi.org/10.5194/acp-22-11359-2022, 2022
Short summary
Ship plumes in the Baltic Sea Sulfur Emission Control Area: chemical characterization and contribution to coastal aerosol concentrations
Stina Ausmeel, Axel Eriksson, Erik Ahlberg, Moa K. Sporre, Mårten Spanne, and Adam Kristensson
Atmos. Chem. Phys., 20, 9135–9151, https://doi.org/10.5194/acp-20-9135-2020,https://doi.org/10.5194/acp-20-9135-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024,https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Multi-year observations of variable incomplete combustion in the New York megacity
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024,https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024,https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024,https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024,https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary

Cited articles

Airviro: Air Quality Management system, available at: https://www.airviro.com/airviro/, last access: 22 November 2017. 
Bari, M. A. and Kindzierski, W. B.: Evaluation of air quality indicators in Alberta, Canada – An international perspective, Environ. Int., 92–93, 119–129, https://doi.org/10.1016/j.envint.2016.03.021, 2016. 
BilSweden: statistics on new registrations, available at: http://www.bilsweden.se/statistik/arkiv-nyregistreringar_1, last acess: 29 August 2018. 
Brunekreef, B. and Forsberg, B.: Epidemiological evidence of effects of coarse airborne particles on health, Eur. Respir. J., 26, 309–318, https://doi.org/10.1183/09031936.05.00001805, 2005. 
Download
Short summary
This article analyzes the health effects caused by changes in air pollution concentrations during the period of 1990–2015 in Stockholm, Gothenburg, and Malmö: the three largest cities in Sweden. The air pollutants that have been measured and analyzed are NOx, NO2, O3, and PM10. NOx and NO2 exhibit decreasing trends during this period, with beneficial effects on public health. An overall conclusion is that public health can largely benefit from reduced air pollution levels.
Altmetrics
Final-revised paper
Preprint