Articles | Volume 18, issue 14
Atmos. Chem. Phys., 18, 10799–10823, 2018
https://doi.org/10.5194/acp-18-10799-2018
Atmos. Chem. Phys., 18, 10799–10823, 2018
https://doi.org/10.5194/acp-18-10799-2018
Research article
31 Jul 2018
Research article | 31 Jul 2018

Impact of gravity waves on the motion and distribution of atmospheric ice particles

Aurélien Podglajen et al.

Related authors

Detection of Turbulence from Temperature, Pressure and Position Measurements Under Superpressure Balloons
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Miléna Corcos, and Riwal Plougonven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-178,https://doi.org/10.5194/amt-2022-178, 2022
Preprint under review for AMT
Short summary
The evolution and dynamics of the Hunga Tonga plume in the stratosphere
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
EGUsphere, https://doi.org/10.5194/egusphere-2022-517,https://doi.org/10.5194/egusphere-2022-517, 2022
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021,https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021,https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022,https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022,https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022,https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary

Cited articles

Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dynamics, in: International geophysics series, Academic Press, San Diego, 1987. a
Boehm, M. T. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27, 3209–3212, https://doi.org/10.1029/2000GL011678, 2000. a
Butman, B., Alexander, P., Scotti, A., Beardsley, R., and Anderson, S.: Large internal waves in Massachusetts Bay transport sediments offshore, Cont. Shelf Res., 26, 2029–2049, https://doi.org/10.1016/j.csr.2006.07.022, 2006. a
Cacchione, D. A., Pratson, L. F., and Ogston, A. S.: The Shaping of Continental Slopes by Internal Tides, Science, 296, 724–727, https://doi.org/10.1126/science.1069803, 2002. a
Carslaw, K. S., Peter, T., Bacmeister, J. T., and Eckermann, S. D.: Widespread solid particle formation by mountain waves in the Arctic stratosphere, J. Geophys. Res.-Atmos., 104, 1827–1836, https://doi.org/10.1029/1998JD100033, 1999. a
Download
Short summary
Using a simplified analytical setup, we show that the temperature and wind fluctuations due to an atmospheric gravity wave can induce a localization of ice crystals in a specific region of the wave. In that region, the air is nearly saturated and the vertical wind anomaly is positive. As a consequence, reversible gravity wave motions have an irreversible impact (mean upward motion) on the ice crystals. Our findings are consistent with observations of cirrus clouds near the tropical tropopause.
Altmetrics
Final-revised paper
Preprint