Articles | Volume 18, issue 14
Atmos. Chem. Phys., 18, 10799–10823, 2018
https://doi.org/10.5194/acp-18-10799-2018
Atmos. Chem. Phys., 18, 10799–10823, 2018
https://doi.org/10.5194/acp-18-10799-2018
Research article
31 Jul 2018
Research article | 31 Jul 2018

Impact of gravity waves on the motion and distribution of atmospheric ice particles

Aurélien Podglajen et al.

Related authors

The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022,https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Detection of Turbulence from Temperature, Pressure and Position Measurements Under Superpressure Balloons
Richard Wilson, Clara Pitois, Aurélien Podglajen, Albert Hertzog, Miléna Corcos, and Riwal Plougonven
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-178,https://doi.org/10.5194/amt-2022-178, 2022
Preprint under review for AMT
Short summary
Processes influencing lower stratospheric water vapour in monsoon anticyclones: insights from Lagrangian modelling
Nuria Pilar Plaza, Aurélien Podglajen, Cristina Peña-Ortiz, and Felix Ploeger
Atmos. Chem. Phys., 21, 9585–9607, https://doi.org/10.5194/acp-21-9585-2021,https://doi.org/10.5194/acp-21-9585-2021, 2021
Short summary
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021,https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Asymmetry and pathways of inter-hemispheric transport in the upper troposphere and lower stratosphere
Xiaolu Yan, Paul Konopka, Marius Hauck, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 21, 6627–6645, https://doi.org/10.5194/acp-21-6627-2021,https://doi.org/10.5194/acp-21-6627-2021, 2021
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?
Sonya L. Fiddes, Alain Protat, Marc D. Mallet, Simon P. Alexander, and Matthew T. Woodhouse
Atmos. Chem. Phys., 22, 14603–14630, https://doi.org/10.5194/acp-22-14603-2022,https://doi.org/10.5194/acp-22-14603-2022, 2022
Short summary
Aerosol characteristics and polarimetric signatures for a deep convective storm over the northwestern part of Europe – modeling and observations
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022,https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022,https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations
Silvia M. Calderón, Juha Tonttila, Angela Buchholz, Jorma Joutsensaari, Mika Komppula, Ari Leskinen, Liqing Hao, Dmitri Moisseev, Iida Pullinen, Petri Tiitta, Jian Xu, Annele Virtanen, Harri Kokkola, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 12417–12441, https://doi.org/10.5194/acp-22-12417-2022,https://doi.org/10.5194/acp-22-12417-2022, 2022
Short summary
The impacts of secondary ice production on microphysics and dynamics in tropical convection
Zhipeng Qu, Alexei Korolev, Jason A. Milbrandt, Ivan Heckman, Yongjie Huang, Greg M. McFarquhar, Hugh Morrison, Mengistu Wolde, and Cuong Nguyen
Atmos. Chem. Phys., 22, 12287–12310, https://doi.org/10.5194/acp-22-12287-2022,https://doi.org/10.5194/acp-22-12287-2022, 2022
Short summary

Cited articles

Andrews, D., Holton, J., and Leovy, C.: Middle Atmosphere Dynamics, in: International geophysics series, Academic Press, San Diego, 1987. a
Boehm, M. T. and Verlinde, J.: Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27, 3209–3212, https://doi.org/10.1029/2000GL011678, 2000. a
Butman, B., Alexander, P., Scotti, A., Beardsley, R., and Anderson, S.: Large internal waves in Massachusetts Bay transport sediments offshore, Cont. Shelf Res., 26, 2029–2049, https://doi.org/10.1016/j.csr.2006.07.022, 2006. a
Cacchione, D. A., Pratson, L. F., and Ogston, A. S.: The Shaping of Continental Slopes by Internal Tides, Science, 296, 724–727, https://doi.org/10.1126/science.1069803, 2002. a
Carslaw, K. S., Peter, T., Bacmeister, J. T., and Eckermann, S. D.: Widespread solid particle formation by mountain waves in the Arctic stratosphere, J. Geophys. Res.-Atmos., 104, 1827–1836, https://doi.org/10.1029/1998JD100033, 1999. a
Download
Short summary
Using a simplified analytical setup, we show that the temperature and wind fluctuations due to an atmospheric gravity wave can induce a localization of ice crystals in a specific region of the wave. In that region, the air is nearly saturated and the vertical wind anomaly is positive. As a consequence, reversible gravity wave motions have an irreversible impact (mean upward motion) on the ice crystals. Our findings are consistent with observations of cirrus clouds near the tropical tropopause.
Altmetrics
Final-revised paper
Preprint