Articles | Volume 17, issue 9
https://doi.org/10.5194/acp-17-5877-2017
https://doi.org/10.5194/acp-17-5877-2017
Research article
 | 
12 May 2017
Research article |  | 12 May 2017

Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: impacts on aerosol indirect effects

Xiaoning Xie, He Zhang, Xiaodong Liu, Yiran Peng, and Yangang Liu

Related authors

Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases
Xiaoning Xie, Gunnar Myhre, Xiaodong Liu, Xinzhou Li, Zhengguo Shi, Hongli Wang, Alf Kirkevåg, Jean-Francois Lamarque, Drew Shindell, Toshihiko Takemura, and Yangang Liu
Atmos. Chem. Phys., 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020,https://doi.org/10.5194/acp-20-11823-2020, 2020
Short summary
Modulation of springtime surface sensible heating over the Tibetan Plateau on the interannual variability of East Asian dust cycle
Xiaoning Xie, Anmin Duan, Zhengguo Shi, Xinzhou Li, Hui Sun, Xiaodong Liu, Xugeng Cheng, Tianliang Zhao, Huizheng Che, and Yangang Liu
Atmos. Chem. Phys., 20, 11143–11159, https://doi.org/10.5194/acp-20-11143-2020,https://doi.org/10.5194/acp-20-11143-2020, 2020
Short summary
Snow-darkening versus direct radiative effects of mineral dust aerosol on the Indian summer monsoon onset: role of temperature change over dust sources
Zhengguo Shi, Xiaoning Xie, Xinzhou Li, Liu Yang, Xiaoxun Xie, Jing Lei, Yingying Sha, and Xiaodong Liu
Atmos. Chem. Phys., 19, 1605–1622, https://doi.org/10.5194/acp-19-1605-2019,https://doi.org/10.5194/acp-19-1605-2019, 2019
Short summary
Radiative feedbacks of dust in snow over eastern Asia in CAM4-BAM
Xiaoning Xie, Xiaodong Liu, Huizheng Che, Xiaoxun Xie, Xinzhou Li, Zhengguo Shi, Hongli Wang, Tianliang Zhao, and Yangang Liu
Atmos. Chem. Phys., 18, 12683–12698, https://doi.org/10.5194/acp-18-12683-2018,https://doi.org/10.5194/acp-18-12683-2018, 2018
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Evaluating Arctic clouds modelled with the Unified Model and Integrated Forecasting System
Gillian Young McCusker, Jutta Vüllers, Peggy Achtert, Paul Field, Jonathan J. Day, Richard Forbes, Ruth Price, Ewan O'Connor, Michael Tjernström, John Prytherch, Ryan Neely III, and Ian M. Brooks
Atmos. Chem. Phys., 23, 4819–4847, https://doi.org/10.5194/acp-23-4819-2023,https://doi.org/10.5194/acp-23-4819-2023, 2023
Short summary
Evaluation of aerosol–cloud interactions in E3SM using a Lagrangian framework
Matthew W. Christensen, Po-Lun Ma, Peng Wu, Adam C. Varble, Johannes Mülmenstädt, and Jerome D. Fast
Atmos. Chem. Phys., 23, 2789–2812, https://doi.org/10.5194/acp-23-2789-2023,https://doi.org/10.5194/acp-23-2789-2023, 2023
Short summary
Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus
Peter Spichtinger, Patrik Marschalik, and Manuel Baumgartner
Atmos. Chem. Phys., 23, 2035–2060, https://doi.org/10.5194/acp-23-2035-2023,https://doi.org/10.5194/acp-23-2035-2023, 2023
Short summary
Temperature and cloud condensation nuclei (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase seeder–feeder mechanism: a case study for the 2015 Cumbria flood
Julia Thomas, Andrew Barrett, and Corinna Hoose
Atmos. Chem. Phys., 23, 1987–2002, https://doi.org/10.5194/acp-23-1987-2023,https://doi.org/10.5194/acp-23-1987-2023, 2023
Short summary
Aerosol–precipitation elevation dependence over the central Himalayas using cloud-resolving WRF-Chem numerical modeling
Pramod Adhikari and John F. Mejia
Atmos. Chem. Phys., 23, 1019–1042, https://doi.org/10.5194/acp-23-1019-2023,https://doi.org/10.5194/acp-23-1019-2023, 2023
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E. J.: The Version 2.1 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present), J. Hydrometeor., 4, 1147–1167, 2003.
Albrecht, B. A.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, 1989.
Chuang, C. C., Kelly, J. T., Boyle, J. S., and Xie, S.: Sensitivity of aerosol indirect effects to cloud nucleation and autoconversion parameterizations in short-range weather forecasts during the May 2003 aerosol IOP, J. Adv. Model. Earth Syst., 4, M09001, https://doi.org/10.1029/2012MS000161, 2012.
Gettelman, A., Liu, X., Ghan, S. J., Morrison, H., Park, S., Conley, A. J., Klein, S. A., Boyle, J., Mitchell, D. L., and Li, J.-L. F.: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model, J. Geophys. Res., 115, D18216, https://doi.org/10.1029/2009JD013797, 2010.
Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., and Caldwell, P. M.: Advanced two-moment bulk microphysics for global models. Part II: global model solutions and aerosol-cloud interactions, J. Climate, 28, 1288–1307, https://doi.org/10.1175/JCLI-D-14-00103.1, 2015.
Download
Short summary
New complete cloud parameterizations of cloud droplet effective radius and the two-moment cloud-to-rain autoconversion process explicitly accounting for dispersion are implemented into CAM5.1. The results show that the consideration of dispersion effect can significantly reduce the changes induced by anthropogenic aerosols in the cloud-top effective radius and the liquid water path, which reduces the AIF substantially at a global scale, especially in the Northern Hemisphere.
Altmetrics
Final-revised paper
Preprint