Research article
16 Feb 2017
Research article
| 16 Feb 2017
Influence of rain on the abundance of bioaerosols in fine and coarse particles
Chathurika M. Rathnayake et al.
Related authors
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Marie Ila Gosselin, Chathurika M. Rathnayake, Ian Crawford, Christopher Pöhlker, Janine Fröhlich-Nowoisky, Beatrice Schmer, Viviane R. Després, Guenter Engling, Martin Gallagher, Elizabeth Stone, Ulrich Pöschl, and J. Alex Huffman
Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, https://doi.org/10.5194/acp-16-15165-2016, 2016
Short summary
Short summary
We present an analysis of bioaerosol measurements using two real-time fluorescence instruments in combination with molecular tracer techniques for quantifying airborne fungal spores in a semi-arid forest. Both techniques provide fungal spore concentrations of the order of 104 m−3 and up to 30 % of particle mass. Rainy periods exhibited higher concentrations and stronger correlations between fluorescent bioparticle and molecular tracer measurements. Fungal culture results are also presented.
Robert J. Yokelson, Bambang H. Saharjo, Chelsea E. Stockwell, Erianto I. Putra, Thilina Jayarathne, Acep Akbar, Israr Albar, Donald R. Blake, Laura L. B. Graham, Agus Kurniawan, Simone Meinardi, Diah Ningrum, Ati D. Nurhayati, Asmadi Saad, Niken Sakuntaladewi, Eko Setianto, Isobel J. Simpson, Elizabeth A. Stone, Sigit Sutikno, Andri Thomas, Kevin C. Ryan, and Mark A. Cochrane
Atmos. Chem. Phys., 22, 10173–10194, https://doi.org/10.5194/acp-22-10173-2022, https://doi.org/10.5194/acp-22-10173-2022, 2022
Short summary
Short summary
Fire plus non-fire GHG emissions associated with draining peatlands are the largest per area of any land use change considered by the IPCC. To characterize average and variability for tropical peat fire emissions, highly mobile smoke sampling teams were deployed across four Indonesian provinces to explore an extended interannual, climatic, and spatial range. Large adjustments to IPCC-recommended emissions are suggested. Lab data bolster an extensive emissions database for tropical peat fires.
Md. Robiul Islam, Thilina Jayarathne, Isobel J. Simpson, Benjamin Werden, John Maben, Ashley Gilbert, Puppala S. Praveen, Sagar Adhikari, Arnico K. Panday, Maheswar Rupakheti, Donald R. Blake, Robert J. Yokelson, Peter F. DeCarlo, William C. Keene, and Elizabeth A. Stone
Atmos. Chem. Phys., 20, 2927–2951, https://doi.org/10.5194/acp-20-2927-2020, https://doi.org/10.5194/acp-20-2927-2020, 2020
Short summary
Short summary
The Kathmandu Valley experiences high levels of air pollution. In this study, atmospheric gases and particulate matter were characterized by online and off-line measurements, with an emphasis on understanding their sources. The major sources of particulate matter and trace gases were identified as garbage burning, biomass burning, and vehicles. The majority of secondary organic aerosol was attributed to anthropogenic precursors, while a minority was attributed to biogenic gases.
Min Zhong, Eri Saikawa, Alexander Avramov, Chen Chen, Boya Sun, Wenlu Ye, William C. Keene, Robert J. Yokelson, Thilina Jayarathne, Elizabeth A. Stone, Maheswar Rupakheti, and Arnico K. Panday
Atmos. Chem. Phys., 19, 8209–8228, https://doi.org/10.5194/acp-19-8209-2019, https://doi.org/10.5194/acp-19-8209-2019, 2019
Short summary
Short summary
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, the capital city of Nepal. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and found that they have significant impacts on air quality surrounding the valley. Our results highlight the importance of improving local emissions estimates for air quality modeling.
Hansol D. Lee, Chathuri P. Kaluarachchi, Elias S. Hasenecz, Jonic Z. Zhu, Eduard Popa, Elizabeth A. Stone, and Alexei V. Tivanski
Atmos. Meas. Tech., 12, 2033–2042, https://doi.org/10.5194/amt-12-2033-2019, https://doi.org/10.5194/amt-12-2033-2019, 2019
Short summary
Short summary
Dry and wet aerosol deposition modes are commonly used to collect particles on a solid substrate for experiments. We demonstrate, using single-particle microscopy and bulk methods, how the substrate-deposited particles with two components can yield the same core–shell morphology but different shell thicknesses depending on the deposition method. Thus we strongly advise future works to use wet deposition when possible to obtain accurate assessment of the single-particle organic volume fraction.
Anusha Priyadarshani Silva Hettiyadura, Ibrahim M. Al-Naiema, Dagen D. Hughes, Ting Fang, and Elizabeth A. Stone
Atmos. Chem. Phys., 19, 3191–3206, https://doi.org/10.5194/acp-19-3191-2019, https://doi.org/10.5194/acp-19-3191-2019, 2019
Short summary
Short summary
This study examines anthropogenic influences on secondary organic aerosol at an urban site in Atlanta, Georgia. Organosulfates accounted for 16.5 % of PM2.5 organic carbon and were mostly derived from isoprene. In contrast to a rural forested site, Atlanta's isoprene-derived organosulfate concentrations were 2–6 times higher and accounted for twice as much organic carbon. Insights are provided as to which organosulfates should be measured in future studies and targeted for standard development.
Ibrahim M. Al-Naiema, Anusha P. S. Hettiyadura, Henry W. Wallace, Nancy P. Sanchez, Carter J. Madler, Basak Karakurt Cevik, Alexander A. T. Bui, Josh Kettler, Robert J. Griffin, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 15601–15622, https://doi.org/10.5194/acp-18-15601-2018, https://doi.org/10.5194/acp-18-15601-2018, 2018
Short summary
Short summary
By integrating newly developed tracers for anthropogenic secondary organic aerosol in source apportionment for the first time, we estimate that this source contributes 28 % of fine particle organic carbon in the Houston Ship Channel. Our approach can be used to evaluate anthropogenic, biogenic, and biomass burning contributions to secondary organic aerosols elsewhere in the world. Because anthropogenic emissions are potentially controllable, they provide an opportunity to improve air quality.
J. Douglas Goetz, Michael R. Giordano, Chelsea E. Stockwell, Ted J. Christian, Rashmi Maharjan, Sagar Adhikari, Prakash V. Bhave, Puppala S. Praveen, Arnico K. Panday, Thilina Jayarathne, Elizabeth A. Stone, Robert J. Yokelson, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 14653–14679, https://doi.org/10.5194/acp-18-14653-2018, https://doi.org/10.5194/acp-18-14653-2018, 2018
Short summary
Short summary
Size distributions and emission factors of submicron aerosol were quantified using online techniques for a variety of common but under-sampled combustion sources in South Asia: wood and dung cooking fires, groundwater pumps, brick kilns, trash burning, and open burning of crop residues. Optical properties (brown carbon light absorption and the absorption Ångström exponent, AAE) of the emissions were also investigated. Contextual comparisons to the literature and other NAMaSTE results were made.
Thilina Jayarathne, Chelsea E. Stockwell, Ashley A. Gilbert, Kaitlyn Daugherty, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2585–2600, https://doi.org/10.5194/acp-18-2585-2018, https://doi.org/10.5194/acp-18-2585-2018, 2018
Short summary
Short summary
Fine particulate matter (PM2.5) emissions from Indonesian peat burning were measured in situ. Fuel-based emission factors from 6.0–29.6 gPM kg-1. Detailed chemical analysis revealed high levels of organic carbon that was primarily water insoluble, little to no detectable elemental carbon, and alkane contributions to organic carbon in the range of 6 %. These data were used to estimate that 3.2–11 Tg of PM2.5 were emitted by the 2015 peat burning episodes in Indonesia.
Thilina Jayarathne, Chelsea E. Stockwell, Prakash V. Bhave, Puppala S. Praveen, Chathurika M. Rathnayake, Md. Robiul Islam, Arnico K. Panday, Sagar Adhikari, Rashmi Maharjan, J. Douglas Goetz, Peter F. DeCarlo, Eri Saikawa, Robert J. Yokelson, and Elizabeth A. Stone
Atmos. Chem. Phys., 18, 2259–2286, https://doi.org/10.5194/acp-18-2259-2018, https://doi.org/10.5194/acp-18-2259-2018, 2018
Short summary
Short summary
Emissions of fine particulate matter and its constituents were quantified for a variety of under-sampled combustion sources in South Asia: wood and dung cooking fires, generators, groundwater pumps, brick kilns, trash burning, and open burning of biomasses. Garbage burning and three-stone cooking fires were among the highest emitters, while servicing of motor vehicles significantly reduced PM. These data may be used in source apportionment and to update regional and global emission inventories.
Rudra P. Pokhrel, Eric R. Beamesderfer, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 17, 5063–5078, https://doi.org/10.5194/acp-17-5063-2017, https://doi.org/10.5194/acp-17-5063-2017, 2017
Short summary
Short summary
This study investigates enhancement of black carbon (BC) absorption in biomass burning emissions due to absorbing and non-absorbing coatings. The fraction of absorption due to BC, brown carbon (BrC), and lensing is estimated using different approaches. The similarities and differences between the results from these approaches are discussed. Absorption by BrC is shown to have good correlation with the elemental to organic carbon ratio (EC / OC) and AAE.
Ibrahim M. Al-Naiema and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, https://doi.org/10.5194/acp-17-2053-2017, 2017
Short summary
Short summary
Molecular tracers have proven useful in estimating contributions of primary and biogenic secondary sources to atmospheric particulate matter but have lagged behind for anthropogenic secondary sources. This study takes a field-based approach to evaluate the detectability, specificity, and gas–particle partitioning of prospective anthropogenic SOA tracers. We conclude that a subset of species are likely useful tracers and are recommended for use in future source apportionment studies.
Anusha P. S. Hettiyadura, Thilina Jayarathne, Karsten Baumann, Allen H. Goldstein, Joost A. de Gouw, Abigail Koss, Frank N. Keutsch, Kate Skog, and Elizabeth A. Stone
Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, https://doi.org/10.5194/acp-17-1343-2017, 2017
Short summary
Short summary
Organosulfates are components of secondary organic aerosol (SOA) formed in the presence of sulfate. Herein, their abundance, identity, and potential to form as sampling artifacts were studied in Centreville, AL, USA. The 10 most abundant signals accounted for 58–78 % of the total, with at least 20–200 other species accounting for the remainder. These major species were largely associated with biogenic gases, like isoprene and monoterpenes, and are proposed targets for future standard development.
Marie Ila Gosselin, Chathurika M. Rathnayake, Ian Crawford, Christopher Pöhlker, Janine Fröhlich-Nowoisky, Beatrice Schmer, Viviane R. Després, Guenter Engling, Martin Gallagher, Elizabeth Stone, Ulrich Pöschl, and J. Alex Huffman
Atmos. Chem. Phys., 16, 15165–15184, https://doi.org/10.5194/acp-16-15165-2016, https://doi.org/10.5194/acp-16-15165-2016, 2016
Short summary
Short summary
We present an analysis of bioaerosol measurements using two real-time fluorescence instruments in combination with molecular tracer techniques for quantifying airborne fungal spores in a semi-arid forest. Both techniques provide fungal spore concentrations of the order of 104 m−3 and up to 30 % of particle mass. Rainy periods exhibited higher concentrations and stronger correlations between fluorescent bioparticle and molecular tracer measurements. Fungal culture results are also presented.
Chelsea E. Stockwell, Thilina Jayarathne, Mark A. Cochrane, Kevin C. Ryan, Erianto I. Putra, Bambang H. Saharjo, Ati D. Nurhayati, Israr Albar, Donald R. Blake, Isobel J. Simpson, Elizabeth A. Stone, and Robert J. Yokelson
Atmos. Chem. Phys., 16, 11711–11732, https://doi.org/10.5194/acp-16-11711-2016, https://doi.org/10.5194/acp-16-11711-2016, 2016
Short summary
Short summary
We present the first or rare field measurements of emission factors for Indonesian peat fires made in Borneo during the 2015 El Niño. The data include up to 90 gases, aerosol mass, and aerosol optical properties at two wavelengths (405 and 870 nm). Brown carbon dominates aerosol absorption, revisions to previous values for greenhouse gas emissions are supported and air toxics are assessed.
Chelsea E. Stockwell, Ted J. Christian, J. Douglas Goetz, Thilina Jayarathne, Prakash V. Bhave, Puppala S. Praveen, Sagar Adhikari, Rashmi Maharjan, Peter F. DeCarlo, Elizabeth A. Stone, Eri Saikawa, Donald R. Blake, Isobel J. Simpson, Robert J. Yokelson, and Arnico K. Panday
Atmos. Chem. Phys., 16, 11043–11081, https://doi.org/10.5194/acp-16-11043-2016, https://doi.org/10.5194/acp-16-11043-2016, 2016
Short summary
Short summary
We present the first, or rare, field measurements in South Asia of emission factors for up to 80 gases (pollutants, greenhouse gases, and precursors) and black carbon and aerosol optical properties at 405 and 870 nm for many previously under-sampled sources that are important in developing countries such as cooking with dung and wood, garbage and crop residue burning, brick kilns, motorcycles, generators and pumps, etc. Brown carbon contributes significantly to total aerosol absorption.
Matthieu Riva, Thais Da Silva Barbosa, Ying-Hsuan Lin, Elizabeth A. Stone, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, https://doi.org/10.5194/acp-16-11001-2016, 2016
Short summary
Short summary
Formation of organosulfates (OSs) in secondary organic aerosol from the photooxidation of alkanes is reported from smog chamber experiments. Effects of acidity and relative humidity on OS formation were examined. Most of the OSs identified could be explained by formation of gaseous epoxide and/or hydroperoxide precursors with subsequent acid-catalyzed multiphase chemistry onto sulfate aerosol. The OSs identified here were also observed and quantified in aerosols collected in two urban areas.
Rudra P. Pokhrel, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, https://doi.org/10.5194/acp-16-9549-2016, 2016
Short summary
Short summary
This paper gives first multi-wavelength estimates of SSA and AAE of emissions from combustion of Indonesian peat. In addition, it demonstrates that SSA of biomass burning emissions can be parameterized with EC / (EC+OC) and that this parameterization is quantitatively superior to previously published parameterizations based on MCE. It also shows that EC / (EC+OC) parameterization accurately predicts SSA during the first few hours of aging of a biomass burning plume.
Weruka Rattanavaraha, Kevin Chu, Sri Hapsari Budisulistiorini, Matthieu Riva, Ying-Hsuan Lin, Eric S. Edgerton, Karsten Baumann, Stephanie L. Shaw, Hongyu Guo, Laura King, Rodney J. Weber, Miranda E. Neff, Elizabeth A. Stone, John H. Offenberg, Zhenfa Zhang, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 4897–4914, https://doi.org/10.5194/acp-16-4897-2016, https://doi.org/10.5194/acp-16-4897-2016, 2016
Short summary
Short summary
The mechanisms by which specific anthropogenic pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected from Birmingham, AL, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Isoprene SOA tracers were measured from these samples and compared to gas and aerosol data collected from the SEARCH network.
Min Zhong, Eri Saikawa, Yang Liu, Vaishali Naik, Larry W. Horowitz, Masayuki Takigawa, Yu Zhao, Neng-Huei Lin, and Elizabeth A. Stone
Geosci. Model Dev., 9, 1201–1218, https://doi.org/10.5194/gmd-9-1201-2016, https://doi.org/10.5194/gmd-9-1201-2016, 2016
Short summary
Short summary
Large discrepancies exist among emission inventories (e.g., REAS and EDGAR) at the provincial level in China. We use WRF-Chem to evaluate the impact of the difference in existing emission inventories and find that emissions inputs significantly affect our air pollutant simulation results. Our study highlights the importance of constraining emissions at the provincial level for regional air quality modeling over East Asia.
E. W. Butt, A. Rap, A. Schmidt, C. E. Scott, K. J. Pringle, C. L. Reddington, N. A. D. Richards, M. T. Woodhouse, J. Ramirez-Villegas, H. Yang, V. Vakkari, E. A. Stone, M. Rupakheti, P. S. Praveen, P. G. van Zyl, J. P. Beukes, M. Josipovic, E. J. S. Mitchell, S. M. Sallu, P. M. Forster, and D. V. Spracklen
Atmos. Chem. Phys., 16, 873–905, https://doi.org/10.5194/acp-16-873-2016, https://doi.org/10.5194/acp-16-873-2016, 2016
Short summary
Short summary
We estimate the impact of residential emissions (cooking and heating) on atmospheric aerosol, human health, and climate. We find large contributions to annual mean ambient PM2.5 in residential sources regions resulting in significant but uncertain global premature mortality when key uncertainties in emission flux are considered. We show that residential emissions exert an uncertain global radiative effect and suggest more work is needed to characterise residential emissions climate importance.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
A. P. S. Hettiyadura, E. A. Stone, S. Kundu, Z. Baker, E. Geddes, K. Richards, and T. Humphry
Atmos. Meas. Tech., 8, 2347–2358, https://doi.org/10.5194/amt-8-2347-2015, https://doi.org/10.5194/amt-8-2347-2015, 2015
Short summary
Short summary
Organosulfates are SOA products that have proven difficult to quantify. This study addresses the need for authentic quantification standards with a straightforward approach to synthesizing highly pure organosulfate potassium salts. New standards are used to develop a new separation protocol for small, functionalized organosulfates. Upon validation, this method is used to assess sample preparation protocols and to make new measurements of organosulfates in Centreville, Alabama.
S. Kundu, T. A. Quraishi, G. Yu, C. Suarez, F. N. Keutsch, and E. A. Stone
Atmos. Chem. Phys., 13, 4865–4875, https://doi.org/10.5194/acp-13-4865-2013, https://doi.org/10.5194/acp-13-4865-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi'an, Northwest China
PM10 variation, composition, and source analysis in Tuscany (Italy) following the COVID-19 lockdown restrictions
Emissions of organic compounds from western US wildfires and their near-fire transformations
A comprehensive study about the in-cloud processing of nitrate through coupled measurements of individual cloud residuals and cloud water
Iron (Fe) speciation in size-fractionated aerosol particles in the Pacific Ocean: The role of organic complexation of Fe with humic-like substances in controlling Fe solubility
Measurement report: On the contribution of long-distance transport to the secondary aerosol formation and aging
Factors controlling atmospheric DMS and its oxidation products (MSA and nssSO42−) in the aerosol at Terra Nova Bay, Antarctica
Particle phase-state variability in the North Atlantic free troposphere during summertime is determined by atmospheric transport patterns and sources
Polycyclic aromatic hydrocarbons (PAHs) and their alkylated, nitrated and oxygenated derivatives in the atmosphere over the Mediterranean and Middle East seas
Nine-year trends of PM10 sources and oxidative potential in a rural background site in France
Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020
Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions
Measurement report: The importance of biomass burning in light extinction and direct radiative effect of urban aerosol during the COVID-19 lockdown in Xi'an, China
Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai
Measurement report: Effects of anthropogenic emissions and environmental factors on the formation of biogenic secondary organic aerosol (BSOA) in a coastal city of southeastern China
Highly time-resolved chemical speciation and source apportionment of organic aerosol components in Delhi, India, using extractive electrospray ionization mass spectrometry
The chemical composition and mixing state of BC-containing particles and the implications on light absorption enhancement
Evidence of haze-driven secondary production of supermicrometer aerosol nitrate and sulfate in size distribution data in South Korea
Spatial variability of air pollutants in a megacity characterized by mobile measurements
Linking Switzerland's PM10 and PM2.5 oxidative potential (OP) with emission sources
Reversible and irreversible gas–particle partitioning of dicarbonyl compounds observed in the real atmosphere
Molecular characteristics, sources, and formation pathways of organosulfur compounds in ambient aerosol in Guangzhou, South China
Evolution of source attributed organic aerosols and gases in a megacity of central China
Measurement report: Hygroscopic growth of ambient fine particles measured at five sites in China
Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions
Trends in secondary inorganic aerosol pollution in China and its responses to emission controls of precursors in wintertime
Measurement report: Source apportionment of carbonaceous aerosol using dual-carbon isotopes (13C and 14C) and levoglucosan in three northern Chinese cities during 2018–2019
Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China
Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM1 measured at a rural background site in central Europe
Offline analysis of the chemical composition and hygroscopicity of submicrometer aerosol at an Asian outflow receptor site and comparison with online measurements
High number concentrations of transparent exopolymer particles in ambient aerosol particles and cloud water – a case study at the tropical Atlantic Ocean
Micro-spectroscopic and freezing characterization of ice-nucleating particles collected in the marine boundary layer in the eastern North Atlantic
Oxidation pathways and emission sources of atmospheric particulate nitrate in Seoul: based on δ15N and Δ17O measurements
Measurement report: Characterization and source apportionment of coarse particulate matter in Hong Kong: insights into the constituents of unidentified mass and source origins in a coastal city in southern China
Contribution of wood burning to exposures of PAHs and oxy-PAHs in Eastern Sweden
The optical properties and in-situ observational evidence for the formation of brown carbon in clouds
High atmospheric oxidation capacity drives wintertime nitrate pollution in the eastern Yangtze River Delta of China
Development and evolution of an anomalous Asian dust event across Europe in March 2020
What caused a record high PM10 episode in northern Europe in October 2020?
Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study
Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories
Analysis of reduced and oxidized nitrogen-containing organic compounds at a coastal site in summer and winter
Technical note: Use of PM2.5 to CO ratio as a tracer of wildfire smoke in urban areas
Sources and processes of iron aerosols in a megacity in Eastern China
Measurement report: Size-resolved chemical characterisation of aerosols in low-income urban settlements in South Africa
Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China’s marginal seas – Part 2: Spatiotemporal heterogeneity, causes, and hypothesis
Single-particle characterization of polycyclic aromatic hydrocarbons in background air in northern Europe
Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan
The effect of COVID-19 restrictions on atmospheric new particle formation in Beijing
Influence of organic aerosol molecular composition on particle absorptive properties in autumn Beijing
Jing Duan, Ru-Jin Huang, Yifang Gu, Chunshui Lin, Haobin Zhong, Wei Xu, Quan Liu, Yan You, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin O'Dowd
Atmos. Chem. Phys., 22, 10139–10153, https://doi.org/10.5194/acp-22-10139-2022, https://doi.org/10.5194/acp-22-10139-2022, 2022
Short summary
Short summary
Biomass-burning-influenced oxygenated organic aerosol (OOA-BB), formed from the photochemical oxidation and aging of biomass burning OA (BBOA), was resolved in urban Xi’an. The aqueous-phase processed oxygenated OA (aq-OOA) concentration was more dependent on secondary inorganic aerosol (SIA) content and aerosol liquid water content (ALWC). The increased aq-OOA contribution during SIA-enhanced periods likely reflects OA evolution due to the addition of alcohol or peroxide groups
Fabio Giardi, Silvia Nava, Giulia Calzolai, Giulia Pazzi, Massimo Chiari, Andrea Faggi, Bianca Patrizia Andreini, Chiara Collaveri, Elena Franchi, Guido Nincheri, Alessandra Amore, Silvia Becagli, Mirko Severi, Rita Traversi, and Franco Lucarelli
Atmos. Chem. Phys., 22, 9987–10005, https://doi.org/10.5194/acp-22-9987-2022, https://doi.org/10.5194/acp-22-9987-2022, 2022
Short summary
Short summary
The restriction measures adopted to contain the COVID-19 virus offered a unique opportunity to study urban particulate emissions in the near absence of traffic, which is one of the main emission sources in the urban environment. However, the drastic decrease in this source of particulate matter during the months of national lockdown did not lead to an equal decrease in the total particulate load. This is due to the inverse behavior shown by different sources, especially secondary sources.
Yutong Liang, Christos Stamatis, Edward C. Fortner, Rebecca A. Wernis, Paul Van Rooy, Francesca Majluf, Tara I. Yacovitch, Conner Daube, Scott C. Herndon, Nathan M. Kreisberg, Kelley C. Barsanti, and Allen H. Goldstein
Atmos. Chem. Phys., 22, 9877–9893, https://doi.org/10.5194/acp-22-9877-2022, https://doi.org/10.5194/acp-22-9877-2022, 2022
Short summary
Short summary
This article reports the measurements of organic compounds emitted from western US wildfires. We identified and quantified 240 particle-phase compounds and 72 gas-phase compounds emitted in wildfire and related the emissions to the modified combustion efficiency. Higher emissions of diterpenoids and monoterpenes were observed, likely due to distillation from unburned heated vegetation. Our results can benefit future source apportionment and modeling studies as well as exposure assessments.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Kohei Sakata, Minako Kurisu, Yasuo Takeichi, Aya Sakaguchi, Hiroshi Tanimoto, Yusuke Tamenori, Atsushi Matsuki, and Yoshio Takahashi
Atmos. Chem. Phys., 22, 9461–9482, https://doi.org/10.5194/acp-22-9461-2022, https://doi.org/10.5194/acp-22-9461-2022, 2022
Short summary
Short summary
Iron (Fe) species in size-fractionated aerosol particles collected in the western Pacific Ocean were determined to identify factors controlling fractional Fe solubility. We found that labile Fe was mainly present in submicron aerosol particles, and the Fe species were ferric organic complexes combined with humic-like substances (Fe(III)-HULIS). The Fe(III)-HULIS was formed by atmospheric processes. Thus, atmospheric processes play a significant role in controlling Fe solubility.
Haobin Zhong, Ru-Jin Huang, Chunshui Lin, Wei Xu, Jing Duan, Yifang Gu, Wei Huang, Haiyan Ni, Chongshu Zhu, Yan You, Yunfei Wu, Renjian Zhang, Jurgita Ovadnevaite, Darius Ceburnis, and Colin D. O'Dowd
Atmos. Chem. Phys., 22, 9513–9524, https://doi.org/10.5194/acp-22-9513-2022, https://doi.org/10.5194/acp-22-9513-2022, 2022
Short summary
Short summary
To investigate the physico-chemical properties of aerosol transported from major pollution regions in China, observations were conducted ~200 m above the ground at the junction location of the two key pollution areas. We found that the formation efficiency, oxidation state and production rate of secondary aerosol were different in the transport sectors from different pollution regions, and they were largely enhanced by the regional long-distance transport.
Silvia Becagli, Elena Barbaro, Simone Bonamano, Laura Caiazzo, Alcide di Sarra, Matteo Feltracco, Paolo Grigioni, Jost Heintzenberg, Luigi Lazzara, Michel Legrand, Alice Madonia, Marco Marcelli, Chiara Melillo, Daniela Meloni, Caterina Nuccio, Giandomenico Pace, Ki-Tae Park, Suzanne Preunkert, Mirko Severi, Marco Vecchiato, Roberta Zangrando, and Rita Traversi
Atmos. Chem. Phys., 22, 9245–9263, https://doi.org/10.5194/acp-22-9245-2022, https://doi.org/10.5194/acp-22-9245-2022, 2022
Short summary
Short summary
Measurements of phytoplanktonic dimethylsulfide and its oxidation products in the Antarctic atmosphere allow us to understand the role of the oceanic (sea ice melting, Chl α and dimethylsulfoniopropionate) and atmospheric (wind direction and speed, humidity, solar radiation and transport processes) factors in the biogenic aerosol formation, concentration and characteristic ratio between components in an Antarctic coastal site facing the polynya of the Ross Sea.
Zezhen Cheng, Megan Morgenstern, Bo Zhang, Matthew Fraund, Nurun Nahar Lata, Rhenton Brimberry, Matthew A. Marcus, Lynn Mazzoleni, Paulo Fialho, Silvia Henning, Birgit Wehner, Claudio Mazzoleni, and Swarup China
Atmos. Chem. Phys., 22, 9033–9057, https://doi.org/10.5194/acp-22-9033-2022, https://doi.org/10.5194/acp-22-9033-2022, 2022
Short summary
Short summary
We observed a high abundance of liquid and internally mixed particles in samples collected in the North Atlantic free troposphere during summer. We also found several solid and semisolid particles for different emission sources and transport patterns. Our results suggest that considering the mixing state, emission source, and transport patterns of particles is necessary to estimate their phase state in the free troposphere, which is critical for predicting their effects on climate.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys., 22, 8739–8766, https://doi.org/10.5194/acp-22-8739-2022, https://doi.org/10.5194/acp-22-8739-2022, 2022
Short summary
Short summary
A unique dataset of concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range-transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Lucille Joanna Borlaza, Samuël Weber, Anouk Marsal, Gaëlle Uzu, Véronique Jacob, Jean-Luc Besombes, Mélodie Chatain, Sébastien Conil, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 22, 8701–8723, https://doi.org/10.5194/acp-22-8701-2022, https://doi.org/10.5194/acp-22-8701-2022, 2022
Short summary
Short summary
A 9-year dataset of the chemical and oxidative potential (OP) of PM10 was investigated at a rural background site. Extensive source apportionment led to identification of differences in source impacts between mass and OP, underlining the importance of PM redox activity when considering health effects. The influence of mixing and ageing processes was also tackled. Traffic contributions have decreased here over the years, attributed to regulations limiting vehicular emissions in bigger cities.
Baoshuang Liu, Yanyang Wang, He Meng, Qili Dai, Liuli Diao, Jianhui Wu, Laiyuan Shi, Jing Wang, Yufen Zhang, and Yinchang Feng
Atmos. Chem. Phys., 22, 8597–8615, https://doi.org/10.5194/acp-22-8597-2022, https://doi.org/10.5194/acp-22-8597-2022, 2022
Short summary
Short summary
Understanding effectiveness of air pollution regulatory measures is critical for control policy. Machine learning and dispersion-normalized approaches were applied to decouple meteorologically deduced variations in Qingdao, China. Most pollutant concentrations decreased substantially after the Clean Air Action Plan. The largest emission reduction was from coal combustion and steel-related smelting. Qingdao is at risk of increased emissions from increased vehicular population and ozone pollution.
Lady Mateus-Fontecha, Angela Vargas-Burbano, Rodrigo Jimenez, Nestor Y. Rojas, German Rueda-Saa, Dominik van Pinxteren, Manuela van Pinxteren, Khanneh Wadinga Fomba, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 8473–8495, https://doi.org/10.5194/acp-22-8473-2022, https://doi.org/10.5194/acp-22-8473-2022, 2022
Short summary
Short summary
This study reports the chemical composition of regionally representative PM2.5 in an area densely populated and substantially industrialized, located in the inter-Andean valley, with the highest sugarcane yield in the world and where sugarcane is burned and harvested year round. We found that sugarcane burning is not portrayed as a distinguishable sample composition component. Instead, the composition analysis revealed multiple associations among sugarcane burning components and other sources.
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Shijie Cui, Dan Dan Huang, Yangzhou Wu, Junfeng Wang, Fuzhen Shen, Jiukun Xian, Yunjiang Zhang, Hongli Wang, Cheng Huang, Hong Liao, and Xinlei Ge
Atmos. Chem. Phys., 22, 8073–8096, https://doi.org/10.5194/acp-22-8073-2022, https://doi.org/10.5194/acp-22-8073-2022, 2022
Short summary
Short summary
Refractory black carbon (rBC) aerosols are important to air quality and climate change. rBC can mix with many other species, which can significantly change its properties and impacts. We used a specific set of techniques to exclusively characterize rBC-containing (rBCc) particles in Shanghai. We elucidated their composition, sources and size distributions and factors that affect their properties. Our findings are very valuable for advancing the understanding of BC and controlling BC pollution.
Youwei Hong, Xinbei Xu, Dan Liao, Taotao Liu, Xiaoting Ji, Ke Xu, Chunyang Liao, Ting Wang, Chunshui Lin, and Jinsheng Chen
Atmos. Chem. Phys., 22, 7827–7841, https://doi.org/10.5194/acp-22-7827-2022, https://doi.org/10.5194/acp-22-7827-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) simulation remains uncertain, due to the unknown SOA formation mechanisms. Aerosol samples with a 4 h time resolution were collected, along with online measurements of aerosol chemical compositions and meteorological parameters. We found that anthropogenic emissions, atmospheric oxidation capacity and halogen chemistry have significant effects on the formation of biogenic SOA (BSOA). The findings of this study are helpful to better explore the missed SOA sources.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Joseph S. Schlosser, Connor Stahl, Armin Sorooshian, Yen Thi-Hoang Le, Ki-Joon Jeon, Peng Xian, Carolyn E. Jordan, Katherine R. Travis, James H. Crawford, Sung Yong Gong, Hye-Jung Shin, In-Ho Song, and Jong-sang Youn
Atmos. Chem. Phys., 22, 7505–7522, https://doi.org/10.5194/acp-22-7505-2022, https://doi.org/10.5194/acp-22-7505-2022, 2022
Short summary
Short summary
During a major haze pollution episode in March 2019, anthropogenic emissions were dominant in the boundary layer over Incheon and Seoul, South Korea. Using supermicrometer and submicrometer size- and chemistry-resolved aerosol particle measurements taken during this haze pollution period, this work shows that local emissions and a shallow boundary layer, enhanced humidity, and low temperature promoted local heterogeneous formation of secondary inorganic and organic aerosol species.
Reza Bashiri Khuzestani, Keren Liao, Ying Liu, Ruqian Miao, Yan Zheng, Xi Cheng, Tianjiao Jia, Xin Li, Shiyi Chen, Guancong Huang, and Qi Chen
Atmos. Chem. Phys., 22, 7389–7404, https://doi.org/10.5194/acp-22-7389-2022, https://doi.org/10.5194/acp-22-7389-2022, 2022
Short summary
Short summary
This work characterized the spatial variabilities of air pollutants in a megacity by advanced mobile measurements. The results show a large spatial heterogeneity in the distributions of PM2.5 composition and volatile organic compounds under non-haze conditions, and relatively uniform spatial distributions under haze conditions that may indicate a chemical homogeneity on an intracity scale. The findings improve our understanding of urban air pollution.
Stuart K. Grange, Gaëlle Uzu, Samuël Weber, Jean-Luc Jaffrezo, and Christoph Hueglin
Atmos. Chem. Phys., 22, 7029–7050, https://doi.org/10.5194/acp-22-7029-2022, https://doi.org/10.5194/acp-22-7029-2022, 2022
Short summary
Short summary
Oxidative potential (OP), a biologically relevant metric for particulate matter (PM), was linked to PM10 and PM2.5 sources and constituents across Switzerland between 2018 and 2019. Wood burning and non-exhaust traffic emissions were identified as key processes that led to enhanced OP. Therefore, the make-up of the PM mix was very important for OP. The results highlight the importance of the management of wood burning and non-exhaust emissions to reduce OP, and presumably biological harm.
Jingcheng Hu, Zhongming Chen, Xuan Qin, and Ping Dong
Atmos. Chem. Phys., 22, 6971–6987, https://doi.org/10.5194/acp-22-6971-2022, https://doi.org/10.5194/acp-22-6971-2022, 2022
Short summary
Short summary
The gas–particle partitioning process of glyoxal and methylglyoxal could contribute to secondary organic aerosol formation. Here, we launched five observations in different seasons and simultaneously measured glyoxal and methylglyoxal in the gas and particle phases. Compared to reversible pathways, irreversible pathways played a dominant role with a proportion of more than 90 % in the ambient atmosphere, and the proportion was influenced by relative humidity and inorganic components in aerosols.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Siyuan Li, Dantong Liu, Shaofei Kong, Yangzhou Wu, Kang Hu, Huang Zheng, Yi Cheng, Shurui Zheng, Xiaotong Jiang, Shuo Ding, Dawei Hu, Quan Liu, Ping Tian, Delong Zhao, and Jiujiang Sheng
Atmos. Chem. Phys., 22, 6937–6951, https://doi.org/10.5194/acp-22-6937-2022, https://doi.org/10.5194/acp-22-6937-2022, 2022
Short summary
Short summary
The understanding of secondary organic aerosols is hindered by the aerosol–gas evolution by different oxidation mechanisms. By concurrently measuring detailed mass spectra of aerosol and gas phases in a megacity online, we identified the primary and secondary source sectors and investigated the transformation between gas and aerosol phases influenced by photooxidation and moisture. The results will help us to understand the respective evolution of major sources in a typical urban environment.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Huiyizhe Zhao, Zhenchuan Niu, Weijian Zhou, Sen Wang, Xue Feng, Shugang Wu, Xuefeng Lu, and Hua Du
Atmos. Chem. Phys., 22, 6255–6274, https://doi.org/10.5194/acp-22-6255-2022, https://doi.org/10.5194/acp-22-6255-2022, 2022
Short summary
Short summary
In this study, we investigated the characteristics and changes in the sources of carbonaceous aerosols in northern Chinese cities using dual-carbon isotopes (13C and 14C) and levoglucosan during 2018 to 2019 and compared them with the research in previous decades. The results show that the contribution of fossil sources has decreased (6–16%) significantly, and non-fossil sources have become the main part of carbonaceous aerosols, which verified the effectiveness of air quality management.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2022-247, https://doi.org/10.5194/egusphere-2022-247, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA, and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day-night differences.
Petra Pokorná, Naděžda Zíková, Petr Vodička, Radek Lhotka, Saliou Mbengue, Adéla Holubová Šmejkalová, Véronique Riffault, Jakub Ondráček, Jaroslav Schwarz, and Vladimír Ždímal
Atmos. Chem. Phys., 22, 5829–5858, https://doi.org/10.5194/acp-22-5829-2022, https://doi.org/10.5194/acp-22-5829-2022, 2022
Short summary
Short summary
By examining individual episodes of high mass and number concentrations, we show that the seasonality in the physicochemical properties of aerosol particles was caused by the sources' diversity and was related to the different air masses and meteorology. We also confirmed the relation between particle size and age that is reflected in oxidation state and shape (difference in densities; effective vs. material). The results have general validity and thus transcend the study regional character.
Yange Deng, Hiroaki Fujinari, Hikari Yai, Kojiro Shimada, Yuzo Miyazaki, Eri Tachibana, Dhananjay K. Deshmukh, Kimitaka Kawamura, Tomoki Nakayama, Shiori Tatsuta, Mingfu Cai, Hanbing Xu, Fei Li, Haobo Tan, Sho Ohata, Yutaka Kondo, Akinori Takami, Shiro Hatakeyama, and Michihiro Mochida
Atmos. Chem. Phys., 22, 5515–5533, https://doi.org/10.5194/acp-22-5515-2022, https://doi.org/10.5194/acp-22-5515-2022, 2022
Short summary
Short summary
Offline analyses of the hygroscopicity and composition of atmospheric aerosols are complementary to online analyses in view of the applicability to broader sizes, specific compound groups, and investigations at remote sites. This offline study characterized the composition of water-soluble matter in aerosols and their humidity-dependent hygroscopicity on Okinawa, a receptor site of East Asian outflow. Further, comparison with online analyses showed the appropriateness of the offline method.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Saehee Lim, Meehye Lee, Joel Savarino, and Paolo Laj
Atmos. Chem. Phys., 22, 5099–5115, https://doi.org/10.5194/acp-22-5099-2022, https://doi.org/10.5194/acp-22-5099-2022, 2022
Short summary
Short summary
We determined δ15N(NO3−) and Δ17O(NO3−) of PM2.5 in Seoul during 2018–2019 and estimated quantitatively the contribution of oxidation pathways to NO3− formation and NOx emission sources. The nighttime pathway played a significant role in NO3− formation during the winter, and its contribution further increased up to 70 % on haze days when PM2.5 was greater than 75 µg m−3. Vehicle emissions were confirmed as a main NO3− source with an increasing contribution from coal combustion in winter.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
Hwanmi Lim, Sanna Silvergren, Silvia Spinicci, Farshid Mashayekhy Rad, Ulrika Nilsson, Roger Westerholm, and Christer Johansson
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-20, https://doi.org/10.5194/acp-2022-20, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Air pollutants from wood burning become more important as other regulated emissions are being reduced, e g combustion of diesel. We analysed particles in residential areas and found that local wood burning was the most important source of polycyclic aromatic hydrocarbons (PAHs). Specific tracers were used to separate wood combustion from other contributions. Calculations of population exposure showed that the mix of PAHs may cause 13 cancer cases per 0.1 million inhabitants.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Laura Tositti, Erika Brattich, Claudio Cassardo, Pietro Morozzi, Alessandro Bracci, Angela Marinoni, Silvana Di Sabatino, Federico Porcù, and Alessandro Zappi
Atmos. Chem. Phys., 22, 4047–4073, https://doi.org/10.5194/acp-22-4047-2022, https://doi.org/10.5194/acp-22-4047-2022, 2022
Short summary
Short summary
We present a thorough investigation of an anomalous transport of mineral dust over a region renowned for excess airborne particulate matter, the Italian Po Valley, which occurred in late March 2021. Both the origin of this dust outbreak, which was localized in central Asia (i.e., the so-called Aralkum Desert), and the upstream synoptic conditions, investigated here in extreme detail using multiple integrated observations including in situ measurements and remote sensing, were atypical.
Christine D. Groot Zwaaftink, Wenche Aas, Sabine Eckhardt, Nikolaos Evangeliou, Paul Hamer, Mona Johnsrud, Arve Kylling, Stephen M. Platt, Kerstin Stebel, Hilde Uggerud, and Karl Espen Yttri
Atmos. Chem. Phys., 22, 3789–3810, https://doi.org/10.5194/acp-22-3789-2022, https://doi.org/10.5194/acp-22-3789-2022, 2022
Short summary
Short summary
We investigate causes of a poor-air-quality episode in northern Europe in October 2020 during which EU health limits for air quality were vastly exceeded. Such episodes may trigger measures to improve air quality. Analysis based on satellite observations, transport simulations, and surface observations revealed two sources of pollution. Emissions of mineral dust in Central Asia and biomass burning in Ukraine arrived almost simultaneously in Norway, and transport continued into the Arctic.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Julia Schmale, Sangeeta Sharma, Stefano Decesari, Jakob Pernov, Andreas Massling, Hans-Christen Hansson, Knut von Salzen, Henrik Skov, Elisabeth Andrews, Patricia K. Quinn, Lucia M. Upchurch, Konstantinos Eleftheriadis, Rita Traversi, Stefania Gilardoni, Mauro Mazzola, James Laing, and Philip Hopke
Atmos. Chem. Phys., 22, 3067–3096, https://doi.org/10.5194/acp-22-3067-2022, https://doi.org/10.5194/acp-22-3067-2022, 2022
Short summary
Short summary
Long-term data sets of Arctic aerosol properties from 10 stations across the Arctic provide evidence that anthropogenic influence on the Arctic atmospheric chemical composition has declined in winter, a season which is typically dominated by mid-latitude emissions. The number of significant trends in summer is smaller than in winter, and overall the pattern is ambiguous with some significant positive and negative trends. This reflects the mixed influence of natural and anthropogenic emissions.
Jenna C. Ditto, Jo Machesky, and Drew R. Gentner
Atmos. Chem. Phys., 22, 3045–3065, https://doi.org/10.5194/acp-22-3045-2022, https://doi.org/10.5194/acp-22-3045-2022, 2022
Short summary
Short summary
We analyzed gases and aerosols sampled in summer and winter in a coastal region that is often downwind of urban areas and observed large contributions of nitrogen-containing organic compounds influenced by a mix of biogenic, anthropogenic, and/or marine sources as well as photochemical and aqueous-phase atmospheric processes. The results show the prevalence of key reduced and oxidized nitrogen functional groups and advance knowledge on the chemical structure of nitrogen-containing compounds.
Daniel Jaffe, Brendan Schnieder, and Daniel Inouye
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-138, https://doi.org/10.5194/acp-2022-138, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
In this manuscript we use commonly measured pollutants (PM2.5 and carbon monoxide) to develop a Monte Carlo simulation of the mixing of urban pollution with smoke. The simulations compare well with observations from a heavily impacted smoke site and show that we can use standard regulatory measurements to quantify the amount of smoke in urban areas.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Constance Keitumetse Segakweng, Pieter Gideon van Zyl, Cathy Liousse, Johan Paul Beukes, Jan-Stefan Swartz, Eric Gardrat, Maria Dias-Alves, Brigitte Language, Roelof P. Burger, and Stuart J. Piketh
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1026, https://doi.org/10.5194/acp-2021-1026, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
A detailed size-resolved assessment of the chemical characteristics of outdoor and indoor aerosols collected in low-income urban settlements in South Africa indicated the significance of household combustion for cooking and space heating – an important source of pollutants in the developing world – to atmospheric chemical composition, while the regional impacts of industrial sources in the highly industrialised and densely populated north-eastern interior of South Africa were also evident.
Yating Gao, Dihui Chen, Yanjie Shen, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 1515–1528, https://doi.org/10.5194/acp-22-1515-2022, https://doi.org/10.5194/acp-22-1515-2022, 2022
Short summary
Short summary
This study focuses on spatiotemporal heterogeneity of observed gaseous amines, NH3, their particulate counterparts in PM2.5 over different sea zones, and the disproportional release of alkaline gases and corresponding particulate counterparts from seawater in the sea zones in terms of different extents of enrichment of TMAH+ and DMAH+ in the sea surface microlayer (SML). A novel hypothesis is delivered.
Johannes Passig, Julian Schade, Robert Irsig, Thomas Kröger-Badge, Hendryk Czech, Thomas Adam, Henrik Fallgren, Jana Moldanova, Martin Sklorz, Thorsten Streibel, and Ralf Zimmermann
Atmos. Chem. Phys., 22, 1495–1514, https://doi.org/10.5194/acp-22-1495-2022, https://doi.org/10.5194/acp-22-1495-2022, 2022
Short summary
Short summary
The single-particle distribution of health-relevant polycyclic aromatic hydrocarbons (PAHs) was studied at the Swedish coast in autumn. We found PAHs bound to long-range transported particles from eastern and central Europe and also from ship emissions and local sources. This is the first field study using a new technology revealing single-particle data from both inorganic components and PAHs. We discuss PAH profiles that are indicative of several sources and atmospheric aging processes.
Md. Mozammel Haque, Yanlin Zhang, Srinivas Bikkina, Meehye Lee, and Kimitaka Kawamura
Atmos. Chem. Phys., 22, 1373–1393, https://doi.org/10.5194/acp-22-1373-2022, https://doi.org/10.5194/acp-22-1373-2022, 2022
Short summary
Short summary
We attempt to understand the current state of East Asian organic aerosols with both the molecular marker approach and 14° C data of carbonaceous components. A significant positive correlation of nonfossil- and fossil-derived organic carbon with levoglucosan suggests the importance of biomass burning (BB) and coal combustion sources in the East Asian outflow. Thus, attribution of ambient levoglucosan levels over the western North Pacific to the impact of BB emission may cause large uncertainty.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1079, https://doi.org/10.5194/acp-2021-1079, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In the urban environment, traffic emission is a major source of primary pollutants, but its contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine its relevance to NPF. Based on our comprehensive measurements, we demonstrate an insignificant role of traffic emission in NPF.
Jing Cai, Cheng Wu, Jiandong Wang, Wei Du, Feixue Zheng, Simo Hakala, Xiaolong Fan, Biwu Chu, Lei Yao, Zemin Feng, Yongchun Liu, Yele Sun, Jun Zheng, Chao Yan, Federico Bianchi, Markku Kulmala, Claudia Mohr, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 22, 1251–1269, https://doi.org/10.5194/acp-22-1251-2022, https://doi.org/10.5194/acp-22-1251-2022, 2022
Short summary
Short summary
This study investigates the connection between organic aerosol (OA) molecular composition and particle absorptive properties in autumn in Beijing. We find that the molecular properties of OA compounds in different episodes influence particle light absorption properties differently: the light absorption enhancement of black carbon and light absorption coefficient of brown carbon were mostly related to more oxygenated OA (low C number and four O atoms) and aromatics/nitro-aromatics, respectively.
Cited articles
Allitt, U.: Airborne fungal spores and the thunderstorm of 24 June 1994, Aerobiologia, 16, 397–406, https://doi.org/10.1023/A:1026503500730, 2000.
Aloni, B., Peet, M., Pharr, M., and Karni, L.: The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination, Physiol. Plantarum, 112, 505–512, https://doi.org/10.1034/j.1399-3054.2001.1120407.x, 2001.
Andronache, C.: Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions, Atmos. Chem. Phys., 3, 131–143, https://doi.org/10.5194/acp-3-131-2003, 2003.
Augustin, S., Wex, H., Niedermeier, D., Pummer, B., Grothe, H., Hartmann, S., Tomsche, L., Clauss, T., Voigtländer, J., Ignatius, K., and Stratmann, F.: Immersion freezing of birch pollen washing water, Atmos. Chem. Phys., 13, 10989–11003, https://doi.org/10.5194/acp-13-10989-2013, 2013.
Baklanov, A. and Sørensen, J.: Parameterisation of radionuclide deposition in atmospheric long-range transport modelling, Phys. Chem. Earth Pt. B, 26, 787–799, https://doi.org/10.1016/S1464-1909(01)00087-9, 2001.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H.: Arabitol and mannitol as tracers for the quantification of airborne fungal spores, Atmos. Environ., 42, 588–593, https://doi.org/10.1016/j.atmosenv.2007.10.013, 2008.
Beggs, P. J.: Impacts of climate change on aeroallergens: past and future, Clin. Exp. Allergy, 34, 1507–1513, https://doi.org/10.1111/j.1365-2222.2004.02061.x, 2004.
Beggs, P. J. and Bambrick, H. J.: Is the global rise of asthma an early impact of anthropogenic climate change?, Ciênc. Saúde Coletiva, 11, 745–752, https://doi.org/10.1590/S1413-81232006000300022, 2006.
Bigg, E. K., Soubeyrand, S., and Morris, C. E.: Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause, Atmos. Chem. Phys., 15, 2313–2326, https://doi.org/10.5194/acp-15-2313-2015, 2015.
Blanc, P. D., Eisner, M. D., Katz, P. P., Yen, I. H., Archea, C., Earnest, G., Janson, S., Masharani, U. B., Quinlan, P. J., and Hammond, S. K.: Impact of the home indoor environment on adult asthma and rhinitis, J. Occup. Environ. Med., 47, 362–372, https://doi.org/10.1097/01.jom.0000158708.32491.9d, 2005.
Bonlokke, J. H., Stridh, G., Sigsgaard, T., Kjærgaard, S. K., Löfstedt, H., Andersson, K., Bonefeld-Jørgensen, E. C., Jayatissa, M. N., Bodin, L., and Juto, J.-E.: Upper-airway inflammation in relation to dust spiked with aldehydes or glucan, Scand. J. Work Env. Hea., 32, 374–382, 2006.
Bowers, R. M., Sullivan, A. P., Costello, E. K., Collett, J. L., Knight, R., and Fierer, N.: Sources of bacteria in outdoor air across cities in the midwestern United States, Appl. Environ. Microb., 77, 6350–6356, https://doi.org/10.1021/es402970s, 2011.
Brown, J. S., Gordon, T., Price, O., and Asgharian, B.: Thoracic and respirable particle definitions for human health risk assessment, Part. Fibre Toxicol., 10, 1–12, https://doi.org/10.1186/1743-8977-10-12, 2013.
Burshtein, N., Lang-Yona, N., and Rudich, Y.: Ergosterol, arabitol and mannitol as tracers for biogenic aerosols in the eastern Mediterranean, Atmos. Chem. Phys., 11, 829–839, https://doi.org/10.5194/acp-11-829-2011, 2011.
Carty, C. L., Gehring, U., Cyrys, J., Bischof, W., and Heinrich, J.: Seasonal variability of endotoxin in ambient fine particulate matter, J. Environ. Monitor., 5, 953–958, https://doi.org/10.1039/B308488D, 2003.
Chow, J. C., Yang, X., Wang, X., Kohl, S. D., Hurbain, P. R., Chen, L. A., and Watson, J. G.: Characterization of Ambient PM10 Bioaerosols in a California Agricultural Town, Aerosol Air Qual. Res., 15, 1433–1447, https://doi.org/10.4209/aaqr.2014.12.0313, 2015.
Constantinidou, H., Hirano, S., Baker, L., and Upper, C.: Atmospheric dispersal of ice nucleation-active bacteria: The role of rain, Phytopathology, 80, 934–937, 1990.
Corden, J. M. and Millington, W. M.: The long-term trends and seasonal variation of the aeroallergen Alternaria in Derby, UK, Aerobiologia, 17, 127–136, https://doi.org/10.1023/A:1010876917512, 2001.
Coz, E., Artíñano, B., Clark, L. M., Hernandez, M., Robinson, A. L., Casuccio, G. S., Lersch, T. L., and Pandis, S. N.: Characterization of fine primary biogenic organic aerosol in an urban area in the northeastern United States, Atmos. Environ., 44, 3952–3962, https://doi.org/10.1016/j.atmosenv.2010.07.007, 2010.
Crawford, C., Reponen, T., Lee, T., Iossifova, Y., Levin, L., Adhikari, A., and Grinshpun, S. A.: Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1 > 3)-β-D-glucan, Aerobiologia, 25, 147–158, https://doi.org/10.1007/s10453-009-9120-z, 2009.
Dales, R., Miller, D., Ruest, K., Guay, M., and Judek, S.: Airborne endotoxin is associated with respiratory illness in the first 2 years of life, Environ. Health Perspect., 114, 610–614, 2006.
Dales, R. E., Cakmak, S., Judek, S., Dann, T., Coates, F., Brook, J. R., and Burnett, R. T.: The role of fungal spores in thunderstorm asthma, CHEST, 123, 745–750, https://doi.org/10.1378/chest.123.3.745, 2003.
D'Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., and Van Cauwenberge, P.: Allergenic pollen and pollen allergy in Europe, Allergy, 62, 976–990, https://doi.org/10.1111/j.1398-9995.2007.01393.x, 2007a.
D'Amato, G., Liccardi, G., and Frenguelli, G.: Thunderstorm-asthma and pollen allergy, Allergy, 62, 11–16, https://doi.org/10.1111/j.1398-9995.2006.01271.x, 2007b.
D'Amato, G., Vitale, C., D'Amato, M., Cecchi, L., Liccardi, G., Molino, A., Vatrella, A., Sanduzzi, A., Maesano, C., and Annesi-Maesano, I.: Thunderstorm related asthma: what happens and why, Clin. Exp. Allergy, 46, 390–396, https://doi.org/10.1111/cea.12709, 2016.
Degobbi, C., Lopes, F. D., Carvalho-Oliveira, R., Muñoz, J. E., and Saldiva, P. H.: Correlation of fungi and endotoxin with PM2.5 and meteorological parameters in atmosphere of Sao Paulo, Brazil, Atmos. Environ., 45, 2277–2283, https://doi.org/10.1016/j.atmosenv.2010.12.005, 2011.
DeLucca, A. and Palmgren, M.: Mesophilic microorganisms and endotoxin levels on developing cotton plants, Am. Ind. Hyg. Assoc. J., 47, 437–442, https://doi.org/10.1080/15298668691390016, 1986.
Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S., and Jaenicke, R.: The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes, Atmos. Res., 58, 75–87, https://doi.org/10.1016/S0169-8095(01)00091-6, 2001.
Diehl, K., Matthias-Maser, S., Jaenicke, R., and Mitra, S.: The ice nucleating ability of pollen:: Part II. Laboratory studies in immersion and contact freezing modes, Atmos. Res., 61, 125–133, https://doi.org/10.1016/S0169-8095(01)00132-6, 2002.
Di Filippo, P., Pomata, D., Riccardi, C., Buiarelli, F., and Perrino, C.: Fungal contribution to size-segregated aerosol measured through biomarkers, Atmos. Environ., 64, 132–140, https://doi.org/10.1016/j.atmosenv.2012.10.010, 2013.
Douwes, J., Thorne, P., Pearce, N., and Heederik, D.: Bioaerosol health effects and exposure assessment: progress and prospects, Ann. Occup. Hyg., 47, 187–200, https://doi.org/10.1093/annhyg/meg032, 2003.
Elbert, W., Taylor, P. E., Andreae, M. O., and Pöschl, U.: Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions, Atmos. Chem. Phys., 7, 4569–4588, https://doi.org/10.5194/acp-7-4569-2007, 2007.
Emberlin, J., Detandt, M., Gehrig, R., Jaeger, S., Nolard, N., and Rantio-Lehtimäki, A.: Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe, Int. J. Biometeorol., 46, 159–170, https://doi.org/10.1007/s00484-002-0139-x, 2002.
Foto, M., Plett, J., Berghout, J., and Miller, J. D.: Modification of the Limulus amebocyte lysate assay for the analysis of glucan in indoor environments, Anal. Bioanal. Chem., 379, 156–162, https://doi.org/10.1007/s00216-004-2583-4, 2004.
Franc, G. D. and Demott, P. J.: Cloud activation characteristics of airborne Erwinia carotovora cells, J. Appl. Meteorol., 37, 1293–1300, https://doi.org/10.1175/1520-0450(1998)037<1293:CACOAE>2.0.CO;2, 1998.
Fu, P., Kawamura, K., Kobayashi, M., and Simoneit, B. R.: Seasonal variations of sugars in atmospheric particulate matter from Gosan, Jeju Island: Significant contributions of airborne pollen and Asian dust in spring, Atmos. Environ., 55, 234–239, https://doi.org/10.1016/j.atmosenv.2012.02.061, 2012.
Galán, C., Emberlin, J., Domínguez, E., Bryant, R. H., and Villamandos, F.: A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK, Grana, 34, 189–198, https://doi.org/10.1080/00173139509429042, 1995.
GAN (Global Asthma Network): The Global Asthma Report, available at: http://www.globalasthmareport.org/resources/Global_Asthma_Report_2014.pdf (last access: January 2016), 2014.
Garrett, M., Rayment, P., Hooper, M., Abramson, M., and Hooper, B.: Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children, Clin. Exp. Allergy, 28, 459–467, https://doi.org/10.1046/j.1365-2222.1998.00255.x, 1998.
Graham, D., Quinn, C., and Bradley, L. F.: Quantitative Studies on the Generation of Aerosols of Erwinia carotovora var. atroseptica by Simulated Raindrop Impaction on Blackleg-infected Potato Stems, J. Appl. Bacteriol., 43, 413–424, https://doi.org/10.1111/j.1365-2672.1977.tb00768.x, 1977.
Gregory, P. H.: The microbiology of the atmosphere, 1 ed., Interscience Publishers, New York, USA, 148–152, 1961.
Griffing, G. W.: Ozone and oxides of nitrogen production during thunderstorms, J. Geophys. Res., 82, 943–950, https://doi.org/10.1029/JC082i006p00943, 1977.
Grote, M., Vrtala, S., Niederberger, V., Wiermann, R., Valenta, R., and Reichelt, R.: Release of allergen-bearing cytoplasm from hydrated pollen: a mechanism common to a variety of grass (Poaceae) species revealed by electron microscopy, J. Allergy Clin. Immun., 108, 109–115, https://doi.org/10.1067/mai.2001.116431, 2001.
Grundstein, A., Sarnat, S. E., Klein, M., Shepherd, M., Naeher, L., Mote, T., and Tolbert, P.: Thunderstorm associated asthma in Atlanta, Georgia, Thorax, 63, 659–660, https://doi.org/10.1136/thx.2007.092882, 2008.
Guan, T., Yao, M., Wang, J., Fang, Y., Hu, S., Wang, Y., Dutta, A., Yang, J., Wu, Y., and Hu, M.: Airborne endotoxin in fine particulate matter in Beijing, Atmos. Environ., 97, 35–42, https://doi.org/10.1016/j.atmosenv.2014.08.005, 2014.
Guo, L.-C., Zhang, Y., Lin, H., Zeng, W., Liu, T., Xiao, J., Rutherford, S., You, J., and Ma, W.: The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities, Environ. Pollut., 215, 195–202, https://doi.org/10.1016/j.envpol.2016.05.003, 2016.
Hassett, M. O., Fischer, M. W., and Money, N. P.: Mushrooms as Rainmakers: How Spores Act as Nuclei for Raindrops, PLoS One, 10, e0140407, https://doi.org/10.1371/journal.pone.0140407, 2015.
Hewett, P. and Ganser, G. H.: A comparison of several methods for analyzing censored data, Ann. Occup. Hyg., 7, 611–632, 2007.
Hirano, S. S. and Upper, C. D.: Population biology and epidemiology of Pseudomonas syringae, Annu. Rev. Phytopathol., 28, 155–177, 1990.
Hirano, S. S., Baker, L. S., and Upper, C. D.: Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants, Appl. Environ. Microb., 62, 2560–2566, 1996.
Hjelmroos, M.: Relationship between airborne fungal spore presence and weather variables: Cladosporium and Alternaria, Grana, 32, 40–47, https://doi.org/10.1080/00173139309436418, 1993.
Huffman, J. A., Treutlein, B., and Pöschl, U.: Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe, Atmos. Chem. Phys., 10, 3215–3233, https://doi.org/10.5194/acp-10-3215-2010, 2010.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Jayarathne, T., Stockwell, C. E., Yokelson, R. J., Nakao, S., and Stone, E. A.: Emissions of fine particle fluoride from biomass burning, Environ. Sci. Technol., 48, 12636–12644, https://doi.org/10.1021/es502933j, 2014.
Jensen, M. B. and Johnson, D. C.: Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products, Anal. Chem., 69, 1776–1781, https://doi.org/10.1021/ac960828x, 1997.
Jeter, C. and Matthysse, A. G.: Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts, Mol. Plant. Microbe In., 18, 1235–1242, https://doi.org/10.1094/MPMI-18-1235, 2005.
Jia, Y., Bhat, S., and Fraser, M. P.: Characterization of saccharides and other organic compounds in fine particles and the use of saccharides to track primary biologically derived carbon sources, Atmos. Environ., 44, 724–732, https://doi.org/10.1016/j.atmosenv.2009.10.034, 2010a.
Jia, Y., Clements, A. L., and Fraser, M. P.: Saccharide composition in atmospheric particulate matter in the southwest US and estimates of source contributions, J. Aerosol Sci., 41, 62–73, https://doi.org/10.1016/j.jaerosci.2009.08.005, 2010b.
Jones, A. M. and Harrison, R. M.: The effects of meteorological factors on atmospheric bioaerosol concentrations –a review, Sci. Total Environ., 326, 151–180, https://doi.org/10.1016/j.scitotenv.2003.11.021, 2004.
Joung, Y. S. and Buie, C. R.: Aerosol generation by raindrop impact on soil, Nat. Commun., 6, 6083, https://doi.org/10.1038/ncomms7083, 2015.
Knox, R.: Grass pollen, thunderstorms and asthma, Clin. Exp. Allergy, 23, 354–359, https://doi.org/10.1111/j.1365-2222.1993.tb00339.x, 1993.
Knutsen, A. P., Bush, R. K., Demain, J. G., Denning, D. W., Dixit, A., Fairs, A., Greenberger, P. A., Kariuki, B., Kita, H., and Kurup, V. P.: Fungi and allergic lower respiratory tract diseases, J. Allergy Clin. Immun., 129, 280–291, https://doi.org/10.1016/j.jaci.2011.12.970, 2012.
Li, X., Dong, Y., Dong, Z., Du, C., and Chen, C.: Observed changes in aerosol physical and optical properties before and after precipitation events, Adv. Atmos. Sci., 33, 931–944, https://doi.org/10.1007/s00376-016-5178-z, 2016.
Liebers, V., Raulf-Heimsoth, M., and Brüning, T.: Health effects due to endotoxin inhalation (review), Arch. Toxicol., 82, 203–210, https://doi.org/10.1007/s00204-008-0290-1, 2008.
Lighthart, B., Shaffer, B. T., Marthi, B., and Ganio, L. M.: Artificial wind-gust liberation of microbial bioaerosols previously deposited on plants, Aerobiologia, 9, 189–196, https://doi.org/10.1007/BF02066261, 1993.
Lindemann, J., Constantinidou, H. A., Barchet, W. R., and Upper, C. D.: Plants as sources of airborne bacteria, including ice nucleation-active bacteria, Appl. Environ. Microb., 44, 1059–1063, 1982.
Loescher, W. H., Tyson, R. H., Everard, J. D., Redgwell, R. J., and Bieleski, R. L.: Mannitol Synthesis in Higher Plants Evidence for the Role and Characterization of a NADPH-Dependent Mannose 6-Phosphate Reductase, Plant Physiol., 98, 1396–1402, https://doi.org/10.1104/pp.98.4.1396, 1992.
MacHardy, W. E. and Gadoury, D. M.: Patterns of ascospore discharge by Venturia inaequalis, Phytopathology, 76, 985–990, 1986.
Madsen, A. M.: Airborne endotoxin in different background environments and seasons, Ann. Agr. Env. Med., 13, 81–86, 2006.
Madsen, A. M., Frederiksen, M. W., Allermann, L., and Peitersen, J. H.: (1 > 3)-β-d-glucan in different background environments and seasons, Aerobiologia, 27, 173–179, https://doi.org/10.1007/s10453-010-9178-7, 2011.
Marks, G., Colquhoun, J., Girgis, S., Koski, M. H., Treloar, A., Hansen, P., Downs, S., and Car, N.: Thunderstorm outflows preceding epidemics of asthma during spring and summer, Thorax, 56, 468–471, https://doi.org/10.1136/thorax.56.6.468, 2001.
Matthias-Maser, S. and Jaenicke, R.: The size distribution of primary biological aerosol particles with radii > 0.2 µm in an urban/rural influenced region, Atmos. Res., 39, 279–286, https://doi.org/10.1016/0169-8095(95)00017-8, 1995.
McIntosh, M., Stone, B., and Stanisich, V.: Curdlan and other bacterial (1 > 3)-β-D-glucans, Appl. Microbiol. Biot., 68, 163–173, https://doi.org/10.1007/s00253-005-1959-5, 2005.
Medeiros, P. M. and Simoneit, B. R.: Source profiles of organic compounds emitted upon combustion of green vegetation from temperate climate forests, Environ. Sci. Technol., 42, 8310–8316, https://doi.org/10.1021/es801533b, 2008.
Medeiros, P. M., Conte, M. H., Weber, J. C., and Simoneit, B. R.: Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine, Atmos. Environ., 40, 1694–1705, https://doi.org/10.1016/j.atmosenv.2005.11.001, 2006.
Mircea, M., Stefan, S., and Fuzzi, S.: Precipitation scavenging coefficient: influence of measured aerosol and raindrop size distributions, Atmos. Environ., 34, 5169–5174, https://doi.org/10.1016/S1352-2310(00)00199-0, 2000.
Monn, C., Braendli, O., Schaeppi, G., Schindler, C., Ackermann-Liebrich, U., Leuenberger, P., and Team, S.: Particulate matter < 10 µm (PM10) and total suspended particulates (TSP) in urban, rural and alpine air in Switzerland, Atmos. Environ., 29, 2565–2573, https://doi.org/10.1016/1352-2310(95)94999-U, 1995.
Morris, C. E., Soubeyrand, S., Bigg, E. K., Creamean, J. M., and Sands, D. C.: Mapping rainfall feedback to reveal the potential sensitivity of precipitation to biological aerosols, B. Am. Meteorol. Soc., https://doi.org/10.1175/BAMS-D-15-00293.1, 2016.
Mueller-Anneling, L., Avol, J. M. P., and Thorne, P. S.: Ambient endotoxin concentrations in PM10 from Southern California, Environ. Health Perspect., 112, 583–588, 2004.
Murray, B., O'sullivan, D., Atkinson, J., and Webb, M.: Ice nucleation by particles immersed in supercooled cloud droplets, Chem. Soc. Rev., 41, 6519–6554, https://doi.org/10.1039/C2CS35200A, 2012.
Murray, B., Ross, J., Whale, T., Price, H., Atkinson, J., Umo, N., and Webb, M.: The relevance of nanoscale biological fragments for ice nucleation in clouds, Sci. Rep., 5, 8082, https://doi.org/10.1038/srep08082, 2015.
Nauta, M. and Hoekstra, R.: Evolution of reproductive systems in filamentous ascomycetes. I. Evolution of mating types, Heredity, 68, 405–410, https://doi.org/10.1038/hdy.1992.60, 1992.
Newson, R., Strachan, D., Archibald, E., Emberlin, J., Hardaker, P., and Collier, C.: Acute asthma epidemics, weather and pollen in England, 1987–1994, Eur. Respir. J., 11, 694–701, 1998.
Niederberger, V., Pauli, G., Grönlundc, H., Fröschla, R., Rumpold, H., Kraft, D., Valenta, R., and Spitzauer, S.: Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: a quantitative IgE inhibition study with sera from different populations, J. Allergy Clin. Immun., 102, 579–591, https://doi.org/10.1016/S0091-6749(98)70273-8, 1998.
Nilsson, S., Merritt, A., and Bellander, T.: Endotoxins in urban air in Stockholm, Sweden, Atmos. Environ., 45, 266–270, https://doi.org/10.1016/j.atmosenv.2010.09.037, 2011.
Oberdörster, G., Oberdörster, E., and Oberdörster, J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Perspect., 113, 823–839, 2005.
Oliveira, M., Ribeiro, H., Delgado, J., and Abreu, I.: The effects of meteorological factors on airborne fungal spore concentration in two areas differing in urbanisation level, Int. J. Biometeorol., 53, 61–73, https://doi.org/10.1007/s00484-008-0191-2, 2009.
Packe, G. and Ayres, J.: Asthma outbreak during a thunderstorm, Lancet, 326, 199–204, https://doi.org/10.1016/S0140-6736(85)91510-7, 1985.
Pasanen, A.-L., Kasanen, J.-P., Rautiala, S., Ikäheimo, M., Rantamäki, J., Kääriäinen, H., and Kalliokoski, P.: Fungal growth and survival in building materials under fluctuating moisture and temperature conditions, Int. Biodeter. Biodegr., 46, 117–127, https://doi.org/10.1016/S0964-8305(00)00093-7, 2000.
Pavilonis, B. T., Anthony, T. R., O'Shaughnessy, P. T., Humann, M. J., Merchant, J. A., Moore, G., Thorne, P. S., Weisel, C. P., and Sanderson, W. T.: Indoor and outdoor particulate matter and endotoxin concentrations in an intensely agricultural county, J. Expo. Sci. Env. Epid., 23, 299–305, https://doi.org/10.1038/jes.2012.123, 2013.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Pope, F.: Pollen grains are efficient cloud condensation nuclei, Environ. Res. Lett., 5, 044015, https://doi.org/10.1088/1748-9326/5/4/044015, 2010.
Rathnayake, C. M., Metwali, N., Baker, Z., Jayarathne, T., Thorne, P. S., O'Shaughnessy, P. T., and Stone, E. A.: Urban enhancements of bioaerosol tracers in the Midwestern United States, J. Geophys. Res.-Atmos., 121, 5071–5089, https://doi.org/10.1002/2015JD024538, 2016.
Robertson, B. and Alexander, M.: Mode of dispersal of the stem-nodulating bacterium, Azorhizobium, Soil Biol. Biochem., 26, 1535–1540, https://doi.org/10.1016/0038-0717(94)90095-7, 1994.
Rocklin, R. D., Clarke, A. P., and Weitzhandler, M.: Improved long-term reproducibility for pulsed amperometric detection of carbohydrates via a new quadruple-potential waveform, Anal. Chem., 70, 1496–1501, https://doi.org/10.1021/ac970906w, 1998.
Rodriguez Rajo, F. J., Iglesias, I., and Jato, V.: Variation assessment of airborne Alternaria and Cladosporium spores at different bioclimatical conditions, Mycol. Res., 109, 497–507, https://doi.org/10.1017/S0953756204001777, 2005.
Rogge, W. F., Medeiros, P. M., and Simoneit, B. R.: Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study, Atmos. Environ., 41, 8183–8204, https://doi.org/10.1016/j.atmosenv.2007.06.030, 2007.
Romantschuk, M.: Attachment of plant pathogenic bacteria to plant surfaces, Annu. Rev. Phytopathol., 30, 225–243, 1992.
Rylander, R. and Lin, R.-H.: (1 > 3)-β-d-glucan – relationship to indoor air-related symptoms, allergy and asthma, Toxicology, 152, 47–52, 2000.
Schulthess, F. M. and Faeth, S. H.: Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica), Mycologia, 569–578, https://doi.org/10.2307/376121, 1998.
Shaffer, B. T. and Lighthart, B.: Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal, Microb. Ecol., 34, 167–177, https://doi.org/10.1007/s002489900046, 1997.
Shen, B., Jensen, R. G., and Bohnert, H. J.: Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts, Plant Physiol., 113, 1177–1183, https://doi.org/10.1104/pp.113.4.1177, 1997.
Simoneit, B. R., Elias, V. O., Kobayashi, M., Kawamura, K., Rushdi, A. I., Medeiros, P. M., Rogge, W. F., and Didyk, B. M.: Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter, Environ. Sci. Technol., 38, 5939–5949, https://doi.org/10.1021/es0403099, 2004.
Singer, B. D., Ziska, L. H., Frenz, D. A., Gebhard, D. E., and Straka, J. G.: Research note: Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration, Funct. Plant Biol., 32, 667–670, https://doi.org/10.1071/FP05039, 2005.
Singh, U., Reponen, T., Cho, K. J., Grinshpun, S. A., Adhikari, A., Levin, L., Indugula, R., and Green, B. J.: Airborne endotoxin and β-D-glucan in PM1 in agricultural and home environments, Aerosol Air Qual. Res., 11, 376–386, 2011.
Speranza, A., Calzoni, G., and Pacini, E.: Occurrence of mono-or disaccharides and polysaccharide reserves in mature pollen grains, Sex. Plant Reprod., 10, 110–115, https://doi.org/10.1007/s004970050076, 1997.
Staff, I., Schäppi, G., and Taylor, P.: Localisation of allergens in ryegrass pollen and in airborne micronic particles, Protoplasma, 208, 47–57, https://doi.org/10.1007/BF01279074, 1999.
Steiner, A. L., Brooks, S. D., Deng, C., Thornton, D. C., Pendleton, M. W., and Bryant, V.: Pollen as atmospheric cloud condensation nuclei, Geophys. Res. Lett., 42, 3596–3602, https://doi.org/10.1002/2015GL064060, 2015.
Sun, J. and Ariya, P. A.: Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review, Atmos. Environ., 40, 795–820, https://doi.org/10.1016/j.atmosenv.2005.05.052, 2006.
Suphioglu, C., Singh, M. B., Taylor, P., Knox, R., Bellomo, R., Holmes, P., and Puy, R.: Mechanism of grass-pollen-induced asthma, Lancet, 339, 569–572, https://doi.org/10.1016/0140-6736(92)90864-Y, 1992.
Targonski, P. V., Persky, V. W., and Ramekrishnan, V.: Effect of environmental molds on risk of death from asthma during the pollen season, J. Allergy Clin. Immun., 95, 955–961, https://doi.org/10.1016/S0091-6749(95)70095-1, 1995.
Taylor, P. E. and Jonsson, H.: Thunderstorm asthma, Curr. Allergy Asthm. R., 4, 409–413, https://doi.org/10.1007/s11882-004-0092-3, 2004.
Taylor, P. E., Flagan, R. C., Valenta, R., and Glovsky, M. M.: Release of allergens as respirable aerosols: a link between grass pollen and asthma, J. Allergy Clin. Immun., 109, 51–56, https://doi.org/10.1067/mai.2002.120759, 2002.
Taylor, P. E., Flagan, R., Miguel, A., Valenta, R., and Glovsky, M.: Birch pollen rupture and the release of aerosols of respirable allergens, Clin. Exp. Allergy, 34, 1591–1596, https://doi.org/10.1111/j.1365-2222.2004.02078.x, 2004.
Thorn, J.: Seasonal variations in exposure to microbial cell wall components among household waste collectors, Ann. Occup. Hyg., 45, 153–156, https://doi.org/10.1093/annhyg/45.2.153, 2001.
Thorn, J., Beijer, L., and Rylander, R.: Effects after inhalation of (1 > 3)-β-D-glucan in healthy humans, Mediators Inflamm., 10, 173–178, https://doi.org/10.1080/09629350124119, 2001.
Thorne, P. S.: Inhalation toxicology models of endotoxin-and bioaerosol-induced inflammation, Toxicology, 152, 13–23, https://doi.org/10.1016/S0300-483X(00)00287-0, 2000.
Thorne, P. S., Ansley, A. C., and Perry, S. S.: Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations, J. Occup. Environ. Hyg., 6, 211–220, https://doi.org/10.1080/15459620902729184, 2009.
Thorne, P. S., Mendy, A., Metwali, N., Salo, P., Co, C., Jaramillo, R., Rose, K. M., and Zeldin, D. C.: Endotoxin Exposure: Predictors and Prevalence of Associated Asthma Outcomes in the US, Am. J. Resp. Crit. Care, 192, 1287–1297, https://doi.org/10.1164/rccm.201502-0251OC, 2015.
Tillie-Leblond, I., Germaud, P., Leroyer, C., Tétu, L., Girard, F., Devouassoux, G., Grignet, J. P., Prudhomme, A., Dusser, D., and Wallaert, B.: Allergic bronchopulmonary aspergillosis and omalizumab, Allergy, 66, 1254–1256, https://doi.org/10.1111/j.1398-9995.2011.02599.x, 2011.
Troutt, C. and Levetin, E.: Correlation of spring spore concentrations and meteorological conditions in Tulsa, Oklahoma, Int. J. Biometeorol., 45, 64–74, https://doi.org/10.1007/s004840100087, 2001.
USEPA: Technology Transfer Network, available at: http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html#Daily, last access: December 2014.
Van Osdol, T., Hu, F., Barnes, C., and Portnoy, J.: The relationship between airborne ascospores, Cladosporium and rainfall events, J. Allergy Clin. Immun., 113, S62, https://doi.org/10.1016/j.jaci.2003.12.192, 2004.
van Vliet, A. J., Overeem, A., De Groot, R. S., Jacobs, A. F., and Spieksma, F. T.: The influence of temperature and climate change on the timing of pollen release in the Netherlands, Int. J. Climatol., 22, 1757–1767, https://doi.org/10.1002/joc.820, 2002.
Vesprini, J. L., Nepi, M., Cresti, L., Guarnieri, M., and Pacini, E.: Changes in cytoplasmic carbohydrate content during Helleborus pollen presentation, Grana, 41, 16–20, https://doi.org/10.1080/00173130260045459, 2002.
Wallis, D. N., Webb, J., Brooke, D., Brookes, B., Brown, R., Findlay, A., Harris, M., Hulbert, D., Little, G., and Nonoo, C.: A major outbreak of asthma associated with a thunderstorm: experience of accident and emergency departments and patients' characteristics, BMJ, 312, 601–604, https://doi.org/10.1136/bmj.312.7031.601, 1996.
Wallner, M., Erler, A., Hauser, M., Klinglmayr, E., Gadermaier, G., Vogel, L., Mari, A., Bohle, B., Briza, P., and Ferreira, F.: Immunologic characterization of isoforms of Car b 1 and Que a 1, the major hornbeam and oak pollen allergens, Allergy, 64, 452–460, https://doi.org/10.1111/j.1398-9995.2008.01788.x, 2009.
Wang, X., Zhang, L., and Moran, M. D.: Uncertainty assessment of current size-resolved parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys., 10, 5685–5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
Wilson, A. F., Novey, H. S., Berke, R. A., and Surprenant, E. L.: Deposition of inhaled pollen and pollen extract in human airways, New Engl. J. Med., 288, 1056–1058, https://doi.org/10.1056/NEJM197305172882006, 1973.
Yoshida, M., Abe, J., Moriyama, M., and Kuwabara, T.: Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter, Physiol. Plantarum, 103, 8–16, https://doi.org/10.1034/j.1399-3054.1998.1030102.x, 1998.
Yttri, K. E., Dye, C., and Kiss, G.: Ambient aerosol concentrations of sugars and sugar-alcohols at four different sites in Norway, Atmos. Chem. Phys., 7, 4267–4279, https://doi.org/10.5194/acp-7-4267-2007, 2007.
Zhang, R., Duhl, T., Salam, M. T., House, J. M., Flagan, R. C., Avol, E. L., Gilliland, F. D., Guenther, A., Chung, S. H., Lamb, B. K., and VanReken, T. M.: Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease, Biogeosciences, 11, 1461–1478, https://doi.org/10.5194/bg-11-1461-2014, 2014.
Zhang, T., Engling, G., Chan, C.-Y., Zhang, Y.-N., Zhang, Z.-S., Lin, M., Sang, X.-F., Li, Y., and Li, Y.-S.: Contribution of fungal spores to particulate matter in a tropical rainforest, Environ. Res. Lett., 5, 024010, https://doi.org/10.1088/1748-9326/5/2/024010, 2010.
Ziska, L. H. and Caulfield, F. A.: Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia L.), a known allergy-inducing species: implications for public health, Funct. Plant Biol., 27, 893–898, https://doi.org/10.1071/PP00032, 2000.
Short summary
Exposures to bioaerosols depend on their type, particle size, and concentration. While typically found in coarse particles (2.5–10 microns), pollens, fungal spores, and bacterial endotoxins decrease to less than 2.5 microns and simultaneously increase in concentration during rain events. These observations contrast the assumption that rain washes bioaerosols from the air and reduces allergen levels. Instead, population exposures to bioaerosols are expected to be enhanced during rain events.
Exposures to bioaerosols depend on their type, particle size, and concentration. While typically...
Altmetrics
Final-revised paper
Preprint