Articles | Volume 17, issue 24
https://doi.org/10.5194/acp-17-14841-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-17-14841-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
H2O2 modulates the energetic metabolism of the cloud microbiome
Nolwenn Wirgot
Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Virginie Vinatier
Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Laurent Deguillaume
Université Clermont Auvergne, CNRS, Laboratoire de
Météorologie Physique, 63000 Clermont-Ferrand, France
Martine Sancelme
Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Anne-Marie Delort
CORRESPONDING AUTHOR
Université Clermont Auvergne, CNRS, Sigma-Clermont, Institut de
Chimie de Clermont-Ferrand, 63000 Clermont-Ferrand, France
Related authors
No articles found.
Mickael Vaitilingom, Christophe Bernard, Mickael Ribeiro, Christophe Berthod, Angelica Bianco, and Laurent Deguillaume
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-95, https://doi.org/10.5194/amt-2024-95, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The new collector BOOGIE has been designed and evaluated to sample cloud droplets. Computational fluid dynamic simulations are performed to evaluate the sampling efficiency for different droplets size. In situ measurements show very good water collection rates and sampling efficiency. BOOGIE is compared to other cloud collectors and the efficiency is comparable, as well as the chemical and biological compositions.
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3123–3141, https://doi.org/10.5194/acp-21-3123-2021, https://doi.org/10.5194/acp-21-3123-2021, 2021
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
Saly Jaber, Audrey Lallement, Martine Sancelme, Martin Leremboure, Gilles Mailhot, Barbara Ervens, and Anne-Marie Delort
Atmos. Chem. Phys., 20, 4987–4997, https://doi.org/10.5194/acp-20-4987-2020, https://doi.org/10.5194/acp-20-4987-2020, 2020
Short summary
Short summary
Current atmospheric multiphase models do not include biotransformations of organic compounds by bacteria, although many previous studies of our and other research groups have shown microbial activity in cloud water. The current lab/model study shows that for water-soluble aromatic compounds, biodegradation by bacteria may be as efficient as chemical reactions in cloud water.
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
Audrey Lallement, Ludovic Besaury, Elise Tixier, Martine Sancelme, Pierre Amato, Virginie Vinatier, Isabelle Canet, Olga V. Polyakova, Viatcheslay B. Artaev, Albert T. Lebedev, Laurent Deguillaume, Gilles Mailhot, and Anne-Marie Delort
Biogeosciences, 15, 5733–5744, https://doi.org/10.5194/bg-15-5733-2018, https://doi.org/10.5194/bg-15-5733-2018, 2018
Short summary
Short summary
The main objective of this work was to evaluate the potential degradation of phenol, a highly toxic pollutant, by cloud microorganisms. Phenol concentrations measured on five cloud samples collected at the PUY station in France were from 0.15 to 0.74 µg L−1. Metatranscriptomic analysis suggested that phenol could be biodegraded directly in clouds, likely by Gammaproteobacteria. A large screening showed that 93 % of 145 bacterial strains isolated from clouds were able to degrade phenol.
Clémence Rose, Nadine Chaumerliac, Laurent Deguillaume, Hélène Perroux, Camille Mouchel-Vallon, Maud Leriche, Luc Patryl, and Patrick Armand
Atmos. Chem. Phys., 18, 2225–2242, https://doi.org/10.5194/acp-18-2225-2018, https://doi.org/10.5194/acp-18-2225-2018, 2018
Short summary
Short summary
A detailed aqueous phase mechanism CLEPS 1.1 is coupled with warm microphysics including activation of aerosol particles into cloud droplets. Simulated aqueous concentrations of carboxylic acids are close to the long-term measurements conducted at Puy de Dôme (France). Sensitivity tests show that formic and acetic acids mainly originate from the gas phase with highly variable aqueous-phase reactivity depending on cloud pH, while C3–C4 carboxylic acids mainly originate from the particulate phase.
Camille Mouchel-Vallon, Laurent Deguillaume, Anne Monod, Hélène Perroux, Clémence Rose, Giovanni Ghigo, Yoann Long, Maud Leriche, Bernard Aumont, Luc Patryl, Patrick Armand, and Nadine Chaumerliac
Geosci. Model Dev., 10, 1339–1362, https://doi.org/10.5194/gmd-10-1339-2017, https://doi.org/10.5194/gmd-10-1339-2017, 2017
Short summary
Short summary
The Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) describes oxidation of water-soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) (global rate constants and branching ratios for HO• abstraction and addition) and GROMHE SAR (Henry's law constants for undocumented species). It is coupled to the MCM gas phase mechanism and is included in a model using the DSMACC model and KPP to analyze experimental and field data.
C. Barbet, L. Deguillaume, N. Chaumerliac, M. Leriche, A. Berger, E. Freney, A. Colomb, K. Sellegri, L. Patryl, and P. Armand
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-13395-2015, https://doi.org/10.5194/acpd-15-13395-2015, 2015
Preprint withdrawn
M. Joly, P. Amato, L. Deguillaume, M. Monier, C. Hoose, and A.-M. Delort
Atmos. Chem. Phys., 14, 8185–8195, https://doi.org/10.5194/acp-14-8185-2014, https://doi.org/10.5194/acp-14-8185-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
Related subject area
Subject: Biosphere Interactions | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle
A mechanism for biogenic production and emission of MEK from MVK decoupled from isoprene biosynthesis
Disentangling the rates of carbonyl sulfide (COS) production and consumption and their dependency on soil properties across biomes and land use types
The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season
Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake
Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing
Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry
Erin R. Delaria, Bryan K. Place, Amy X. Liu, and Ronald C. Cohen
Atmos. Chem. Phys., 20, 14023–14041, https://doi.org/10.5194/acp-20-14023-2020, https://doi.org/10.5194/acp-20-14023-2020, 2020
Short summary
Short summary
Observations of NO2 deposition to vegetation have been widely reported, but the magnitude and mechanism remain uncertain. We use laboratory measurements to study NO2 deposition to leaves of 10 native California tree species. We report important differences in the uptake rates between species and find that this process is primarily diffusion-regulated. We suggest that processes within leaves at a cellular level represent a negligible limitation to NO2 deposition at the canopy level.
Luca Cappellin, Francesco Loreto, Franco Biasioli, Paolo Pastore, and Karena McKinney
Atmos. Chem. Phys., 19, 3125–3135, https://doi.org/10.5194/acp-19-3125-2019, https://doi.org/10.5194/acp-19-3125-2019, 2019
Short summary
Short summary
MEK is an important VOC in atmospheric chemistry and recently it has been shown that biogenic sources are globally as important as anthropogenic ones. We unveiled the mechanism by which within-plant transformation of MVK is a source of biogenic MEK. Such transformation is observed in red oak for both exogenous MVK, taken up from the atmosphere, and endogenous MVK generated within plant when it experiences stress (e.g. heat stress). The new mechanism is important for inclusion in models.
Aurore Kaisermann, Jérôme Ogée, Joana Sauze, Steven Wohl, Sam P. Jones, Ana Gutierrez, and Lisa Wingate
Atmos. Chem. Phys., 18, 9425–9440, https://doi.org/10.5194/acp-18-9425-2018, https://doi.org/10.5194/acp-18-9425-2018, 2018
Short summary
Short summary
Soils simultaneously produce and consume the trace gas carbonyl sulfide (COS). To understand the role of these processes, we developed a method to estimate their contribution to the soil–atmosphere COS exchange. Exchange was principally driven by consumption, but the influence of production increased at higher temperatures, lower soil moisture contents and lower COS concentrations. Across the soils studied, we found a strong interaction between soil nitrogen and COS exchange.
Buhalqem Mamtimin, Franz X. Meixner, Thomas Behrendt, Moawad Badawy, and Thomas Wagner
Atmos. Chem. Phys., 16, 10175–10194, https://doi.org/10.5194/acp-16-10175-2016, https://doi.org/10.5194/acp-16-10175-2016, 2016
Short summary
Short summary
In this study, we focused on the contributions of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season. In particular, the second maximum in summer provides substantial evidence to hypothesize that those biogenic emissions from soils of managed drylands in the growing period may be much more important contributors to regional NOx budgets of dryland regions than previously thought.
Mary E. Whelan, Timothy W. Hilton, Joseph A. Berry, Max Berkelhammer, Ankur R. Desai, and J. Elliott Campbell
Atmos. Chem. Phys., 16, 3711–3726, https://doi.org/10.5194/acp-16-3711-2016, https://doi.org/10.5194/acp-16-3711-2016, 2016
Short summary
Short summary
We constructed a model of carbonyl sulfide soil exchange sufficient for predicting outcomes in terrestrial ecosystems. Empirical observations combined with soil gas exchange theory reveal simultaneous abiotic production and biotic uptake mechanisms. Measurement of atmospheric carbonyl sulfide is an emerging tool to quantify photosynthesis at important temporal and spatial scales.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
W. Jud, L. Fischer, E. Canaval, G. Wohlfahrt, A. Tissier, and A. Hansel
Atmos. Chem. Phys., 16, 277–292, https://doi.org/10.5194/acp-16-277-2016, https://doi.org/10.5194/acp-16-277-2016, 2016
Short summary
Short summary
“Breathing” ozone can have harmful effects on sensitive vegetation when sufficient ozone enters the plant leaves through the stomatal pores. Here we show that cis-abienol, a semi-volatile organic compound secreted by the leaf hairs (trichomes) of various tobacco varieties, protects the leaves from breathing ozone. Ozone is efficiently removed by chemical reactions with cis-abienol at the plant surface, forming oxygenated VOC (formaldehyde and methyl vinyl ketone) that are released into the air.
Cited articles
Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A.-M.: Microbial population in cloud water at the Puy de Dôme: implications for the chemistry of clouds, Atmos. Environ., 39, 4143–4153, https://doi.org/10.1016/j.atmosenv.2005.04.002, 2005.
Amato, P., Parazols, M., Sancelme, M., Mailhot, G., Laj, P., and Delort, A. M.: An important oceanic source of micro-organisms for cloud water at the Puy de Dôme (France), Atmos. Environ., 41, 8253–8263, https://doi.org/10.1016/j.atmosenv.2007.06.022, 2007a.
Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G., and Delort, A. M.: Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures, FEMS Microbiol. Ecol., 59, 242–254, https://doi.org/10.1111/j.1574-6941.2006.00199.x, 2007b.
Amato, P., Demeer, F., Melaouhi, A., Fontanella, S., Martin-Biesse, A.-S., Sancelme, M., Laj, P., and Delort, A.-M.: A fate for organic acids, formaldehyde and methanol in cloud water: their biotransformation by micro-organisms, Atmos. Chem. Phys., 7, 4159–4169, https://doi.org/10.5194/acp-7-4159-2007, 2007c.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y., Handa, D., Azechi, S., Kimura, T., and Tsuhako, A.: A general scavenging rate constant for reaction of hydroxyl radical with organic carbon in atmospheric waters, Environ. Sci. Technol., 47, 8196–8203, 2013.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 34.1–34.4, https://doi.org/10.1029/2002GL015637, 2002.
Bianco, A., Passananti, M., Perroux, H., Voyard, G., Mouchel-Vallon, C., Chaumerliac, N., Mailhot, G., Deguillaume, L., and Brigante, M.: A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates, Atmos. Chem. Phys., 15, 9191–9202, https://doi.org/10.5194/acp-15-9191-2015, 2015.
Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., and Chaumerliac, N.: Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters, Chem. Rev., 105, 3388–3431, https://doi.org/10.1021/cr040649c, 2005.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014.
Delort, A.-M., Vaïtilingom, M., Joly, M., Amato, P., Wirgot, N., Lallement, A., Sancelme, M., Matulova, M., and Deguillaume, L.: Clouds: a transient and stressing habitat for microorganisms, in: Microbial Ecology of Extreme Environments, edited by: Chénard, C. and Lauro, F. M., Springer, Chapter 10, https://doi.org/10.1007/978-3-319-51686-8_10, 2017.
Gunz, D. W. and Hoffmann, M. R.: Atmospheric chemistry of peroxides: a review, Atmos. Environ. Part A. General Topics, 24, 1601–1633, https://doi.org/10.1016/0960-1686(90)90496-A, 1990.
Haddock, B. A. and Jones, C. W.: Bacterial respiration, Bacteriol. Rev., 41, 47–99, 1977.
Hammer, Ø., Harper, D. A. T, and Ryan, P. D.: PAST: palaeontological statistics software package for education and data analysis, Palaeontol. Electron., 4, 4–9, 2001.
Hems, R. F., Hsieh, J. S., Slodki, M. A., Shouming, Z., and Abbatt, J. P. D.: Suppression of OH Generation from the Photo-Fenton Reaction in the Presence of α-Pinene Secondary Organic Aerosol Material, Environ. Sci. Technol. Lett., 4, 439–443, https://doi.org/10.1021/acs.estlett.7b00381, 2017.
Herckes, P., Valsaraj, K. T., and Collett Jr., J. L.: A review of observations of organic matter in fogs and clouds: origin, processing and fate, Atmos. Res., 132–133, 434–449, https://doi.org/10.1016/j.atmosres.2013.06.005, 2013.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hill, K. A., Shepson, P. B., Galbavy, E. S., Anastasio, C., Kourtev, P. S., Konopka, A., and Stirm, B. H.: Processing of atmospheric nitrogen by clouds above a forest environment, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD008002, 2007.
Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M., Vinatier, V., Sancelme, M., Amato, P., Matulová, M., and Delort, A.-M.: Biotransformation of methanol and formaldehyde by bacteria isolated from clouds. Comparison with radical chemistry, Atmos. Environ., 45, 6093–6102, https://doi.org/10.1016/j.atmosenv.2011.06.035, 2011.
Hyslop, P. A., Hinshawz, D. B., Halsey, W. A., Schraufstatter, I. U., Sauerhebery, R. D., Roger, G. Spraggj, R. G., Jackson, J. H., and Cochrane, C. G.: Mechanisms of oxidant-mediated cell injury the glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide, J. Biol. Chem., 263, 1665–1675, 1988.
Joly, M., Amato, P., Sancelme, M., Vinatier, V., Abrantes, M., Deguillaume, L., and Delort, A.-M.: Survival of microbial isolates from clouds toward simulated atmospheric stress factors, Atmos. Environ., 117, 92–98, https://doi.org/10.1016/j.atmosenv.2015.07.009, 2015.
Josephson, R. A., Silverman, H. S., Lakatta, E. G., Stern, M. D., and Zweier, J. L.: Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes, J. Biol. Chem., 266, 2354–2361, 1991.
Kieber, R. J., Peake, B., Willey, J. D., and Jacobs, B.: Iron speciation and hydrogen peroxide concentrations in New Zealand rainwater, Atmos. Environ., 35, 6041–6048, https://doi.org/10.1016/S1352-2310(01)00199-6, 2001.
Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A.-M., and Lemaire, J.: Acquired biodegradability of polyethylenes containing pro-oxidant additives, Polym. Degrad. Stabil., 91, 1495–1503, https://doi.org/10.1016/j.polymdegradstab.2005.10.007, 2006.
Krumins, V., Mainelis, G., Kerkhof, L. J., and Fennell, D. E.: Substrate-dependent rRNA production in an airborne bacterium, Environ. Sci. Technol. Lett., 9, 376–381, https://doi.org/10.1021/ez500245y, 2014.
Lazrus, A. L., Kok, G. L., Gitlin, S. N., Lind, J. A., and McLaren, S. E.: Automated fluorimetric method for hydrogen peroxide in atmospheric precipitation, Anal. Chem., 57, 917–922, https://doi.org/10.1021/ac00281a031, 1985.
Lee, M., Heikes, B. G., and O'Sullivan, D. W.: Hydrogen peroxide and organic hydroperoxide in the troposphere: a review, Atmos. Environ., 34, 3475–3494, https://doi.org/10.1016/S1352-2310(99)00432-X, 2000.
Li, J., Mailhot, G., Wu, F., and Deng, N.: Photochemical efficiency of Fe(III)-EDDS complex: OH radical production and 17β-estradiol degradation, J. Photoch. Photobio. A., 212, 1–7, https://doi.org/10.1016/j.jphotochem.2010.03.001, 2010.
Li, J., Wang, X., Chen, J., Zhu, C., Li, W., Li, C., Liu, L., Xu, C., Wen, L., Xue, L., Wang, W., Ding, A., and Herrmann, H.: Chemical composition and droplet size distribution of cloud at the summit of Mount Tai, China, Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, 2017.
Marie, D., Brussaard, C. P. D., Partensky, F., and Vaulot, D.: Flow cytometric analysis of phytoplankton, bacteria and viruses, edited by: Robinson, J. P., Ed. Curr. Protoc. Cytom., John Wiley & Sons, 11.11, 1–15, 1999.
Marinoni, A., Parazols, M., Brigante, M., Deguillaume, L., Amato, P., Delort, A.-M., Laj, P., and Mailhot, G.: Hydrogen peroxide in natural cloud water: sources and photoreactivity, Atmos. Res., 101, 256–263, https://doi.org/10.1016/j.atmosres.2011.02.013, 2011.
Matulová, M., Husárová, S., Capek, P., Sancelme, M., and Delort, A. M.: Biotransformation of various saccharides and production of exopolymeric substances by cloud-borne Bacillus sp. 3B6, Environ. Sci. Technol., 48, 14238–14247, https://doi.org/10.1021/es501350s, 2014.
Möller, D.: Atmospheric hydrogen peroxide: evidence for aqueous-phase formation from a historic perspective and one-year measurement campaign, Atmos. Environ., 43, 5923–5936, https://doi.org/10.1016/j.atmosenv.2009.08.013, 2009.
Oka, S. I., Hsu, C. P., and Sadoshima, J.: Regulation of cell survival and death by pyridine nucleotides, Circ. Res., 111, 611–627, https://doi.org/10.1161/CIRCRESAHA.111.247932, 2012.
Perricone, C. D., Park, S., Imlay, J. A., and Weiser, J. N.: Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the Fenton reaction, J. Bacteriol., 185, 6815–6825, https://doi.org/10.1128/JB.185.23.6815-6825.2003, 2003.
Reasoner, D. J. and Geldreich, E. E.: A new medium for the enumeration and subculture of bacteria from potable water, Appl. Environ. Microb., 49, 1–7, 1985.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, 2015.
Sattler, B., Puxbaum, H., and Psenner, R.: Bacterial growth in supercooled cloud droplets, Geophys. Res. Lett., 28, 239–242, https://doi.org/10.1029/2000GL011684, 2001.
Schöne, L. and Herrmann, H.: Kinetic measurements of the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solutions, Atmos. Chem. Phys., 14, 4503–4514, https://doi.org/10.5194/acp-14-4503-2014, 2014.
Shen, X., Lee, T., Guo, J., Wang, X., Li, P., Xu, P., Wang, Y., Ren, Y., Wang, W., Wang, T., Li, Y., Carn, S. A., and Collett, J. L.: Aqueous phase sulfate production in clouds in eastern China, Atmos. Environ., 62, 502–511, https://doi.org/10.1016/j.atmosenv.2012.07.079, 2012.
Singh, R., Mailloux, R. J., Puiseux-Dao, S., and Appanna, V. D.: Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens, J. Bacteriol., 189, 6665–6675, https://doi.org/10.1128/JB.00555-07, 2007.
Sporn, P. H. and Peters-Golden, M.: Hydrogen peroxide inhibits alveolar macrophages 5-lipoxygenase metabolism in association with depletion of ATP, J. Biol. Chem., 263, 14776–14783, 1988.
Spragg, R. G., Hinshaw, D. B., Hyslop, P. A., Schraufstatter, I. U., and Cochrane, C. G.: Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury, J. Clin. Invest., 76, 1471–1476, https://doi.org/10.1172/JCI112126, 1985.
Tamarit, J., Cabiscol, E., and Ros, J.: Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress, J. Biol. Chem., 273, 3027–3032, https://doi.org/10.1074/jbc.273.5.3027, 1998.
Thomas, S. C., Alhasawi, A., Auger, C., Omri, A., and Appanna, V. D.: The role of formate in combatting oxidative stress, J. Microbiol., 109, 263–271, https://doi.org/10.1007/s10482-015-0629-6, 10.1007/s10482-015-0629-6, 2016.
Thompson, A. M.: The oxidizing capacity of the Earth's atmosphere: probable past and future changes, Science, 256, 1157–1165, https://doi.org/10.1126/science.256.5060.1157, 1992.
Tiwari, B. S., Belenghi, B., and Levine, A.: Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death, Plant Physiol., 128, 1271–1281, https://doi.org/10.1104/pp.010999, 2002.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and Delort, A. M.: Contribution of microbial activity to carbon chemistry in clouds, Appl. Environ. Microb., 76, 23–29, https://doi.org/10.1128/AEM.01127-09, 2010.
Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P., Sancelme, M., and Delort, A.-M.: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry, Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, 2011.
Vaïtilingom, M., Attard, E., Gaiani, N., Sancelme, M., Deguillaume, L., Flossmann, A. I., Amato, P., and Delort, A. M.: Long-term features of cloud microbiology at the puy de Dôme (France), Atmos. Environ., 56, 88–100, https://doi.org/10.1016/j.atmosenv.2012.03.072, 2012.
Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., and Delort, A.-M.: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds, P. Natl. Acad. Sci. USA, 110, 559–564, https://doi.org/10.1073/pnas.1205743110, 2013.
Vinatier, V., Wirgot, N., Joly, M., Sancelme, M., Abrantès, M., Deguillaume, L., and Delort, A.-M.: Siderophores in cloud waters and potential impact on atmospheric chemistry: production by microorganisms isolated at the puy de Dôme station, Environ. Sci. Technol., 50, 9315–9323, https://doi.org/10.1021/acs.est.6b02335, 2016.
Vione, D., Maurino, V., Minero, C., and Pelizzetti, E.: The atmospheric chemistry of hydrogen peroxide: a review, Ann. Chim-Rome, 93, 477–488, 2003.
Wei, M., Xu, C., Chen, J., Zhu, C., Li, J., and Lv, G.: Characteristics of bacterial community in cloud water at Mt Tai: similarity and disparity under polluted and non-polluted cloud episodes, Atmos. Chem. Phys., 17, 5253–5270, https://doi.org/10.5194/acp-17-5253-2017, 2017.
Zar, J. H.: Significance testing of the Spearman rank correlation coefficient, J. Am. Stat. Assoc., 67, 578–580, https://doi.org/10.2307/2284441, 1972.
Short summary
This article highlights the interactions between H2O2 and microorganisms within the cloud system. Experiments performed in microcosms with bacterial strains isolated from clouds showed that H2O2 strongly impacted the microbial energetic state. The ATP depletion measured in the presence of H2O2 was not due to the loss of cell viability. The strong correlation between ATP and H2O2 based on the analysis of 37 real cloud samples confirmed that H2O2 modulates the metabolism of cloud microorganisms.
This article highlights the interactions between H2O2 and microorganisms within the cloud...
Altmetrics
Final-revised paper
Preprint